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Wrinkling Analysis of Thermo—Elastic Membranes

Jorg Hornig, Heinrich Schoop, Uwe Herbrich

In order to analyze the state of stress in extremely thin mends, the wrinkling phenomenon has to be taken into
account. This paper concerns numerical analysis of thepstastic membrane wrinkling. Based on an algorithm
for hyper-elastic membranes, thermo—elastic effectsheilincluded in the wrinkling theory. Formulations of the
thermo—elastic wrinkling algorithm for small strains arat farge strains are given. Winkling effects of thermally
loaded rubber membranes with large strains have been aedlyideat conduction is neglected in these consider-
ations. Results of finite element analysis of membranetstegare presented.

1 Introduction

Membranes are very suitable to carry tensile loads but thiypértially or completely if compressive in-plane
loads occur. Since ideal membranes do not possess any flstifireess, they can not carry compressive in—plane
loads. In this case membranes wrinkle and lose partiallyoorgtetely their capability to carry loads. It can be
essential to take wrinkling effects into account.

Wrinkling of membranes was investigated by many scientistee past. Some recent works on wrinkling analysis
were published by Roddeman (1987), Taenzer (1997), SeolnddSeyoung (1997), Lu et al. (2001), Ziegler
et al. (2000), Wiedemann (2002) and Raible (2003). Some rreameb, like space structures, are exposed to large
changes in temperature. The effect of heating or coolindnemitrinkling behavior will influence the mechanical
behavior of membranes. The influence of temperature effectaembrane wrinkling was firstly studied by Chiu
et al. (1994).

In the present paper a wrinkling theory for thermo—elast@mhranes is described, based on a reference—related
formulation (see Schoop et al. (2002)). For many thermatielaroblems the small strain assumption is justified.
The extension of the existing wrinkling theory based on thalf strain assumption is simple. The wrinkling
algorithm for thermo—elastic membranes with large straiobtained by a modification of the wrinkling algorithm

for elasto—plastic membranes, published in Hornig and &el{2005). Especially the behavior of thermo—elastic
rubber membranes will be considered here. A descriptiom@fmo—elasticity of rubber can be found in, e.g.,
Holzapfel and Simo (1996), Miehe (1995) and Holzapfel (2004

In general membranes should be considered in a nonlingirgsetince they may undergo large rotations and,
occasionally, large strains. Complex nonlinear problemstiuctural mechanics are often solved by means of the
finite element method. In order to balance the internal aedotiter nodal forces, it is necessary to determine
the state of stress (or membrane forces) at the integratortspof the finite elements. However, the state of
membrane forces can be influenced by membrane wrinkling.wirhrkling can be taken into account by means
of a wrinkling algorithm. The algorithm ensures that finitembrane elements are free of compressive principal
membrane forces and provides correct membrane stiffndspending on the wrinkling state.

2 Wrinkling Theory for Hyper-Elastic Membranes without Therm al Effects

Membrane wrinkling is an instability phenomenon of verynthwalled surface structures under compression and
shear loads (i.e. buckling in terms of the theory of shelldnless the FE—mesh is extremely fine, the finite
shell elements are not able to represent a short wave wrgklattern. In order to take such deformations into
account for the ideal membrane model, a kinematic cornedtii be added to the FE interpolated deformation
state. The material behavior of the membrane itself remametianged. By means of this kinematic correction,
the load transition behavior of the membrane structure esamlalyzed. The detailed wave pattern of the wrinkled
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membrane remains undetermined. Depending on the appheld,la membrane can achieve one of the following
three states

1. taut state: only tension forces in the membrane, full béipato carry loads
2. slack state: no membrane forces in the membrane, no digptabcarry loads

3. regularly wrinkled state: load transition due to an urdbstate of membrane force

If only a few integration points have a slack state, the memémay have stable load carrying characteristics
and the FE calculation will converge, otherwise it may fdil. order to distinguish these three states for given
deformations of the finite element, a wrinkling criteriorsha be established.

Wrinkling criterion.  Several wrinkling criteria have been developed in the peiiter based on the state of
membrane force (see, e.g. Otto and Trostel (1962)) or ontthe of strain (see, e.g. Miller et al. (1985)). Rod-
deman (1987) introduced a mixed wrinkling criterion, usbagh, membrane forces and strains to distinguish the
three wrinkling states. Here a mixed wrinkling criterioraigplied. Knowing the (FE—interpolated) planar Green
strainsD, and the corresponding uncorrected 2nd Piola—Kirchhoffnbmane force tensd$(D) the wrinkling
state can be identified in the following way

e tautstate:S; > S;;r >0
e slack stateD;; < D; <0

e homogeneous wrinkled state: otherwise

Dy, Dy, Sy andSy; are the principal values of strains and membrane forcegseotigely, while the first principal
value is the larger one.

So far the membrane is stretched in at least one directioragadsion membrane forces will arise, even in the
case if the uncorrected (i.e. unwrinkled) membrane forcesampressive (due to Poisson’s effect). Under such a
loading, the membrane will wrinkle and the uncorrected idilestate of stress will switch to a uniaxial state with
tension.

If for given FE-interpolated strains a certain wrinklingutt is detected, the analysis proceeds this way: In case
of a taut membrane, the analysis is conducted in a commonlivdae membrane is slack, membrane forces and

stiffnesses will be set to zero. For a regularly wrinkled rbeame additional considerations have to be made, in

order to determine the state of membrane force. The kinematid the uniaxial state of membrane forces of

regularly wrinkled membranes are considered in more detail

Membrane forces. For membranes the plane state of stress is assumed, i.ethentyanar stress components
T, may differ from zero.T,,s denotes the planar 2nd Piola—Kirchhoff stresses. Greakdaadake the values 1
or 2, thusw, 8 = 1, 2 (unless mentioned otherwise, bold characters denotepdaaatities like membrane strains
and membrane forces). The components of the 3D—stress Bgwith ¢, j = 1, 2, 3) follow from the derivative
of the strain energy functiotr (C;;) with respect to the Cauchy—Green straiiis
ov

T, =2 — 1
C13, Ca3, T13 andTy3 are assumed to be zero. The thickness sttginis determined by the plane stress require-
mentT33 = 0. Planar stresses and the 2nd Piola—Kirchhoff membranedae related by

Socﬁ =h Taﬁ (2)

h is the membrane thickness in the reference configuratiotiidrpaper the St. Venant material and the Mooney—
Rivlin material will be considered in more details, i.e. 8t Venant material

T(xﬁ =2G (Daﬁ + ]_—Ll/ (Dll + D22) 6aﬁ) (3)
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and for the Mooney—Rivlin material

1 1
Tr=11— —— — o2 Tir=11— ———~ — A2 4
T ( N /\22> (,Ul H2 A2 ) II ( Ve )\24> (ul o A1 ) (4)

Equations 4 describe the principal 2nd Piola—Kirchhotsses of an isochoric rubber—like material in dependency
on the pricipal stretches; and )\, (see Holzapfel (2004) for detailg}) is the shear modulus,the Poissons ratio
andu; andpus are rubber material data witG = 11 — po. The plane stress condition is satisfied in the equations
3and 4.

Figure 1 shows the regions of the three wrinkling states éngbace of principal strain®;, D;; or principal
stretches\;, A, respectively. The left picture is for a St.Venant matdnahe D;—D;; space, the right picture is
for a Mooney—Rivlin material in th@;—\, space. The grey marked areas are the regions in the straia sihere
regular wrinkling takes place. By definition > A5 holds.
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Figure 1: Membrane states of isotropic membranes — in grah€reen strains for a St. Venant material (left) and
in principal stretch for a Mooney-Rivlin material (right)

Beside the wrinkling phenomenon for rubber membranestiaddi instabilities in biaxial tension are known (see
Kearsley (1986) and Mler and Strehlow (2004)). This instability will not inflnee the wrinkling phenomenon
since it occurs for symmetric tension only, i.e feyr = S;; > 0.

Wrinkling kinematics. Deformations caused by regular wrinkling can be taken icmmant by adding a cor-
rection term to the FE—interpolated deformation gradi@&ht

F/ = (E3+ﬁRnon) 'F7 (5)

wheren describes the wrinkling direction as depicted in Figurekl. is the 3D—unit tensorjr is Roddeman’s

wrinkling parameter (witt3z > 0). A prime( )’ denotes corrected quantities. Since both deformatioriemes

F andF' describe a map from the reference plane into the space, #mdyecwritten a8 x 2—matrices. By means
of the wrinkling kinematics the true length of the wrinkleé@mbrane is represented.

As shown by Schoop et al. (2002), a similar representatiorbeafound for the Green strain tensor and the right
Cauchy—Green strain tensor

D'=D+ANoN and C'=C+23NoN (6)

with the FE—interpolated strain tensdy C, the reference related wrinkling parameteiand the vectoiN,
placed in thee;— e, reference plane, representing a wrinkling directidh= cos a e; + sina e; . The same as
Roddeman’s parametgrz, the wrinkling parameteg is always positive.

1The tensor product of two vectorsg? o y;g7 is defined byx oy = z;y,g° o g’
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Figure 2: Measures of length and wrinkling direction of ankied membrane

Wrinkling condition.  In a regularly wrinkled membrane a uniaxial state of memeérmces exists. For the
wrinkling conditions, Schoop et al. (2002) gave the follog/irepresentation in terms of the 2nd Piola—Kirchhoff
membrane force tensér

= N-S(D)-N= fi(a,B) (7)
N-S(D')-N_L = fa(a, B) (8)
VectorN | = —sina e + cos « e5 is located in the reference plane, perpendiculdXto

The equations 7 and 8 are a set of equations for the two unksavamd 5. These nonlinear equations can be
solved by Newton’s method. From the wrinkling conditiore thrinkling directiona and the wrinkling parameter
( can be calculated and the state of membrane forces will lmerdigted. This procedure is carried out at every
integration point of the finite elements. In Schoop et al0@M consistent linearization is given, which yields the
correct stiffness of the wrinkled membrane.

3 Thermo-Elastic Wrinkling for Small Strains

In this paragraph the wrinkling of membranes which are egdde a change of temperatute= 8 — 6, is under
investigation.f, is the reference temperature. Strains are assumed to bl Bleate an additive split of Green’s
strain tensor into elastic straifi®. and thermal strainBy is admissible

D =Dy + D, with Dy = 9 (7] (9)

oy are linear coefficients of thermal expansion for a thermaairopic material. For an isotropic material
ay = ag E holds. The 2nd Piola—Kirchhoff membrane forces follow fridmarmo—elastic constitutive equations

S(D,§) = C- (D — Dy) (10)

with the 4th order elasticity tensdr.

Wrinkling criterion.  In order to take the temperature effects on the wrinklingestato account, the wrinkling
criterion presented above has to be modified. Hereby a statkis assumed if the principal values of the elastic
strainsD, = D — Dy are solely compressive.

e taut state:S; > S;; >0
o slack stateD, ;1 < D1 <0

e regularly wrinkled state: otherwise

Using the corrected membrane forc®&D’, ) = C - -(D’ — Dy) in the wrinkling conditions 7 and 8 gives a
system of equations for the wrinkling directioanand the wrinkling parametet.
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3.1 Numerical Example — Solar Sail

Solar sails are currently investigated as an alternatigpgdtant in space for satellites. The solar sail is subgecte
to the sun pressure, which provides a small but permanerihgriorce. Since the sun pressure depends on the
light angle of incidence, the deflection of the membrane céluénce the performance of the solar sail. The
structure of the satellite is subjected to changing tempera. The effect of the temperature on the sail deflection
is investigated next. Here, the solar sail is modeled as abraam with fixed corners and a fixed center. No further
structural elements are taken into account. In the refereonfiguration the membrane is plane and square.
Geometry and conditions of bearing are shown in Figure 3. sb&r sail is made of a polyamide—foil. This foll

is characterized by an isotropic material behavior. Théstrains are described by equation 9. The membrane is
loaded by the sun pressyre= 0.92-10~°N/mm? and a temperature differende= +£100 K. In the computations
the sun pressure is treated as a fluid pressure load. Data solr sail are:

e width a = 10000 mm

¢ thickness of membrane= 7.6 - 102 mm

e Young’'s modulust = 2000

mm?2
e Poisson’s ratiov = 0.3

¢ coefficient of thermal expansiany = 8.0 - 10—5%

e sun pressurg = 0.92 - 1075

e temperature differencé = +100 K

fixed A a

Figure 3: Geometry and bearing of the solar sail

Figures 4 to 6 show state of wrinkling for the solar sail lcdaégth sun pressure and temperature differences of
¥ = 0 Kandd = +£100 K, respectively. Wrinkles at integration points are depldby lines along the wrinkling
direction (i.e. direction of the vanishing principle merabe force). A rhombus marks integration points with a
slack membrane.

In all considered cases wrinkles appear in the surroundingeomembrane diagonals. Fdr= —100 K the
wrinkling is in general reduced. In this case the center efrttembrane is taut, while for the heated membrane
(¥ = +100 K) wrinkles appear at the center. The midpoint deflectignof an edge (see Figure 3) is under con-
sideration. The deflection grows with increasing tempeeathor the three considered temperatures the following
values were obtained by the numerical simulations

e wp =733.9mmatd = —100 K
e wp =890.3mmatd = 0K
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e wp = 1050.9 mm at¥ = 100 K
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Figure 4: Top view of the solar sail under thermal and sungumesload, state of wrinkling @ = —100 K
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Figure 5: Top view of the solar sail under thermal and sungunesload, state of wrinkling at = 0 K
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Figure 6: Top view of the solar sail under thermal and sunsumesload, state of wrinkling at = +100 K

4 Thermo-Elasticity for Large Strains

Thermo—elastic deformations. The concept of a multiplicative decompositionlofwill be applied. The defor-
mation gradient of the membrane is split into an purely elafformationF. and a purely thermal deformation
F(0) depending on the temperatute
F=F, . F (11)
The elastic and thermal Cauchy—Green strain measures
C=F"F C.,=F'.F, withc=F".C, F (12)

are introducedC, C andC, are planar strain measures of the membrane. A multiplieat@composition of the
corrected deformation gradieRt can be done in the same way. The thermal strains will be spddifi Section
4.1 for a rubber—like material.

reference F

/\ present configuration

(5

intermediate configuration

Figure 7: Thermo—elastic deformation of a membrane

The membrane forces. In case of a thermo—elastic material the 2nd Piola—Kirch$inésses are the derivative
of the Helmholtz free energ¥ (C;;, #) with respect to the right Cauchy—Green strains (see Hod2§p04)). The
membrane forces read

ov
aCy;

In a membrane the thickness stréig; is determined by the plane stress requirenigpt= 0.

Sus(C.0) = hTay  With  Tj; =2 (13)
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Wrinkling criterion.  The same concept as already presented for the small strseéncea be applied here, in
particular, a slack membrane is assumed if elastic strages@anpletely compressive.

e taut state:S; > Sy >0
o slack stateC. ;1 < Cer < 1

e regularly wrinkled state: otherwise

Thus, in order to detect a slack state the principal valugsofiave to be evaluated. According to Tietze (1986),
the 1st and 2nd invariants . equal those ofC~! - C):

I, = C.--E=(C"'.C)-E (14)
I, = C,--C.=(C'.C)-(C'-C) (15)

If the purely thermal strain€ and the total straitC are known, the principal values @. can be determined.
Using the invariantd; and I, obtained by equation 14 and 15, the midpdifitand the radiug of C.—Mohr’s

circle are given by
1 1 5
M=21 r:?/yrll (16)

Then, the principal values & . are

Ce’]:M+’I” OQJIZM*T (17)

Wrinkling condition.  In a regularly wrinkled membrane the uniaxial state of meambrforces is required. Since
the thermal effects influence the membrane forces, the \imgnkonditions are

0 = N-S(C,0) N (18)
0 = N-S(C,0) N, (19)

with C’ according equation 6. From these nonlinear equations thkhling directiona and wrinkling parameter
(6 can be determined by means of Newton’s method.

4.1 Constitutive Equations for a Rubber—like Material

As an example for thermo—elastic wrinkling rubber like meam®s are considered. The description of the material
behavior is based on the extended Ogden model for slightiypcessive rubber (see Holzapfel (2004)). The
relation of a purely thermal deformatidr); caused by a change of temperattre: 6 — 6, is

Eyj=F(®)6; with  F(§) = e (6=0%) (20)
with the thermal expansion coefficiemy, here assumed to be constant.
The notation for the principal stretches used in Holzap280@4) will be applied herez\; for total principal
stretches)\; = J—3 \; for isochoric principal stretches withj = 1,2,3 andJ = det(F;;). Consequently,
the principal values of the planar tengdrare \? and\3.
The Helmholtz free energ¥ is split into a volumetric and an isochoric part:

\P(Alv )\25 )\35 9) = \PTJOZ(‘L 6) + \IjiSO(X17 5\27 5\33 0) (21)
Volumetric and isochoric stress contributions are

64]1)0[
0C;;

l -1 i
T =2 —JpCy~t and T =2

iy . o o
o= Tiso a Na © Na (22)
9c, 2
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N, denote the principal directions of stretch, identical with principal directions of. For slightly compressible
rubber the hydrostatic pressyréollows from the constitutive equation.

- a\Ijvol - idG(J) . de()(J)ﬁ .
L Y Y] 4 g, (23)
G(J) = i (J2—1-2InJ) and (24)
eo(J) = 3aproby (J—1) (25)

ko is the bulk modulus &y. The relation for the isochoric principal stresggs, ., is
1o, 1 s T,
/—Tisoa - )\7“ a)\a - E;up(e) (Aap — g;Ab (26)

pp(0) = ,up(eo)% are shear moduli and,, are dimensionless constants Wf¥(6) = Z;V:l tp(Bo)ay. In this
paper the number of constants is seMa= 2 with «; = 2 anda, = —2, which corresponds to the Mooney—Rivlin
material.

Heat production due to the deformation of the rubber and ¢maduction were neglected in these considerations.
Hence the isothermal stiffness of the material has to be ustte Newton iteration of the wrinkling algorithm.
The plane stress requireméhng = 0 is satisfied by means of an iteration procedure which is paated into the
wrinkling algorithm (see Hornig (2004) for details).

4.2 Numerical Example — Twist of a Cylindric Membrane

In this paragraph a cylindrical rubber membrane underdoediand thermal load is analyzed. Both edges of the
cylinder are attached to rigid discs as depicted in FigurEh height of the cylinder remains constant during the
rotation of the lower disc. A change of temperattire- +20 K is applied and the temperature is fixed at this level
during the deformation of the membrane. The membrane wagleddy an8 x 12 mesh of bilinear elements.
Geometrical data and material properties are:

e radiusk = 100 mm
e heightH = 300 mm
e thickness of membrane= 0.1 mm
e reference temperatufyg = 273.15 K

e parameters of the Mooney-Rivlin material
w1 = 0.3696 N/mm?, ps = —0.0528 N/mmn?

o] = 2, g = —2
e bulk modulusxy = 4.0832 N/mmn? which corresponds to a Poisson’s ratie= 0.45

¢ coefficient of thermal expansiaw = 22.333 - 10—5%

R
e

Y
n M = '
| fixed

Figure 8: Geometry of the cylinder and deformed shape of dloéed membrane at twist angle= 45°

41



Figure 9 shows the resulting torsional mome@rit due to an applied rotation of the lower cylinder edgéy is
plotted for the membrane at reference temperaiyire 273.15 K and ford = 420 K. In addition the FE solution
without wrinkling algorithm is shown by the dashed line. RFbe depicted range it fits well to the analytical
solution of a twisted cylinder. Assuming a homogeneousstdtdeformation withD,; = 0, D12 = %%R and

_ 197 p2 i ; _ 31 ¢
Dy = 5 %5 R* the torsional moment i8/r = 2GmR°h¥.

0.14 !
0.12+ I~ without wrinkling .

0.1r 5
0.08

0.06 - ]
0.04 L ¥ =+20K -

My [Nm]

0.02*/ 9 =0K §

O | | | | | | |
O 5 10 15 20 25 30 35 40

¢ [deg]

Figure 9: Twist of cylindrical membrane

From the graphs in Figure 9 the influence of the wrinkling pireanon is clearly visible. Without the wrinkling
algorithm M is overestimated.

In the range ofp = 0° to 42° the torsional moment is the higher the lower the temperaturén the case of

the cooled membrane the curve starts relatively steep, avitlope close to that of the curve without wrinkling
influence. No convergence of the FE algorithm could be aelidor small angles and = +20 K, because of
zero stiffness of the slack membrane. Atz 42° the Mp—curves for all three temperature cross each other and the
M of the heated membrane commences to exceed the moment ofllee cnembrane. This is a consequence of
temperature—dependency of shear mogy(¥) = up(eo)%.

5 Summary

In this paper an algorithm for thermal wrinkling of membrarng presented. Beginning from the modified, refer-
ence related Roddeman theory, special formulations ofkhmign criteria and wrinkling conditions are given for
thermo—elastic membranes. The wrinkling algorithms fermmo—elastic wrinkling analysis is easy to implement
into existing FE-programs. The wrinkling analysis takegcglat the integration points of finite membrane elements
and does not require changes of the structure of the FE-gorogsince the basic idea is to apply a correction to
the kinematics, different constitutive equations can bglia@. Numerical examples show the capability of the
presented method to treat wrinkling and thermo—elastaxcest
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