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Bifurcations of Cylindrical Precessions of an Unbalanced Rotor

I. A. Pasynkova

The problem of stability loss of a direct synchronous cylindrical precession of an unbalanced rotor is investigated.
The rigid rotor is considered as a mechanical system with four degrees of freedom. Rotation occurs at constant spin
speed. Non-linear elastic bearings’ reactions and viscousexternal and internal damping are taken into account.
It is shown that different types of stability loss take place. For some range of the spin speed, jump phenomena
and bi-stability occur, but the steady-state motion remains to be the direct synchronous cylindrical precession. For
some other values of the parameters stability loss is accompanied by inducing hyperboloidal precession due to
the conical swinging of the shaft. The precession becomes hyperboloidal as the rotor’s axis traces a one-sheet
hyperboloid surface. The threshold angular speed for autovibration is found. By computational modeling the limit
cycles and the strange attractor are built. The results of numerical integration with slowly accelerating spin speed
confirm self-centering instability under the influence of internal damping.

1 Introduction

Dynamics of an undamped rigid rotor with four degrees of freedom supported in linear elastic bearings was consid-
ered in Timoshenko, (1955) and in nonlinear bearings in Kelzon, (1992). For an ideally balanced rotor parameters
of cylindrical and conical precessions were found. Dynamics of a rigid rotor with two degrees of freedom in
non-linear elastic bearings with viscous external dampingand linear analysis of stability one can find in Merkin,
(1997). Tiwari at al. (2000) studied a 2DOF horizontal rotortaking into account the non-linearity due to radial
internal clearance, Hertzian contact and varying compliance frequency. By a numerical investigation the different
routes to chaos as period doubling and mechanism of intermittency were found out.

Circular whirling motion of a 4DOF unbalanced rigid rotor supported in non-linear bearings was studied in
Pasynkova, (1997, 1998, 2000). A new approach to the problemwas suggested. Depending on parameters of
a complex amplitude the different types of precessions (cylindrical, conic or hyperboloidal) were defined. A set of
non-linear resonances was found. In the case of the 2DOF unbalanced rotor supported in linear elastic bearings the
set of resonances is presented by two critical frequencies.In case of non-linear elastic bearings of the Duffing’s
type it degenerates into a backbone curve of the dynamic response. It was shown that the type of precessions
depends on the unbalance either static or dynamical. The different elastic restoring forces were considered. Only
external viscous damping was taken into account. By using standard linear analysis of stability, ranges of stability
loss were found. In Pasynkova, (2005) stability Loss of conic precessions of an unbalanced rigid rotor supported
in non-linear elastic bearings with restoring forces of Duffing’s type was investigated. External and internal linear
damping were considered. Usually internal damping is takeninto account for the Jeffcott rotor with flexible shaft.
Not only simple linear models of internal damping were studied but non-linear (see Tondl (1974), Hagedorn at
al. (1977)) and randomly varying (see Dimentberg M. (2005))too. In case of a rigid rotor internal or ”rotating”
damping can be a result of rubbing between the rigid shaft andthe rigid body, tightly attached to the shaft (see
Dimentberg F.M., 1959; Bolotin, 1961). The similar forces can appear in the bearings with an oil film (see Bolotin,
1961; Tondl, 1974).

In this research restoring forces of Hertz’s type are considered and internal viscous damping is additionally taken
into account. The rotor’s behavior is studied inside of instability ranges. A one-parameter bifurcation problem
with the rotor angular velocity as a parameter has to be solved. When the parameter passes through the critical
point in which the stability matrix has one zero-root, then methods of the elementary catastrophe theory can be
applied (see Gilmore, 1981). AS it is known theoretically and practically, an influence of internal damping could
be revealed in destroying of self-centering stability. Appearance of one pair of pure imaginary roots defines a
threshold for inducing of autovibration, and super- or subcritical Hopf’s bifurcation could take place (see Arnold,
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1978; Neimark and Landa, 1987). By computational modeling it is shown that a supercritical Hopf’s bifurcation
occurs, and inside a narrow range of the spin speed a strange attractor could arise. Numerical integration with
slowly accelerating spin speed is carried out, and divergent vibrations of the rotor are performed.

2 Basic Assumptions and Equations of Motion

A rigid rotor of massM and lengthL is considered. The rotor is supported vertically in two immovable non-
linear bearings at the midspan. The rotor is assumed to be dynamically symmetric with polarJp and transversal
Jt moments of inertia. The rotor is statically and dynamicallyunbalanced. The static eccentricity (the distance
between the center of mass and the axis of revolution) is equal to e. The dynamical eccentricity is characterized by
the angleδ and the phase angleε. The angleδ is the angle between the axis of dynamical symmetry and a straight
line passing through the center of mass and parallel to the axis of revolution. The angleε is the angle between the
plane passing through the axis of revolution and the center of mass and the plane containing the angleδ.

Let us assume that 1) the spin speed is constant and equal toω; 2) rotor’s displacement along the axis of
revolution is negligible.

Under these assumptions the rotor can be considered as a mechanical system with four degrees of freedom.
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Figure 1. Rigid rotor supported in non-linear elastic bearings

Let Oxyz be an inertial reference frame with thez-axis coinciding with the rotation axis of the rotor in its equi-
librium state (Figure 1). One can determine Cartesian co-ordinatesxj , yj (j=1,2) of the shaft’s ends as generalized
co-ordinates of the system,Sj = xj + iyj - the displacement of theQj-point from the equilibrium position.

The elastic bearings are assumed to be centrally symmetric,so the reactions in the bearings only have radial
components. Let the non-linear restoring forces be described by the Hertz formulaFj = −a0 |Sj |1/2 Sj .

We suggest that both external and internal damping forces are viscous and given by formulaeR(e)
j = −µ̃e Ṡj ,

R
(i)
j = −µ̃i (Ṡj − iω Sj).

One can write non-dimensional equations of motion

s̈1 + s̈2 + (µe + µi)(ṡ1 + ṡ2) − iΩµi(s1 + s2) + f1 + f2 = Ω2 exp(iΩ τ),

s̈2 − s̈1 + (k l (µe + µi) − iΩλ)(ṡ2 − ṡ1) − iΩµi k l (s2 − s1) + k l (f2 − f1) =

= l d Ω2 exp(i (Ω τ − ε)),

(1)

with the non-dimensional variablessj = Sj/(2e), and the non-dimensional timeτ = ω0 t, ω0 = 2 a0

√
2e/M .

The non-dimensional parameters are

Ω =
ω

ω0
, λ =

Jp

Jt
, l = 1 − λ, d =

Lδ

2 e
, k =

M L2

4(Jt − Jp)
, µe =

2 µ̃e

M ω0
, µi =

2µi

M ω0
.

Non-dimensional restoring forces arefj = |sj |1/2 sj .
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3 Cylindrical Precession of Unbalanced Rotor

Firstly let us neglect damping and consider equations

s̈1 + s̈2 + f1 + f2 = Ω2 exp(iΩ τ),

s̈2 − s̈1 − iΩλ (ṡ2 − ṡ1) + k l (f2 − f1) = l d Ω2 exp(i (Ω τ − ε)),
(2)

which admit an exact solution
sj = Rj exp (i ϕj) exp (iΩ τ) (3)

representing an equilibrium state in a reference frame rotating with spin speedΩ. This is a steady-state motion
of the rotor. This motion is a direct synchronous precessionor a circle forward whirling motion. The direct
synchronous precession can be cylindrical, conic or hyperboloidal according to the surface traced in 3D space by
the rotation axis. Ifϕ1 = ϕ2 andR1 = R2, then (3) represents a cylindrical precession. Ifϕ1 = ϕ2 orϕ1 = ϕ2+π
for ∀R1, R2, it is a conic precession, and ifϕ1 6= ϕ2 for ∀R1, R2, it is a hyperboloidal one.

Introducing solution (3) into system (2), an inhomogeneousalgebraic system with respect to the complex amplitude
Rj exp (i ϕj) is obtained as

A1 R1 exp (i ϕ1) + A2 R2 exp (i ϕ2) = Ω2,

−B1 R1 exp (i ϕ1) + B2 R2 exp (i ϕ2) = d Ω2 exp (−i ε),
(4)

with Aj =
√

Rj − Ω2, Bj = k
√

Rj − Ω2, j = 1, 2.
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Figure 2. Set of non-linear resonances

The determinant of (4) is equal to∆ = A1 B2 + A2 B1.
The surface∆ = 0 defines in the{R1, R2,Ω

2}-space a set
of nonlinear resonances. It is like a backbone curve in the
dynamic response for Duffing’s equation.
For further development it is convenient to denote
X = Ω2, Yj =

√

Rj . Then Aj , Bj can be rewritten as
Aj = Yj − X, Bj = k Yj − X and ∆ = 0 as

(Y1 − X)(k Y2 − X) + (Y2 − X)(k Y1 − X) = 0. (5)

The surface of the nonlinear resonances (5) is a hyper-
bolic cone with a vortex point in the origin of{Y1, Y2,X}-
space (see Figure 2). The section of this cone by the plane
X = const is a hyperbola. The section of the cone by the
planeY1 = Y2 is a pair of straight lines. As it was found by
Pasynkova (1997), in the proximity of one part of the cone a
cylindrical precession resonates, and in the proximity of the
other part a conical precession resonates.

Now let us consider the statically unbalanced rotor (e 6= 0, δ = 0). The equations (1) turn into equations

s̈1 + s̈2 + µsum(ṡ1 + ṡ2) − iΩµi(s1 + s2) + f1 + f2 = Ω2 exp(iΩ τ),

s̈2 − s̈1 + (k l µsum − iΩλ)(ṡ2 − ṡ1) − iΩµi k l (s2 − s1) + k l (f2 − f1) = 0,
(6)

with µsum = µe + µi. The system (6) also admits the exact solution in the form (3), and the corresponding
algebraic equations are

(A1 + i µe

√
X)Y 2

1 exp (i ϕ1) + (A2 + i, µe

√
X)Y 2

2 exp (i ϕ2) = X,

−(B1 + i k µe

√
X)Y 2

1 exp (i ϕ1) + (B2 + i k µe

√
X)Y 2

2 exp (i ϕ2) = 0.
(7)

The system (7) can be considered with respect toexp (i ϕj) and the solution can be written as

exp (i ϕj) =
X(B3−j + i k µe

√
X)

Y 2
j ∆µ

, (8)

where∆µ = ∆ − 2 k µ2
e X + i µe

√
X

∑

j=1,2

(k Aj + Bj) 6= 0.
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Figure 3. Surface of localization of equilibrium states

By using the property| exp (i (ϕ1 − ϕ2))| = 1 one can find out that in the{X,Y1, Y2}-space equilibrium states
are located on the surface

(Y1 − Y2)[L2 L3 − µ2
e k2 X (Y1 + Y2)(Y

2
1 + Y 2

2 )] = 0,

L2 = k(Y 2
1 + Y1 Y2 + Y 2

2 ) − X(Y1 + Y2), L3 = k(Y 3
1 + Y 3

2 ) − X(Y 2
1 + Y 2

2 ),
(9)

which consists of the planeY1 = Y2 and the cone with vortex point in the origin.

3D-plot of surface (9) and its sections by planesX = const andY1 = Y2 are shown on Figure 3 for parameters
X = 8, k = 0.8, µe = 0.18,(the thick line) andµe = 0 (the dashed line).

Let us study equilibrium states located on the planeY1 = Y2. From relation (8) it follows thatexp (i ϕ1) =
exp (i ϕ1) andϕ1 = ϕ1 = ϕ. The corresponding whirling motion is the cylindrical precession, and the non-
dimensional displacement in the complex form is given by formula

s = R exp (i ϕ) exp (iΩ τ), (10)

whereR = Y 2, exp (i ϕ) = X(B + i k µe

√
X)/Y 2 ∆µ, A = Y −X, B = k Y −X, ∆µ = 2 (AB − k µ2

e X +

i µe

√
X(k A + B)).

From the property| exp (i ϕ)| = 1, the dynamic and phase responses of the cylindrical precession can be computed
as

Y 2
√

A2 + µ2
e X =

X

2
, tan ϕ = −µe

√
X

A
. (11)

As it follows from (11), self-centering takes place and the limit value Y∞ underX → ∞ can be computed as
Y∞ = limX→∞ Y (X) = 1/

√
2 ≈ 0.707.
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Figure 4. Dynamic responses and
non-linear resonances

In Figure 4 the dynamic responses for three different val-
ues of the external damping coefficientµe = 0 (unclosed
curve),µe = 0.09, µe = 0.25 are shown with thick lines.
The resonancesA = 0 andB = 0 are shown with thin
lines. The lineY = Y∞ is shown by a dashed one.
The dynamic response for the 2DOF rotor is given by the
same formula (11) because the second equation in (6) is
satisfied identically for the solutions1 = s2 (see Merkin,
1997). But in case of the 2DOF model there is only one
non-linear resonanceA = 0, and the otherB = 0 could
not be revealed.
One can note that the dynamic response, the set of non-
linear resonances and other characteristics do not depend
on the coefficient of internal dampingµi.
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To investigate stability of the cylindrical precession onecan apply standard linear analysis. A linear approximation
of the perturbation system corresponding to (6), which is ofthe differential order eight, falls into two independent
sub-systems each of which is of fourth order. Therefore, thecharacteristic polynomial also splits up into two
polynomials of fourth order. We denote these polynomials asPj , (j = 1, 2) and its coefficients asa(j)

q , q = 0, 4.

Applying a usual procedure, the coefficientsa
(2)
q can be computed as

a
(2)
0 = 1, a

(2)
1 = 2 k l µsum, a

(2)
2 =

5

2
k l Y + (1 + l2)X + k2 l2 µ2

sum,

a
(2)
3 = kl(

5

2
k l µsumY + 2(µe − l µi)X), a

(2)
4 = l2((kY − X)(

3

2
kY − X) + k2µ2

eX).

(12)

Imposingk = 1, l = 1, the coefficientsa(1)
q can be obtained from formulae (12).

The first three coefficients of each polynomialPj are always positivea(j)
q > 0, q = 0, 2. It can be easy checked that

the two first Hurwitz’s determinants are positive, too. If internal damping is significant, then the coefficientsa
(j)
3

could become negative for sufficiently big values ofX and limited values ofY , buta(j)
4 > 0. This fact indicates

that self-centering regimes can not be stable. Moreover, ifa
(j)
3 < 0 anda

(j)
4 > 0, the Hurwitz’s determinant of

third order
∆3(Pj) = −a

(j)
0 (a

(j)
3 )2 − a

(j)
4 (a

(j)
1 )2 + a

(j)
1 a

(j)
2 a

(j)
3 < 0, (13)

and self-centering regimes for large values ofX are unstable. This confirms the well-known fact that internal
damping can destroy self-centering stability.

4 Bifurcations of Cylindrical Precession

Now let us study conditions of stability loss of the cylindrical precessions. As we considerX = Ω2 as a parameter,
we encounter a one-parameter problem of bifurcation. Curvesa

(j)
4 = 0, (j = 1, 2) define a set of bifurcation on the

{X,Y }-plane and the points of intersection of the dynamic response with these curves are critical or degenerated
ones. For parametersk = 0.8, µe = 0.09, λ = 0.7 the dynamic response is shown on Figure 5. The critical points
are numerated asI − IV . Their coordinates are(X1 = 1, 1358, YI = 1.4064), (XII = 1.8187, YII = 1.2291),
(XIII = 2.0290, YIII = 1.7040), (XIV = 3.1477, YIV = 3.1312).
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∆3(P  )=01

a  = 04

(1)

a  = 04

(2)

X

Figure 5. The dynamic response (DR) of cylindrical precession

In the reference frame rotating with the spin speedΩ the equations of motion are autonomous, and one can apply
elementary catastrophe theory. As we consider a one-parameter problem, there is the simplest type of catastrophe.
According to a theory when the parameter passes through its critical value, the degenerated point can split up to
three non-degenerated points, and their localization and stability properties can be changed (see Gilmore, 1981).
By studying the intersection of the curves| exp(i(ϕ1 − ϕ2))| = 1 (in Figure 6 it is shown by thick line) and
| exp(i ϕ1)| = 1 (in Figure 6 it is shown by thin line) on the planeX = const, one can observe bifurcations of
cylindrical precession.
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Figure 6. Bifurcations of cylindrical precession when parameterX passes through the degenerated points

When parameterX approaches the first critical value (pointI), the cylindrical precession becomes unstable and
two other stable precessions appear, but they are of the hyperboloidal type. On the planeX = const one can see
three points of intersection, one of them is located on the bisectrix and corresponds to an unstable whirling motion,
two others are located on the cone’s surface (9) and parameterize stable non-symmetrical (Y1 6= Y2) hyperboloidal
precessions (see Figure 6, a). Further, whenX passes through the second critical point (pointII), one can observe
a jump phenomenon, as two more points of intersection appearon the bisectrix on the planeX = const (see
Figure 6, b). Also the pointIII splits up to three non-critical points (see Figure 6, c). At last, whenX passes
through the fourth critical point (pointIV ), three non-critical points merge into one point located onthe low branch
of the dynamic response (see Figure 5).

Note that in case of 2DOF only instability in the proximity ofthe resonanceA = 0 can be observed. In other
words, only jump phenomena can be found. Stability loss withsimultaneous changing of the motion type can not
be revealed.

5 Supercritical Hopf’s Bifurcation, Limit Cycles and Strange Attractors

Now let us consider bifurcations when parameterX passes through the critical pointV (Figure 5), in which the
matrix of stability has one pair of pure imaginary roots. By the theory (see Arnold, 1978; Gilmore, 1981; Neimark
and Landa, 1987) one of two types of bifurcation could take place: super- or subcritical Hopf’s bifurcation or in
Russian terminology, soft or hard character of bifurcation. In the first case instability loss occurs with simultaneous
detachment of a stable limit cycle. In the second case merging with an unstable limit cycle happens. Numerical
computation reveals the supercritical Hopf’s bifurcationin case of a dynamically prolated rigid rotor. Stable limit
cycles of the cylindrical type exist for∀X > XV , and the average amplitude of the precession increases whenX
increases. The valueXV gives a threshold of autovibration excitation. Numerical solving of the equations

Y 2
√

A(X,Y ) + µ2
eX = X/2, ∆3(P1) = 0 (14)

for a wide range ofµe reveals thatXV only depends on the ratioχ = µi/µe.
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Figure 7. Threshold of autovibration excitation Figure 8. Limit cycle forX = 3.15

as a function of the ratioχ = µi/µe
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This result is presented in the Figure 7. One can conclude that if χ < 1, even a small decreasing of internal
damping can move away the threshold of autovibration excitation.

For the parametersk = 0.8, λ = 0.7, µe = 0.09, µi = 0.13 the limit cycle in the plane{R1, Ṙ1} for X = 3.15
is shown in Figure 8. The limit cycle in the plane{R2, Ṙ2} is the same one, the equality of the phasesϕ1 = ϕ2

confirms that the precession is cylindrical.

The cylindrical limit cycles becomes sensitive to initial conditions in a narrow range ofX close to the critical point
V with XV = 2.986. This range extends toX = 3.2. If the initial values areR1 6= R2 or ϕ1 6= ϕ2, then the
cylindrical limit cycle turns out to be unstable. And a typical process seems to pass in the following manner: after
some revolutions quite close to Hopf’s limit cycle, a double-loop limit cycle appears and period doubling occurs.
Then the double-loop limit cycle slips into chaotic motion and we can observe a strange attractor. After a certain
period of time the motion is synchronized and a new type of limit cycle becomes settled (as a rule with double
loop).

Below the results of a numerical integration of equations (2) are presented. The typical process can be seen for
X = 3.15. In the{R1, Ṙ1}-plane of 6-space{R1, Ṙ1, R2, Ṙ2, ϕ1 − ϕ2, ϕ̇1 − ϕ̇2, } a phase portrait for 700
revolutions of the rotor is plotted (see Figure 9).
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Figure 9. Phase trajectory for 700 revolutions of the rotor
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Figure 10. Poincaré’s map

In Figure 10 the Poincaré section is plotted in the plane{R1, R2} (τ = mod(2π/Ω)), and confirms the existence
of a transient strange attractor. One can see a distinct contour of the synchronized motion.
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Figure 11. Phase trajectories from 30 to 50 revolutions of the rotor

The phase trajectories in the{R1, Ṙ1}-plane and in the{ϕ1 −ϕ2, ϕ̇1 − ϕ̇2}-plane at the beginning of motion and
at the end of it are presented in Figures 11, 12.
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One can see that in the beginning the precession is close to a cylindrical one because the phase angles difference
|ϕ1 − ϕ2| is sufficiently small (see Figure 11), but then a conic swinging of the axis of revolution increases, the
difference|ϕ1 − ϕ2| becomes large (see Figure 12), and the motion turns out to be hyperboloidal.

6 Acceleration of a Statically Unbalanced Rotor

Now let us assume that the spin speed accelerates under the law

Ω = Ω0 + ν τ. (15)

By taking into account the angular accelerationν, the equations of motion (6) can be modified (see Genta, 1999)

s̈1 + s̈2 + µsum(ṡ1 + ṡ2) − iΩµi(s1 + s2) + f1 + f2 = (Ω2 − i ν) exp(i (Ω τ + ν τ2/2)),

s̈2 − s̈1 + (k l µsum − iΩλ)(ṡ2 − ṡ1) − iΩ(µi k l + ν λ)(s2 − s1) + k l (f2 − f1) = 0,
(16)

Results of a numerical integration of equations (16) for thesame values of parametersk, λ, µe, µi are presented
in Figure 13 forν = 0.005 (see Figure 13,a) andν = 0.02 (see Figure 13,b).
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Figure 13. The dynamic response of the cylindrical precession (curve 1), the bifurcation set∆3 (P1) = 0
(curve 2) and acceleration of the unbalanced rotor through the critical speeds (curve 3),

initial valuesR1(0) = R2(0)
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Figure 14. The dynamic response of the cylindrical precession (curve 1), the bifurcation set∆3 (P1) = 0
(curve 2) and acceleration of the unbalanced rotor through the critical speeds (curve 3),

initial valuesR1(0) 6= R2(0)

The non-stationary crossing of the resonance zone is sensitive to the initial conditions. The motions, shown in
Figure 13, are cylindrical. The conic swinging of the revolution axis does not occur. If the initial conditions for the
bearing1 are not equal to the corresponding values for the bearing2, the non-stationary crossing of the resonance
zone results in a complex hyperboloidal type. In Figure 14, a) and b) the time processes forY1 andY2 are shown
correspondingly.
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Figure 15. The time process for the phase difference(ϕ1 − ϕ2). Initial valuesR1(0) 6= R2(0)

In Figure 15 the time process for the phase difference(ϕ1 − ϕ2) is plotted. One can see that oscillations after the
”jump” of amplitude are chaotic.

7 Conclusions

Introduction of a 4DOF model of an unbalanced rigid rotor allows studying a complex three-dimensional whirling
motion, which is described by a coupled differential equations of eighth order and presented by cylindrical, conic
or hyperboloidal precession.

The suggested approach allows to consider the different types of non-linearities, with or without a linear compo-
nent, and obtain the dynamic response of the whirling motionfor all values of an angular velocity.

This problem definition reveals some effects that could not be found for a 2DOF model, such as instability with si-
multaneous changing of the motion type, etc. It becomes possible to study an influence not only a static unbalance,
which is usual, but also a dynamical unbalance simultaneously.
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