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Wrinkling Analysis of Thermo–Elastic Membranes

Jörg Hornig, Heinrich Schoop, Uwe Herbrich

In order to analyze the state of stress in extremely thin membranes, the wrinkling phenomenon has to be taken into
account. This paper concerns numerical analysis of thermo–elastic membrane wrinkling. Based on an algorithm
for hyper-elastic membranes, thermo–elastic effects willbe included in the wrinkling theory. Formulations of the
thermo–elastic wrinkling algorithm for small strains and for large strains are given. Winkling effects of thermally
loaded rubber membranes with large strains have been analyzed. Heat conduction is neglected in these consider-
ations. Results of finite element analysis of membrane structures are presented.

1 Introduction

Membranes are very suitable to carry tensile loads but they fail partially or completely if compressive in-plane
loads occur. Since ideal membranes do not possess any flexural stiffness, they can not carry compressive in–plane
loads. In this case membranes wrinkle and lose partially or completely their capability to carry loads. It can be
essential to take wrinkling effects into account.

Wrinkling of membranes was investigated by many scientists in the past. Some recent works on wrinkling analysis
were published by Roddeman (1987), Taenzer (1997), Seokwooand Seyoung (1997), Lu et al. (2001), Ziegler
et al. (2000), Wiedemann (2002) and Raible (2003). Some membranes, like space structures, are exposed to large
changes in temperature. The effect of heating or cooling on the wrinkling behavior will influence the mechanical
behavior of membranes. The influence of temperature effectson membrane wrinkling was firstly studied by Chiu
et al. (1994).

In the present paper a wrinkling theory for thermo–elastic membranes is described, based on a reference–related
formulation (see Schoop et al. (2002)). For many thermo–elastic problems the small strain assumption is justified.
The extension of the existing wrinkling theory based on the small strain assumption is simple. The wrinkling
algorithm for thermo–elastic membranes with large strainsis obtained by a modification of the wrinkling algorithm
for elasto–plastic membranes, published in Hornig and Schoop (2005). Especially the behavior of thermo–elastic
rubber membranes will be considered here. A description of thermo–elasticity of rubber can be found in, e.g.,
Holzapfel and Simo (1996), Miehe (1995) and Holzapfel (2004).

In general membranes should be considered in a nonlinear setting, since they may undergo large rotations and,
occasionally, large strains. Complex nonlinear problems in structural mechanics are often solved by means of the
finite element method. In order to balance the internal and the outer nodal forces, it is necessary to determine
the state of stress (or membrane forces) at the integration points of the finite elements. However, the state of
membrane forces can be influenced by membrane wrinkling. Thewrinkling can be taken into account by means
of a wrinkling algorithm. The algorithm ensures that finite membrane elements are free of compressive principal
membrane forces and provides correct membrane stiffnessesdepending on the wrinkling state.

2 Wrinkling Theory for Hyper-Elastic Membranes without Therm al Effects

Membrane wrinkling is an instability phenomenon of very thin–walled surface structures under compression and
shear loads (i.e. buckling in terms of the theory of shells).Unless the FE–mesh is extremely fine, the finite
shell elements are not able to represent a short wave wrinkling pattern. In order to take such deformations into
account for the ideal membrane model, a kinematic correction will be added to the FE interpolated deformation
state. The material behavior of the membrane itself remainsunchanged. By means of this kinematic correction,
the load transition behavior of the membrane structure can be analyzed. The detailed wave pattern of the wrinkled
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membrane remains undetermined. Depending on the applied loads, a membrane can achieve one of the following
three states

1. taut state: only tension forces in the membrane, full capability to carry loads

2. slack state: no membrane forces in the membrane, no capability to carry loads

3. regularly wrinkled state: load transition due to an uniaxial state of membrane force

If only a few integration points have a slack state, the membrane may have stable load carrying characteristics
and the FE calculation will converge, otherwise it may fail.In order to distinguish these three states for given
deformations of the finite element, a wrinkling criterion has to be established.

Wrinkling criterion. Several wrinkling criteria have been developed in the past,either based on the state of
membrane force (see, e.g. Otto and Trostel (1962)) or on the state of strain (see, e.g. Miller et al. (1985)). Rod-
deman (1987) introduced a mixed wrinkling criterion, usingboth, membrane forces and strains to distinguish the
three wrinkling states. Here a mixed wrinkling criterion isapplied. Knowing the (FE–interpolated) planar Green
strainsD, and the corresponding uncorrected 2nd Piola–Kirchhoff membrane force tensorS(D) the wrinkling
state can be identified in the following way

• taut state:SI > SII > 0

• slack state:DII < DI < 0

• homogeneous wrinkled state: otherwise

DI , DII , SI andSII are the principal values of strains and membrane forces, respectively, while the first principal
value is the larger one.

So far the membrane is stretched in at least one direction anda tension membrane forces will arise, even in the
case if the uncorrected (i.e. unwrinkled) membrane forces are compressive (due to Poisson’s effect). Under such a
loading, the membrane will wrinkle and the uncorrected biaxial state of stress will switch to a uniaxial state with
tension.

If for given FE-interpolated strains a certain wrinkling state is detected, the analysis proceeds this way: In case
of a taut membrane, the analysis is conducted in a common way.If the membrane is slack, membrane forces and
stiffnesses will be set to zero. For a regularly wrinkled membrane additional considerations have to be made, in
order to determine the state of membrane force. The kinematics and the uniaxial state of membrane forces of
regularly wrinkled membranes are considered in more detail.

Membrane forces. For membranes the plane state of stress is assumed, i.e. onlythe planar stress components
Tαβ may differ from zero.Tαβ denotes the planar 2nd Piola–Kirchhoff stresses. Greek indices take the values 1
or 2, thusα, β = 1, 2 (unless mentioned otherwise, bold characters denote planar quantities like membrane strains
and membrane forces). The components of the 3D–stress tensor Tij (with i, j = 1, 2, 3) follow from the derivative
of the strain energy functionΨ(Cij) with respect to the Cauchy–Green strainsCij

Tij = 2
∂Ψ

∂Cij

(1)

C13, C23, T13 andT23 are assumed to be zero. The thickness strainC33 is determined by the plane stress require-
mentT33 = 0. Planar stresses and the 2nd Piola–Kirchhoff membrane forces are related by

Sαβ = h Tαβ (2)

h is the membrane thickness in the reference configuration. Inthis paper the St. Venant material and the Mooney–
Rivlin material will be considered in more details, i.e. forSt. Venant material

Tαβ = 2G

(

Dαβ +
ν

1 − ν
(D11 + D22) δαβ

)

(3)
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and for the Mooney–Rivlin material

TI =

(

1 −
1

λ1
4 λ2

2

)

(

µ1 − µ2 λ2
2
)

TII =

(

1 −
1

λ1
2 λ2

4

)

(

µ1 − µ2 λ1
2
)

(4)

Equations 4 describe the principal 2nd Piola–Kirchhoff stresses of an isochoric rubber–like material in dependency
on the pricipal stretchesλ1 andλ2 (see Holzapfel (2004) for details).G is the shear modulus,ν the Poissons ratio
andµ1 andµ2 are rubber material data with2G = µ1 − µ2. The plane stress condition is satisfied in the equations
3 and 4.

Figure 1 shows the regions of the three wrinkling states in the space of principal strainsDI , DII or principal
stretchesλ1, λ2, respectively. The left picture is for a St.Venant materialin theDI–DII space, the right picture is
for a Mooney–Rivlin material in theλ1–λ2 space. The grey marked areas are the regions in the strain space where
regular wrinkling takes place. By definitionλ1 > λ2 holds.
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Figure 1: Membrane states of isotropic membranes – in principal Green strains for a St. Venant material (left) and
in principal stretch for a Mooney-Rivlin material (right)

Beside the wrinkling phenomenon for rubber membranes, additional instabilities in biaxial tension are known (see
Kearsley (1986) and M̈uller and Strehlow (2004)). This instability will not influence the wrinkling phenomenon
since it occurs for symmetric tension only, i.e forSI = SII > 0.

Wrinkling kinematics. Deformations caused by regular wrinkling can be taken into account by adding a cor-
rection term to the FE–interpolated deformation gradient1

F

F
′ = (E3 + βRn ◦ n) · F, (5)

wheren describes the wrinkling direction as depicted in Figure 2.E3 is the 3D–unit tensor,βR is Roddeman’s
wrinkling parameter (withβR > 0). A prime( )

′ denotes corrected quantities. Since both deformation gradients
F andF

′ describe a map from the reference plane into the space, they can be written as3 × 2–matrices. By means
of the wrinkling kinematics the true length of the wrinkled membrane is represented.

As shown by Schoop et al. (2002), a similar representation can be found for the Green strain tensor and the right
Cauchy–Green strain tensor

D
′ = D + βN ◦ N and C

′ = C + 2βN ◦ N (6)

with the FE–interpolated strain tensorsD, C, the reference related wrinkling parameterβ and the vectorN,
placed in thee1– e2 reference plane, representing a wrinkling direction:N = cos α e1 + sin α e2 . The same as
Roddeman’s parameterβR, the wrinkling parameterβ is always positive.

1The tensor product of two vectorsxig
i
◦ yjg

j is defined byx ◦ y = xiyjg
i
◦ g

j
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Figure 2: Measures of length and wrinkling direction of a wrinkled membrane

Wrinkling condition. In a regularly wrinkled membrane a uniaxial state of membrane forces exists. For the
wrinkling conditions, Schoop et al. (2002) gave the following representation in terms of the 2nd Piola–Kirchhoff
membrane force tensorS

0 = N · S (D′) · N = f1(α, β) (7)

0 = N · S (D′) · N⊥ = f2(α, β) (8)

VectorN⊥ = − sin α e1 + cos α e2 is located in the reference plane, perpendicular toN.

The equations 7 and 8 are a set of equations for the two unknowns α andβ. These nonlinear equations can be
solved by Newton’s method. From the wrinkling condition, the wrinkling directionα and the wrinkling parameter
β can be calculated and the state of membrane forces will be determined. This procedure is carried out at every
integration point of the finite elements. In Schoop et al. (2002) a consistent linearization is given, which yields the
correct stiffness of the wrinkled membrane.

3 Thermo–Elastic Wrinkling for Small Strains

In this paragraph the wrinkling of membranes which are exposed to a change of temperatureϑ = θ − θ0 is under
investigation.θ0 is the reference temperature. Strains are assumed to be small. Hence an additive split of Green’s
strain tensor into elastic strainsDe and thermal strainsDθ is admissible

D = Dθ + De with Dθ = ϑ αθ (9)

αθ are linear coefficients of thermal expansion for a thermal anisotropic material. For an isotropic material
αθ = αθ E holds. The 2nd Piola–Kirchhoff membrane forces follow fromthermo–elastic constitutive equations

S(D, θ) = C · ·(D − Dθ) (10)

with the 4th order elasticity tensorC.

Wrinkling criterion. In order to take the temperature effects on the wrinkling states into account, the wrinkling
criterion presented above has to be modified. Hereby a slack state is assumed if the principal values of the elastic
strainsDe = D − Dθ are solely compressive.

• taut state:SI > SII > 0

• slack state:De,II < De,I < 0

• regularly wrinkled state: otherwise

Using the corrected membrane forcesS(D′, θ) = C · ·(D′
− Dθ) in the wrinkling conditions 7 and 8 gives a

system of equations for the wrinkling directionα and the wrinkling parameterβ.
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3.1 Numerical Example – Solar Sail

Solar sails are currently investigated as an alternative propellant in space for satellites. The solar sail is subjected
to the sun pressure, which provides a small but permanent driving force. Since the sun pressure depends on the
light angle of incidence, the deflection of the membrane can influence the performance of the solar sail. The
structure of the satellite is subjected to changing temperatures. The effect of the temperature on the sail deflection
is investigated next. Here, the solar sail is modeled as a membrane with fixed corners and a fixed center. No further
structural elements are taken into account. In the reference configuration the membrane is plane and square.
Geometry and conditions of bearing are shown in Figure 3. Thesolar sail is made of a polyamide–foil. This foil
is characterized by an isotropic material behavior. Thermal strains are described by equation 9. The membrane is
loaded by the sun pressurep = 0.92 ·10−5N/mm2 and a temperature differenceϑ = ±100 K. In the computations
the sun pressure is treated as a fluid pressure load. Data of the solar sail are:

• width a = 10000 mm

• thickness of membraneh = 7.6 · 10−3 mm

• Young’s modulusE = 2000 N
mm2

• Poisson’s ratioν = 0.3

• coefficient of thermal expansionαθ = 8.0 · 10−5 1
K

• sun pressurep = 0.92 · 10−5 N
mm2

• temperature differenceϑ = ±100 K

a

a

fixed

fixed

fixedwp

Figure 3: Geometry and bearing of the solar sail

Figures 4 to 6 show state of wrinkling for the solar sail loaded with sun pressure and temperature differences of
ϑ = 0 K andϑ = ±100 K, respectively. Wrinkles at integration points are depicted by lines along the wrinkling
direction (i.e. direction of the vanishing principle membrane force). A rhombus marks integration points with a
slack membrane.

In all considered cases wrinkles appear in the surrounding of the membrane diagonals. Forϑ = −100 K the
wrinkling is in general reduced. In this case the center of the membrane is taut, while for the heated membrane
(ϑ = +100 K) wrinkles appear at the center. The midpoint deflectionwP of an edge (see Figure 3) is under con-
sideration. The deflection grows with increasing temperature. For the three considered temperatures the following
values were obtained by the numerical simulations

• wP = 733.9 mm atϑ = −100 K

• wP = 890.3 mm atϑ = 0 K
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• wP = 1050.9 mm atϑ = 100 K
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Figure 4: Top view of the solar sail under thermal and sun pressure load, state of wrinkling atϑ = −100 K

−6000

−4000

−2000

0

2000

4000

6000

−6000 −4000 −2000 0 2000 4000 6000
x1 [mm]

x
2
[m

m
]

Figure 5: Top view of the solar sail under thermal and sun pressure load, state of wrinkling atϑ = 0 K
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Figure 6: Top view of the solar sail under thermal and sun pressure load, state of wrinkling atϑ = +100 K

4 Thermo–Elasticity for Large Strains

Thermo–elastic deformations. The concept of a multiplicative decomposition ofF will be applied. The defor-
mation gradient of the membrane is split into an purely elastic deformationFe and a purely thermal deformation
F̂(θ) depending on the temperatureθ

F = Fe · F̂ (11)

The elastic and thermal Cauchy–Green strain measures

Ĉ = F̂
T
· F̂ Ce = F

T
e · Fe with C = F̂

T
· Ce · F̂ (12)

are introduced.C, Ĉ andCe are planar strain measures of the membrane. A multiplicative decomposition of the
corrected deformation gradientF

′ can be done in the same way. The thermal strains will be specified in Section
4.1 for a rubber–like material.

reference

intermediate configuration

present configuration

Fe

F̂

F

Figure 7: Thermo–elastic deformation of a membrane

The membrane forces. In case of a thermo–elastic material the 2nd Piola–Kirchhoff stresses are the derivative
of the Helmholtz free energyΨ(Cij , θ) with respect to the right Cauchy–Green strains (see Holzapfel (2004)). The
membrane forces read

Sαβ(C, θ) = h Tαβ with Tij = 2
∂Ψ

∂Cij

(13)

In a membrane the thickness strainC33 is determined by the plane stress requirementT33 = 0.
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Wrinkling criterion. The same concept as already presented for the small strain case can be applied here, in
particular, a slack membrane is assumed if elastic strains are completely compressive.

• taut state:SI > SII > 0

• slack state:Ce,II < Ce,I < 1

• regularly wrinkled state: otherwise

Thus, in order to detect a slack state the principal values ofCe have to be evaluated. According to Tietze (1986),
the 1st and 2nd invariants ofCe equal those of(Ĉ−1

· C):

I1 = Ce · ·E = (Ĉ−1
· C) · ·E (14)

I2 = Ce · ·Ce = (Ĉ−1
· C) · ·(Ĉ−1

· C) (15)

If the purely thermal strainŝC and the total strainC are known, the principal values ofCe can be determined.
Using the invariantsI1 andI2, obtained by equation 14 and 15, the midpointM and the radiusr of Ce–Mohr’s
circle are given by

M =
1

2
I1 r =

1

2

√

2I2 − I2
1 (16)

Then, the principal values ofCe are

Ce,I = M + r Ce,II = M − r (17)

Wrinkling condition. In a regularly wrinkled membrane the uniaxial state of membrane forces is required. Since
the thermal effects influence the membrane forces, the wrinkling conditions are

0 = N · S(C′, θ) · N (18)

0 = N · S(C′, θ) · N⊥ (19)

with C
′ according equation 6. From these nonlinear equations the wrinkling directionα and wrinkling parameter

β can be determined by means of Newton’s method.

4.1 Constitutive Equations for a Rubber–like Material

As an example for thermo–elastic wrinkling rubber like membranes are considered. The description of the material
behavior is based on the extended Ogden model for slightly compressive rubber (see Holzapfel (2004)). The
relation of a purely thermal deformation̂Fij caused by a change of temperatureϑ = θ − θ0, is

F̂ij = F (θ) δij with F (θ) = eαθ (θ−θ0) (20)

with the thermal expansion coefficientαθ, here assumed to be constant.

The notation for the principal stretches used in Holzapfel (2004) will be applied here:λi for total principal
stretches,̄λi = J−

1

3 λi for isochoric principal stretches withi, j = 1, 2, 3 andJ = det(Fij). Consequently,
the principal values of the planar tensorC areλ2

1 andλ2
2.

The Helmholtz free energyΨ is split into a volumetric and an isochoric part:

Ψ(λ1, λ2, λ3, θ) = Ψvol(J, θ) + Ψiso(λ̄1, λ̄2, λ̄3, θ) (21)

Volumetric and isochoric stress contributions are

T vol
ij = 2

∂Ψvol

∂Cij

= J p Cij
−1 and T iso

ij = 2
∂Ψiso

∂Cij

=̂

3
∑

a=1

Tiso a N̄a ◦ N̄a (22)
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N̄a denote the principal directions of stretch, identical withthe principal directions ofC. For slightly compressible
rubber the hydrostatic pressurep follows from the constitutive equation.

p =
∂Ψvol

∂J
= κ0

θ

θ0

dG(J)

dJ
−

de0(J)

dJ

ϑ

θ0
with (23)

G(J) =
1

4

(

J2
− 1 − 2 ln J

)

and (24)

e0(J) = 3 αθ κ0 θ0 (J − 1) (25)

κ0 is the bulk modulus atθ0. The relation for the isochoric principal stressesTiso a is

Tiso a =
1

λa

∂Ψiso

∂λa

=
1

λ2
a

N
∑

p=1

µp(θ)

(

λ̄αp
a −

1

3

3
∑

b=1

λ̄
αp

b

)

(26)

µp(θ) = µp(θ0)
θ
θ0

are shear moduli andαp are dimensionless constants with2G(θ0) =
∑N

p=1 µp(θ0)αp. In this
paper the number of constants is set toN = 2 with α1 = 2 andα2 = −2, which corresponds to the Mooney–Rivlin
material.

Heat production due to the deformation of the rubber and heatconduction were neglected in these considerations.
Hence the isothermal stiffness of the material has to be usedin the Newton iteration of the wrinkling algorithm.
The plane stress requirementT33 = 0 is satisfied by means of an iteration procedure which is incorporated into the
wrinkling algorithm (see Hornig (2004) for details).

4.2 Numerical Example – Twist of a Cylindric Membrane

In this paragraph a cylindrical rubber membrane under torsional and thermal load is analyzed. Both edges of the
cylinder are attached to rigid discs as depicted in Figure 8.The height of the cylinder remains constant during the
rotation of the lower disc. A change of temperatureϑ = ±20 K is applied and the temperature is fixed at this level
during the deformation of the membrane. The membrane was modeled by an8 × 12 mesh of bilinear elements.
Geometrical data and material properties are:

• radiusR = 100 mm

• heightH = 300 mm

• thickness of membraneh = 0.1 mm

• reference temperatureθ0 = 273.15 K

• parameters of the Mooney-Rivlin material
µ1 = 0.3696 N/mm2, µ2 = −0.0528 N/mm2

α1 = 2, α2 = −2

• bulk modulusκ0 = 4.0832 N/mm2 which corresponds to a Poisson’s ratioν = 0.45

• coefficient of thermal expansionαθ = 22.333 · 10−5 1
K

R

H

fixed

rotated
ϕ

Figure 8: Geometry of the cylinder and deformed shape of the cooled membrane at twist angleϕ = 45o
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Figure 9 shows the resulting torsional momentMT due to an applied rotation of the lower cylinder edge.MT is
plotted for the membrane at reference temperatureθ0 = 273.15 K and forϑ = ±20 K. In addition the FE solution
without wrinkling algorithm is shown by the dashed line. Forthe depicted range it fits well to the analytical
solution of a twisted cylinder. Assuming a homogeneous state of deformation withD11 = 0, D12 = 1

2
ϕ
L

R and

D22 = 1
2

ϕ2

L2 R2 the torsional moment isMT = 2GπR3hϕ
L

.
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Figure 9: Twist of cylindrical membrane

From the graphs in Figure 9 the influence of the wrinkling phenomenon is clearly visible. Without the wrinkling
algorithmMT is overestimated.

In the range ofϕ = 0o to 42o the torsional moment is the higher the lower the temperatureis. In the case of
the cooled membrane the curve starts relatively steep, witha slope close to that of the curve without wrinkling
influence. No convergence of the FE algorithm could be achieved for small angles andϑ = +20 K, because of
zero stiffness of the slack membrane. Atϕ ≈ 42o theMT –curves for all three temperature cross each other and the
MT of the heated membrane commences to exceed the moment of the cooled membrane. This is a consequence of
temperature–dependency of shear moduliµp(θ) = µp(θ0)

θ
θ0

.

5 Summary

In this paper an algorithm for thermal wrinkling of membranes is presented. Beginning from the modified, refer-
ence related Roddeman theory, special formulations of wrinkling criteria and wrinkling conditions are given for
thermo–elastic membranes. The wrinkling algorithms for thermo–elastic wrinkling analysis is easy to implement
into existing FE-programs. The wrinkling analysis takes place at the integration points of finite membrane elements
and does not require changes of the structure of the FE–program. Since the basic idea is to apply a correction to
the kinematics, different constitutive equations can be applied. Numerical examples show the capability of the
presented method to treat wrinkling and thermo–elastic effects.
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