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Bifurcations of Cylindrical Precessions of an Unbalanced Rotor

I. A. Pasynkova

The problem of stability loss of a direct synchronous cyiral precession of an unbalanced rotor is investigated.
The rigid rotor is considered as a mechanical system withdegrees of freedom. Rotation occurs at constant spin
speed. Non-linear elastic bearings’ reactions and viscexternal and internal damping are taken into account.
It is shown that different types of stability loss take pla€er some range of the spin speed, jump phenomena
and bi-stability occur, but the steady-state motion reraabe the direct synchronous cylindrical precession. For
some other values of the parameters stability loss is aceoimegd by inducing hyperboloidal precession due to
the conical swinging of the shaft. The precession becomgarbgloidal as the rotor's axis traces a one-sheet
hyperboloid surface. The threshold angular speed for dbtation is found. By computational modeling the limit
cycles and the strange attractor are built. The results ahetical integration with slowly accelerating spin speed
confirm self-centering instability under the influence ¢éinal damping.

1 Introduction

Dynamics of an undamped rigid rotor with four degrees ofdmea supported in linear elastic bearings was consid-
ered in Timoshenko, (1955) and in nonlinear bearings in &®&l1£1992). For an ideally balanced rotor parameters
of cylindrical and conical precessions were found. Dynand@ta rigid rotor with two degrees of freedom in
non-linear elastic bearings with viscous external damping linear analysis of stability one can find in Merkin,
(1997). Tiwari at al. (2000) studied a 2DOF horizontal ragking into account the non-linearity due to radial
internal clearance, Hertzian contact and varying compédrequency. By a humerical investigation the different
routes to chaos as period doubling and mechanism of intexmaif were found out.

Circular whirling motion of a 4DOF unbalanced rigid rotorpported in non-linear bearings was studied in
Pasynkova, (1997, 1998, 2000). A new approach to the problamsuggested. Depending on parameters of
a complex amplitude the different types of precessionsr(dyical, conic or hyperboloidal) were defined. A set of
non-linear resonances was found. In the case of the 2DOHamt®al rotor supported in linear elastic bearings the
set of resonances is presented by two critical frequendiesase of non-linear elastic bearings of the Duffing’s
type it degenerates into a backbone curve of the dynamionssp It was shown that the type of precessions
depends on the unbalance either static or dynamical. Tferelift elastic restoring forces were considered. Only
external viscous damping was taken into account. By usengdstrd linear analysis of stability, ranges of stability
loss were found. In Pasynkova, (2005) stability Loss of cqmecessions of an unbalanced rigid rotor supported
in non-linear elastic bearings with restoring forces offilgf's type was investigated. External and internal linear
damping were considered. Usually internal damping is takenaccount for the Jeffcott rotor with flexible shaft.
Not only simple linear models of internal damping were stddbut non-linear (see Tondl (1974), Hagedorn at
al. (1977)) and randomly varying (see Dimentberg M. (20089) In case of a rigid rotor internal or "rotating”
damping can be a result of rubbing between the rigid shafttaedigid body, tightly attached to the shaft (see
Dimentberg F.M., 1959; Bolotin, 1961). The similar forcem@ppear in the bearings with an oil film (see Bolotin,
1961; Tondl, 1974).

In this research restoring forces of Hertz's type are carsid and internal viscous damping is additionally taken
into account. The rotor’s behavior is studied inside ofabdlity ranges. A one-parameter bifurcation problem
with the rotor angular velocity as a parameter has to be dolVéhen the parameter passes through the critical
point in which the stability matrix has one zero-root, theathods of the elementary catastrophe theory can be
applied (see Gilmore, 1981). AS it is known theoreticallyg amactically, an influence of internal damping could
be revealed in destroying of self-centering stability. Apmance of one pair of pure imaginary roots defines a
threshold for inducing of autovibration, and super- or sitioal Hopf’s bifurcation could take place (see Arnold,



1978; Neimark and Landa, 1987). By computational modeling $hown that a supercritical Hopf’s bifurcation
occurs, and inside a narrow range of the spin speed a stradimgetar could arise. Numerical integration with
slowly accelerating spin speed is carried out, and diveargibnations of the rotor are performed.

2 Basic Assumptionsand Equations of Motion

A rigid rotor of massM and lengthL is considered. The rotor is supported vertically in two invadzie non-
linear bearings at the midspan. The rotor is assumed to baentigally symmetric with polay, and transversal

J: moments of inertia. The rotor is statically and dynamicalhpalanced. The static eccentricity (the distance
between the center of mass and the axis of revolution) islégeaThe dynamical eccentricity is characterized by
the angled and the phase angte The anglé) is the angle between the axis of dynamical symmetry and @ktra
line passing through the center of mass and parallel to tiseofixevolution. The angle is the angle between the
plane passing through the axis of revolution and the ceffiterags and the plane containing the angle

Let us assume that 1) the spin speed is constant and equal t@?) rotor’s displacement along the axis of
revolution is negligible.

Under these assumptions the rotor can be considered as amitadsystem with four degrees of freedom.

Figure 1. Rigid rotor supported in non-linear elastic begsi

Let Oxyz be an inertial reference frame with theaxis coinciding with the rotation axis of the rotor in itsugq
librium state (Figure 1). One can determine Cartesian dinatesr;, y; (j=1,2) of the shaft’s ends as generalized
co-ordinates of the systerfi; = x; + iy; - the displacement of th@ ;-point from the equilibrium position.

The elastic bearings are assumed to be centrally symmetithe reactions in the bearings only have radial
components. Let the non-linear restoring forces be de=dtily the Hertz formuld’; = —ag |Sj\1/2 Sj.

We suggest that both external and internal damping foreesiscous and given by formula’é;.e) = —[le Sj,
Rgl) = —ﬂi (SJ —iw SJ)
One can write hon-dimensional equations of motion
51 =+ §2 + (/Le —+ /1,1)(81 =+ 82) — ZQ/J,z(Sl —+ 82) —+ f1 —+ f2 = Q2 exp(iQT)7
..9.2 — 51 + (kl(ue +/L,) 719)\)(82 781) 7@9}1,7[6[(52 — 51) +I€l(f2 — fl) = (1)
=1dPexp(i (QT —¢)),

with the non-dimensional variables = S;/(2e), and the non-dimensional time= wy t, wo = 2agv2e/M.
The non-dimensional parameters are

w J L§ M L? 27 2 15
Q=L A=2 l=1-Nd= 2 k=" o= He 4= 21
w T e T T AT =)y T Mwe T M

. . . e
Non-dimensional restoring forces afg= |s;|'/? s;.



3 Cylindrical Precession of Unbalanced Rotor

Firstly let us neglect damping and consider equations
§1+ 8+ fi+ fo=Lexp(iQ7),
§9 — 81 —ZQ/\(SQ — 81) —|—]€l(f2 — fl) = ldQQGXp(i(QT—8)),

which admit an exact solution

)

sj = R; exp (ipj) exp (iQ27) ®3)
representing an equilibrium state in a reference framdingtavith spin speed). This is a steady-state motion
of the rotor. This motion is a direct synchronous precessiona circle forward whirling motion. The direct
synchronous precession can be cylindrical, conic or hygeithal according to the surface traced in 3D space by
the rotation axis. lfp; = @5 andR; = R, then (3) represents a cylindrical precessiomuilf= @5 Or o1 = o+
for VRy, Ry, itis a conic precession, andijf, # s for VR, Rs, it is a hyperboloidal one.

Introducing solution (3) into system (2), an inhomogeneagsbraic system with respect to the complex amplitude
R exp (i¢j) is obtained as

A1 Riexp(ip1) + As Roexp (i p2) = 0?2,
—Bi Ryexp (i 1) + By Ryexp (i p2) = dQ exp (—ie),

WlthAJ = 1/Rj—Qz,Bj Zk\/Rj—QQ,jZLQ.

The determinant of (4) is equal tA = A; By + As B;.
The surfaceA = 0 defines in the{ Ry, Ry, Q?}-space a set

of nonlinear resonances. It is like a backbone curve in the
dynamic response for Duffing’s equation.

For further development it is convenient to denote
X = Q% Y; = /R;. Then 4;, B; can be rewritten as
A=Y, - X,Bj=kY;— X and A=0 as

(4)

Vi —X)(kYa— X)+ (Ya— X)(kY; — X) =0. (5)

The surface of the nonlinear resonances (5) is a hyper-
bolic cone with a vortex point in the origin dfY7, Y2, X }-
space (see Figure 2). The section of this cone by the plane
X = const is a hyperbola. The section of the cone by the
planeY; = Y5 is a pair of straight lines. As it was found by
Pasynkova (1997), in the proximity of one part of the cone a
cylindrical precession resonates, and in the proximityhef t
other part a conical precession resonates.

Figure 2. Set of non-linear resonances

Now let us consider the statically unbalanced rotof(0, 6 = 0). The equations (1) turn into equations

81+ B2+ fsum (81 + 82) —iQui(s1 4 s2) + f1 + f2 = QP exp(iQ7),
82—81+(1€Zﬂsum—ZQ)\)(82—81)—19/1%]6[(82—81)+kl(f2—f1) :0,

With pigum = pe + pi. The system (6) also admits the exact solution in the form 8y the corresponding
algebraic equations are

(A1 +ipe VX) Y exp (i 1) + (Ag + i, pre VX) Y5 exp (i 02) = X,

(6)

(7)
—(By +ikpe VX)YZexp (1) + (Ba + ik pre VX) Y exp (i p) = 0.
The system (7) can be considered with respeeki(i ;) and the solution can be written as
. X(Bs—j+ikpevX
exp (i) = 2o+ pe V) ®

VA,

whereA, = A —2kp2 X +ip VX Y (kA; + Bj) #0.
=12
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Figure 3. Surface of localization of equilibrium states

By using the propertyexp (i (91 — ¢2))| = 1 one can find out that in theX Y7, Y>}-space equilibrium states
are located on the surface

(Y1 = Y2)[La Ly — pZ k* X (Y1 + Ya) (YY" + Y5)] = 0,
Ly=k(YY+Y1 Yo +Y5) - X(Y1 +Ya), Ls=k(Y+Y5) - X(Y7+Y5),
which consists of the plang, = Y, and the cone with vortex point in the origin.

C)

3D-plot of surface (9) and its sections by planés= const andY; = Y5 are shown on Figure 3 for parameters
X =8,k =0.8, u. = 0.18,(the thick line) and.. = 0 (the dashed line).

Let us study equilibrium states located on the plahe= Y>. From relation (8) it follows thatxp (i p1) =
exp (ip1) andyp; = ¢; = . The corresponding whirling motion is the cylindrical pession, and the non-
dimensional displacement in the complex form is given bynfaia

s=Rexp(ip) exp(iQT), (20)

whereR =Y?2 exp (ip) = X(B+ikp.VX)/Y?A,, A=Y -X,B=kY - X,A, =2(AB—kp? X +
ipe VX (kA+ B)).

From the propertyexp (i ¢)| = 1, the dynamic and phase responses of the cylindrical priecesan be computed

as
X VX
Y2VA X = T tamp:—“eA . (11)

As it follows from (11), self-centering takes place and timaitl value Y, underX — oo can be computed as
Yoo = limy o Y(X) = 1/v/2 = 0.707.
Y

3 B=0

In Figure 4 the dynamic responses for three different val-

ues of the external damping coefficient= 0 (unclosed

curve),u. = 0.09, u. = 0.25 are shown with thick lines.

The resonanced = 0 and B = 0 are shown with thin

21 lines. The lineY” = Y., is shown by a dashed one.

The dynamic response for the 2DOF rotor is given by the

same formula (11) because the second equation in (6) is

1. satisfied identically for the solutiosy = s, (see Merkin,

1997). But in case of the 2DOF model there is only one

non-linear resonancad = 0, and the othe3 = 0 could

not be revealed.

0 7 5 3 X One can note that the dynamic response, the set of non-
linear resonances and other characteristics do not depend

Figure 4. Dynamic responses and on the coefficient of internal damplng
non-linear resonances




To investigate stability of the cylindrical precession apply standard linear analysis. A linear approximation
of the perturbation system corresponding to (6), which igefdifferential order eight, falls into two independent
sub-systems each of which is of fourth order. Therefore,cti@racteristic polynomial also splits up into two

polynomials of fourth order. We denote these polynomial®ag;j = 1,2) and its coefficients aﬁff), q=0,4.
Applying a usual procedure, the coefficienE,%) can be computed as

5
a(02) = 17 a§2) :2]€l,usum7 ag2) = ikly+<1+l2)X+k2 ZQMSUIU’ (12)
5 3
a5 = KUGk Y + 201 = 120) X), af = P((RY = X)(GRY = X) + Ku2X).

Imposingk =1, [ =1, the coefficientsaf]l) can be obtained from formulae (12).

The first three coefficients of each polynomiglare always positivegj) > 0, ¢ = 0, 2. It can be easy checked that
the two first Hurwitz's determinants are positive, too. tiemal damping is significant, then the coefficiem%@
could become negative for sufficiently big valuesi¢fand limited values of”, but aff) > 0. This fact indicates

that self-centering regimes can not be stable. Moreova;éj%k 0 andaflj) > 0, the Hurwitz's determinant of
third order o o o
Ag(Pj) _ _aéj) (agJ))2 - ai]) (a(lj))Q + agj) aéﬂ) a:(’,j) <0, (13)

and self-centering regimes for large valuesXofare unstable. This confirms the well-known fact that interna
damping can destroy self-centering stability.

4 Bifurcations of Cylindrical Precession

Now let us study conditions of stability loss of the cylinchi precessions. As we considér= Q? as a parameter,
we encounter a one-parameter problem of bifurcation. Csuryé =0, (j = 1,2) define a set of bifurcation on the
{X,Y}-plane and the points of intersection of the dynamic respovith these curves are critical or degenerated
ones. For parameteks= 0.8, . = 0.09, A = 0.7 the dynamic response is shown on Figure 5. The critical point
are numerated a5— I'V. Their coordinates areX; = 1,1358, Y; = 1.4064), (X;; = 1.8187, Y;; = 1.2291),
(X717 = 2.0290, Yir; = 1.7040), (Xv = 3.1477, Yy = 3.1312).
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Figure 5. The dynamic response (DR) of cylindrical preaassi

In the reference frame rotating with the spin spéketthe equations of motion are autonomous, and one can apply
elementary catastrophe theory. As we consider a one-p&apreblem, there is the simplest type of catastrophe.
According to a theory when the parameter passes throughititsatvalue, the degenerated point can split up to
three non-degenerated points, and their localization tatulidy properties can be changed (see Gilmore, 1981).
By studying the intersection of the curvesxp(i(¢1 — ¢2))| = 1 (in Figure 6 it is shown by thick line) and
|exp(i1)| = 1 (in Figure 6 it is shown by thin line) on the pladé = const, one can observe bifurcations of
cylindrical precession.
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Figure 6. Bifurcations of cylindrical precession when pagder X passes through the degenerated points

When parameteX approaches the first critical value (poifjt the cylindrical precession becomes unstable and
two other stable precessions appear, but they are of thelhglpalal type. On the plan& = const one can see
three points of intersection, one of them is located on thedtiix and corresponds to an unstable whirling motion,
two others are located on the cone’s surface (9) and pardaesttable non-symmetrical{ # Y2) hyperboloidal
precessions (see Figure 6, a). Further, wiepasses through the second critical point (péif)t one can observe

a jump phenomenon, as two more points of intersection appedne bisectrix on the plan& = const (see
Figure 6, b). Also the poinfII splits up to three non-critical points (see Figure 6, c). adt] whenX passes
through the fourth critical point (poirtV’), three non-critical points merge into one point locatedreow branch

of the dynamic response (see Figure 5).

Note that in case of 2DOF only instability in the proximity thfe resonancel = 0 can be observed. In other
words, only jump phenomena can be found. Stability loss wsiitiultaneous changing of the motion type can not
be revealed.

5 Supercritical Hopf’sBifurcation, Limit Cyclesand Strange Attractors

Now let us consider bifurcations when parametepasses through the critical poiht (Figure 5), in which the
matrix of stability has one pair of pure imaginary roots. Bg theory (see Arnold, 1978; Gilmore, 1981; Neimark
and Landa, 1987) one of two types of bifurcation could talee@! super- or subcritical Hopf’s bifurcation or in
Russian terminology, soft or hard character of bifurcatiorthe first case instability loss occurs with simultaneous
detachment of a stable limit cycle. In the second case mggith an unstable limit cycle happens. Numerical
computation reveals the supercritical Hopf’s bifurcatiorrase of a dynamically prolated rigid rotor. Stable limit
cycles of the cylindrical type exist forX > Xy, and the average amplitude of the precession increases ihen
increases. The valu¥, gives a threshold of autovibration excitation. Numericdlmg of the equations

AXY) + 22X = X/2, Ag(Py) =0 (14)

for a wide range of.. reveals thafXy, only depends on the ratip = ;/fte.
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Figure 7. Threshold of autovibration excitation Figure 8nit cycle for X = 3.15

as a function of the ratiq = 1;/ e



This result is presented in the Figure 7. One can concludeiftha < 1, even a small decreasing of internal
damping can move away the threshold of autovibration etioita

For the parameters = 0.8, A = 0.7, . = 0.09, p1; = 0.13 the limit cycle in the plang R, Ry} for X =3.15
is shown in Figure 8. The limit cycle in the plaf&,, R, } is the same one, the equality of the phages= ¢,
confirms that the precession is cylindrical.

The cylindrical limit cycles becomes sensitive to initiahditions in a narrow range df close to the critical point

V with Xy, = 2.986. This range extends t& = 3.2. If the initial values areR; # Ry or @1 # 2, then the
cylindrical limit cycle turns out to be unstable. And a ty@iprocess seems to pass in the following manner: after
some revolutions quite close to Hopf’s limit cycle, a douldep limit cycle appears and period doubling occurs.
Then the double-loop limit cycle slips into chaotic motiordave can observe a strange attractor. After a certain
period of time the motion is synchronized and a new type oitlaycle becomes settled (as a rule with double
loop).

Below the results of a numerical integration of equatior)saf2 presented. The typical process can be seen for
X = 3.15. In the{Ry, R }-plane of 6-spac€ R, Ry, Ra, Ra, v1 — @2, ¢1 — 2, } @ phase portrait for 700
revolutions of the rotor is plotted (see Figure 9).
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Figure 9. Phase trajectory for 700 revolutions of the rotor Figure 10. Poinca@r's map

In Figure 10 the Poincérsection is plotted in the plade?;, R2} (7 = mod(27/2)), and confirms the existence
of a transient strange attractor. One can see a distinabeoof the synchronized motion.
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Figure 11. Phase trajectories from 30 to 50 revolutions eftitor

The phase trajectories in tH&, , R, }-plane and in théy, — 2, 1 — @2 }-plane at the beginning of motion and
at the end of it are presented in Figures 11, 12.
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Figure 12. Phase trajectories from 600 to 700 revolutiorte@fotor

One can see that in the beginning the precession is closeyiindrical one because the phase angles difference
|1 — 2] is sufficiently small (see Figure 11), but then a conic swiggdf the axis of revolution increases, the
difference|p; — 2| becomes large (see Figure 12), and the motion turns out tggerioloidal.

6 Acceleration of a Statically Unbalanced Rotor

Now let us assume that the spin speed accelerates undewthe la

Q=Q+vT. (15)

By taking into account the angular acceleratigithe equations of motion (6) can be modified (see Genta, 1999)

81+ S0 + fsum (81 + 82) — i Qui(s1 + 82) + f1 + fo = (0% —iv)exp(i (AT + v 72/2)), (16)
S9 — 81 +(klﬂsum_i9)\)(52 —.él) —Z'Q(Mz‘kl'f-V)\)(SQ —81)+kl(f2 _fl) =0,

Results of a numerical integration of equations (16) fordame values of parametets ), ., p; are presented
in Figure 13 forv = 0.005 (see Figure 13,a) and= 0.02 (see Figure 13,b).

Figure 13. The dynamic response of the cylindrical preces&urve 1), the bifurcation sét; (P;) =0
(curve 2) and acceleration of the unbalanced rotor throhgletitical speeds (curve 3),
initial valuesR,(0) = R2(0)



Figure 14. The dynamic response of the cylindrical preoces@urve 1), the bifurcation sét3 (P;) = 0
(curve 2) and acceleration of the unbalanced rotor throbhgletitical speeds (curve 3),
initial valuesR;(0) # R2(0)

The non-stationary crossing of the resonance zone is sengitthe initial conditions. The motions, shown in
Figure 13, are cylindrical. The conic swinging of the revmn axis does not occur. If the initial conditions for the
bearingl are not equal to the corresponding values for the be&itige non-stationary crossing of the resonance
zone results in a complex hyperboloidal type. In Figure }4ral b) the time processes for andY; are shown
correspondingly.

0.5
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Figure 15. The time process for the phase differegge— ¢2). Initial valuesR;(0) # R2(0)

In Figure 15 the time process for the phase differefage— 2) is plotted. One can see that oscillations after the
"jJump” of amplitude are chaotic.

7 Conclusions

Introduction of a 4DOF model of an unbalanced rigid rotoowal studying a complex three-dimensional whirling
motion, which is described by a coupled differential equagiof eighth order and presented by cylindrical, conic
or hyperboloidal precession.

The suggested approach allows to consider the differelstgp non-linearities, with or without a linear compo-
nent, and obtain the dynamic response of the whirling mdtioall values of an angular velocity.

This problem definition reveals some effects that could edolind for a 2DOF model, such as instability with si-
multaneous changing of the motion type, etc. It becomesigeds study an influence not only a static unbalance,
which is usual, but also a dynamical unbalance simultarigous



References

Arkhipova I. M., Pasynkova I. A.: Investigation of Precess of an Unbalanced Rotdrhe 2nd Polyakhov Read-
ings: The Selected Proceedirfggint-Petersburg, 2000, 65-72 (in Russian).

Arnold V. I.: Theory of Differential Equations: Additional Chaptefdoscow, Nauka, 1978 (in Russian).

Bolotin V. V.: Nonconservative Problems of the Theory of Elastic Stgbiitergamon Press, New York, 1963.
(Fizmatgiz Publisher, Moscow, 1961 (in Russian)).

Genta G.Vibration of structures and machines: practical aspedns ed. New York, Springer, 1999.
Gilmore R.:Catastrophe theory for scientists and engine&lsw Jork, John Wiley: Sons, 1981.
Dimentberg F. M.Flexural Vibrations of Rotating ShaftButterworth, London, 1961.

Dimentberg M. F.: Vibration of a rotating shaft with randgmiarying internal dampingJournal of Sound and
Vibration (2005)285, 759-765.

Hagedorn P., Khl H., Teshner W.: Zur Stabifit einfach besetzer Wellen mit nichtlinearer inner@mipfung.
Ingenieur-Archiy 46, 1977, 203-212.

Kelzon A. S., Meller A. S.: On the Dynamics of Rotors Suppdrie Ball Bearings.Doklady RASVv.323, N5,
1992, 851-857 (in Russian).

Merkin D. R.: Introduction to the Theory of StabilitiNew York, Springer, 1997.

Neimark Yu. I., Landa P. SStochastic and Chaotic Oscillation®ordrecht, Boston, Kluwer Academic. Publish-
ers, 1992. (Moscow, Nauka, 1987 (in Russian)).

Pasynkova I. A.: Hyperboloidal Precession of Rotor in Noedir Elastic Bearing$/estnik of St.-Petersburg Uni-
versity, p.l, 4, 1997, 88-95 (in Russian).

Pasynkova I. A.: Stability of Rigid Unbalanced Rotor Conre&essionVestnik of St.-Petersburg University.l,
1, 1998, 82-86 (in Russian).

Pasynkova I|. A.: Stability Loss of Conic Precessions of amalanced Rotor in Quasilinear Elastic Bearings.
Vestnik of St.-Petersburg Universityl, 2, 2005, 118-125 (in Russian).

Timoshenko S. PVibration Problems in Engineeringoronto, Van Nostrand, 1955.

Tiwari M., Gupta K., Prakash O.: Dynamic response of an wanoadd rotor supported in ball bearingmurnal of
Sound and Vibratioti2000)238(5), 757-779.

Tondl A.: Problems of Self-Excited Vibrations of Rotoldonographs and Memoranda Serig$17, SVUSS,
Bechovice, Czechoslovakia, 1974.

Address:Dr. Inna A. Pasynkova, Saint-Petersburg State Universagulty of Mathematics and Mechanics, Uni-
versitetsky pr. 28, Stary Peterhof, 198504, St. Petersburg
email:i p@ pl157. spb. edu

10



