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Dynamic Instability of a Piezolaminated Imperfect Column 

 
V. Z. Gristchak, O. A. Ganilova 
 
This paper deals with the problem of dynamic instability of a piezolaminated column subjected to an arbitrary 
axial load. The aim of the analysis is to obtain the closed form solution for the equilibrium equation of the 
loaded column considering a damping coefficient variable in time, presented as function of time. A solution of 
the problem is obtained using a hybrid WKB-Galerkin method. 

 
 

1 Introduction 
 
The branch of mechanics which considers piezoelectric materials is highly developing at present since 
piezoelectric actuators and sensors are compact and do not need supporting mechanisms to bear reacting forces. 
Moreover piezo structures are reliable since the actuators transfer forces to the structural member according to 
the magnitude of the excitation voltage. They are also attractive due to the greatest advantage, i.e. the activation 
response time is fast and takes only few milliseconds. Meressi and Paden (1992) showned that the magnitude of 
the first critical load of a flexible beam can be increased using piezoelectric actuators and strain sensors. Faria 
and Almedia (1999) used the finite element method to predict the pre-buckling behavior of a composite beam 
with geometric imperfections. In their research piezoelectric actuators were also used. By the application of the 
same method the nonlinear behavior of piezolaminated beams was analyzed by Mukherjee and Chaudhuri 
(2001). The set of experiments was conducted by Thomson and Loughan (1995) who examined the overall 
flexural buckling control of smart composite column stripes using piezoelectric actuators.  
 
As we can see investigations devoted to the stability of piezo structures are evolving. Thus the main objective of 
this paper is to investigate the problem of control of dynamic instability of the piezolaminated imperfect column, 
paying attention to the fact that the damping coefficient can be expressed as a in time function. Therefore the 
equilibrium equation of the column is presented taking into consideration the mentioned fact. According to the 
investigations presented in the cited literature it is obvious that the finite element method and numerical methods 
are often used in this field of mechanics. Thus it is important to investigate the problem of the dynamic 
instability of a piezolaminated column by using an analytical method. In this paper the hybrid (Wentzel-Kramer-
Brillouin) WKB-Galerkin method is used because its advantages have already been shown in different branches 
of mechanics and it will give us an opportunity to obtain the approximate solution as an asymptotic one. 
 
 
2 Basic Concepts of the Hybrid WKB-Galerkin Method 
 
Differential equations with variable coefficients and boundary problems in mechanics can be solved by 
integration only in individual cases. Therefore it is partienlarely important to solve the problem using 
approximate methods. 
 
Along with numerical methods also approximate methods have been developed. Among these methods such 
analytical methods as variational and non-variational (Bubnov-Galerkin method) should be mentioned. 
 
If the differential equation of the problem contains a dimensionless parameter ε  (small or large), it is reasonable 
to find the approximate solution as an asymptotic one with a predetermined value of the parameter. The solution 
obtained in this case runs up to a fair accuracy in a small interval of parameter variation. For this reason the 
purpose of asymptotic mathematics is to find the methods based on classical ones which can improve an 
approximate solution. There are quite a number of hybrid approaches which are based on the idea of building a 
better solution. The last one should be obtained using a set of coordinate asymptotic functions and undetermined 
parameters. If it is possible to define the parameters then a more exact hybrid solution of the problem can be very 
close to the exact one in a large interval of parameter variation. It should be noted that perturbation-Galerkin and 
WKB-Galerkin methods are hybrid approaches. However, according to results obtained in different branches of 
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mechanics, the hybrid WKB-Galerkin method shows a higher accuracy of solution compared to the perturbation-
Galerkin method. 
 
Hybrid methods have proved to be useful in a wide variety of applications such as structural mechanics 
problems, applications to slender-bodies, thermal and structure problems. Geer and Andersen (1989, 1990, 1991) 
used the two steps hybrid perturbation-Galerkin method to obtain a solution for some types of differential 
equations and to solve some mechanical problems. The WKB-Galerkin method for a numerical solution of 
mechanical problems was also used by Steel (1971, 1989). Gristchak (1979) showed that the WKB-method can 
be also used in some linear mechanical problems, in solution of nonlinear bending problems, and in problems of 
oscillation of homogeneously structured system. The hybrid WKB-Galerkin method was successfully used in the 
solution of mechanical boundary problems which contain a linear differential equation with variable coefficients 
and a parameter near the highest order derivative. The obtained solution has a pinpoint accuracy and can be 
useful in a wide variety of applications. However, the algebra of the solution process following the WKB method 
becomes typically more and more tedious as higher and higher order terms are computed, and frequently the 
computational effort rises so fast from term to term that even with computational assistance very few terms can 
be computed. Thus for cases where higher order terms may have a significant effect, it is important to get as 
much use of the information contained in the lower order terms as possible. The hybrid WKB-Galerkin method 
seems to greatly extend the power and usefulness of the WKB method without significant computational effort.  
 
In the analysis of complex mechanical models with nonhomogenous structure it is also essential to obtain a 
solution of a system of differential equations which contain undetermined parameters and some large or small 
parameters. In these problems it is not possible to obtain some general exact solution. Thus it is necessary to use 
approximate methods such as hybrid methods.  
 
The hybrid WKB-Galerkin method enables us to obtain especially good results in an approximate solution of the 
differential equation which contains a parameter near the highest order derivative. For this dimensionless 
parameter we can choose the natural frequency, the ratio of the largest and the smallest measurements of the 
structure or others. To solve the linear differential equations the method is applied in two stages: obtaining the 
WKB-solution of the problem and applying the Bubnov-Galerkin method taking into consideration asymptotic 
coefficients. In step one the functions of x are determined using the WKB method by forming an expansion in ε . 
In step two the functions of ε  are determined by the classical Bubnov-Galerkin method. The resulting hybrid 
method has the potential of overcoming some of the drawbacks of the WKB and the Bubnov-Galerkin methods 
applied separately, while combining some of the good features of each.  
 
It is necessary to obtain the solution ),( εxu  of the boundary problem  
 

[ ] 0,),,( =εε xxuL                                                                            (1) 
 
where L is some linear differentiation operator of nth order, ε  is a parameter near the highest order derivative, х 
is located in some interval [a,b], and ),( εxu  is satisfied by the given boundary conditions. 
 
In the first step the solution ),( εxu , according to the WKB-procedure, can be expressed as 
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where )(εγ i  are asymptotic sequences ( 1)( −= i

i εεγ ) and every )(xui  is determined by the standard WKB-
method. Approximate functions )(xui  should be chosen as coordinate functions to go through the solution 
procedure by the Bubnov-Galerkin method. The more exact solution ),(~ εxui  for ),( εxu  is defined as 
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where the undetermined parameters )(εδ i  are complex functions of ε , and all )(xui  are approximate 
coordinate functions which were found at the first step. To find the undetermined coefficients ( )Nii ..0=δ , we 
should substitute (3) into (1). 
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Taking into consideration equation (1), it should be noticed the that right part of the last equation must satisfy the 
condition  
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Therefore it should be marked that R must be orthogonal to the N+1 coordinate functions in the interval [a,b] 
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where i=0,…,N. 
 
Equation (6) is the system of N+1 equations with N+1 undetermined coefficients )(εδ i . If kδ  are complex 
functions 21 kkk iδδδ +=  then the obtained system has 2(N+1) equations with 2(N+1) undetermined 
coefficients. Equation (6) can be solved by numerical methods.   
 
 
3 The Behaviour of a Piezolaminated Imperfect Column under Arbitrary Axial Load 
 
Mukherjee and Chaudhuri (2002) used the imperfection approach to find the problem solutions for the control of 
instability of piezolaminated columns under axial loads. They investigated the control of steel columns with 
surface bonded lead zirconated titanate layers under axial loading. The authors took into consideration the initial 
imperfection of the column which was subjected to static, periodic, and arbitrary axial loads to obtain a closed 
form solution. 
 
According to Mukherjee and Chaudhuri (2002) we consider the initially imperfect simply supported column.  
 
 

 
 

Figure 1. Piezolaminated Column 
 

This column is subjected to an axial loading as we can see in Figure 1. The initial imperfection of the column is 
0w  and deflects to w  under the load. This initial imperfection for the analyzed column can be written as  
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Following Mukherjee and Chaudhuri (2002), the equilibrium equation for the system can be expressed as  
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where m is mass per unite length, с is the damping coefficient, t is the time, P(t) is an arbitrary dynamic axial 
load, 0w  is defined by (7), and D  is the modified stiffness due to subcritical actuation and can be expressed as 
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where e31 is the piezoelectric stress constant and ξ33 is the dielectric constant of the piezoelectric material. The 
equilibrium equation of a piezolaminated simply supported column under arbitrary axial load determined by 
Mukherjee and Chaudhuri (2002) can be written as 
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In this paper it is essential to take into consideration the damping coefficient which will be presented as 

)()( 0 tctc ϕ= . In this case the equilibrium equation (10) can be rewritten as 
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The general solution for the problem can be expressed as 
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By us substituting (12) and (7) into equation (11) and considering only the nth term, it can be written as 
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 Using the definition for c(t) it is possible to rewrite the above equation as 
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It is essential that the derivative is taken in the time domain. 
 
Supposing )(~)( tPcDtP −=  and assuming that 0)( >tP , we obtain 
 

)()()(2 tPcaftPftf n=+′+′′ ϕε                                                (15) 
 

The general solution of equation (15) consists of a complementary function and a particular integral.  
 
The homogeneous equation of the general equation (15) can be expressed as 
 



 110

0)()(2 =+′+′′ ftPftf ϕε                                                     (16) 
 

As it was mentioned in the hybrid WKB-Galerkin method description, the solution procedure consists of two 
steps.  
 
The WKB solution of equation (16) taking into consideration only two first terms of the WKB-expansion can be 
written as  
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Substituting (17) into (16) and forming a system according to the ε th power we can get 
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As a solution of the system (19) we obtain 
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In this case the general WKB solution of equation (16) with respect to (17) can be expressed as  
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where 0u  is defined in (20). Thus it is possible to rearrange the WKB solution of equation (16) into 
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However, it was mentioned above the hybrid WKB-Galerkin method enables us to achieve a better result. 
 
According to the solution procedure for the hybrid WKB-Galerkin method, the obtained WKB-solution will be 
used. Therefore, according to (3), we consider the solution in the form 
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Therefore, considering the procedure described by (4), (5) and (6), we obtain 
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According to the steps of solution, separating real and imaginary terms, we obtain the following system of 
equations 
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Solving system (25) we get  
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Concluding all calculations and making substitutions according to (23), we finally obtain the hybrid solution of 
equation (16) as 
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where 0201,δδ  are defined by (26). 
 
 
4 Numerical Example 
 
To validate the obtained solution, it is important to present the graphical result of the problem for predetermined 
parameters. Supposing that 
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the equilibrium equation can be expressed as follows 
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The homogeneous equation of equation (29) is 
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02 222 =+′+′′ fefef ttε                                                         (30) 

 
The solution of equation (29) consists of a complementary function and a particular integral. In order, to find the 
complementary function (22), we need to define 0u  using expressions determined below. 
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It follows that 0u  can be written as 
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Summarizing all obtained expressions and according to (22), the WKB solution of the homogeneous equation 
(30) becomes 
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where 21,CC  are arbitrary constants. 
 
To find a particular solution, we use variation of parameters, considering the obtained complementary function 
(33). It should be noticed that in use only two terms of the infinite series.  In this case we get 
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The boundary conditions may be written as 
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Therefore, it is possible to write the general solution as 
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The graph of the obtained WKB solution is presented below. 
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Figure 2. The WKB Solution of the Problem 
 
To obtain the hybrid solution we find the necessary expressions according to (26) 
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According to the closed form solution (27), simplifying the obtained expression we get the complementary 
function of the general solution in the following form 
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which is similar to the WKB solution (33) but should give more accurate result. 
 
We find the particular solution of equation (29) in the same way as it was done for the WKB solution, using the 
variation of parameters method. Thus we get 
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where 21, gg  are arbitrary constants. 
 
According to the boundary conditions (35) and taking into consideration (38), (39) we can write the general 
solution of the problem (29) as 
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To express the solution of the problem we use the obtained function (40) 
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Figure 3. The Hybrid WKB-Galerkin Solution 

 
To compare the obtained result with the numerical solution, we use the numerical method which was proposed 
as the optimal one in the Maple 7 commercial software for the second order nonhomogeneous differential 
equation (29). In this case, the solution of the mentioned problem is 
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where 21, SS  are arbitrary constants. 
 
Simplifying expression (41) by using infinite series and considering two terms, with respect to the boundary 
conditions (35), we finally get 
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To compare the two functions of the presented solutions: the numerical one and the hybrid WKB-Galerkin 
solution, we plot them in one figure. 

 
 

Figure 4. Comparison of the Hybrid WKB-Galerkin and Numerical Solutions 
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Figure 5. Comparison of the Hybrid ( )(

~ tf ), WKB ( )(tf ) and Numerical ( )(tf Num ) solutions 
 
 
5 Concluding Remarks 

 
The comparison of three obtained solutions illustrated in Figure 5 demonstrates that the best correlation of 
numerical solution and the obtained solution was achieved due to the hybrid WKB-Galerkin method. These 
results confirm that the application of the hybrid WKB-Galerkin method can be widely used in different 
branches of mechanics giving better results compared with the WKB method. 
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