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Cylindrical Precessions of an Unbalanced Jeffcott Rotor with four
Degrees of Freedom in Non-linear Elastic Supports

I. A. Pasynkova

To study forward synchronous whirling motion (precession) of a Jeffcott rotor with 4 degrees of freedom, a new
approach has been suggested. The rotor is considered to be statically and dynamically unbalanced. It is attached
to a massless linear elastic shaft and supported in non-linear elastic bearings. Depending on the surface traced
by undeformed axis of revolution in 3D space one can differentiate three types of precession – cylindrical, conic
and hyperboloidal. In the last case this surface is one-sheet hyperboloid.

For a statically unbalanced rotor supported in isotropic bearings with Hertzian contact, a cylindrical precession
has been studied in assumption that rotation occurs at constant spin speed. External and internal damping have
been taken into account. Two non-linear resonances have been found and dynamic response has been built. The
problem of stability loss of a forward synchronous cylindrical precession has been investigated for a full range
of angular velocities. It has been shown that different types of stability loss take place. Within some range jump
phenomena and bi-stability occur, but the steady-state motion remains to be the forward synchronous cylindrical
precession. For some other values of the angular velocity stability loss is accompanied by inducing a hyperboloidal
precession. The threshold angular velocity for autovibration has been found. By computational modeling the limit
cycles and the strange attractor are determined. The results of numerical integration reveal transition ”chaos to
chaos” in the process of rotation.

1 Introduction

Non-linear analysis of rotor system is mainly based on the simplest model of the Jeffcott rotor with two degrees of
freedom, often including gyroscopic terms. Non-linear effects in rotor dynamics can be produced by the presence
of clearances in the support system, by non-linear hydrodynamic forces in the lubricated bearings or non-linear
restoring forces in the elastic bearings etc. When studying dynamics of the rotor supported in ball bearings many
authors consider non-linear contacts in the supports to be of Hertz’s type (see Kelzon et al. (1982), Merkin (1997),
Tiwari et al. (2000)). There is a special theoretical interest to investigate rotor precession motion with Hertzian
contact in supports as it is essentially non-linear and the problem cannot be considered in linear approximation.

A model of a Jeffcott rotor with four degrees of freedom attracts an active interest in recent years (see Genta
(2006)). The first works dealing with a rigid rotor with four degrees of freedom, i.e. a rigid rotor supported
in linear elastic bearings, were by Bläss (1926); Timoshenko (1928); Dizioglu (1951). But the rotor models in
Bläss (1926) and Dizioglu (1951) were incorrect so self-centering was not found out. Moreover, the conclusion
of nonoccurrence of self-centering was made in the last paper. An influence of radial clearance has been studied
in Neilson and Barr (1988). A perfectly balanced rigid rotor supported in non-linear elastic bearings has been
investigated in Kelzon and Meller (1992) and parameters of cylindrical and conical precessions were found.

By using the asymptotic methods some problems of the flexible rotor dynamics were considered in Grobov (1961)
and Kushul (1963). Non-stationary vibrations of the 4 d.o.f. rotor supported in linear elastic bearings, isotropic
and non-isotropic, were studied in Grobov (1961). There in case of non-linear elastic supports stationary and
non-stationary vibrations were studied under assumption that one support was immovable. Autovibration of the
overhanging rotor with 4 d.o.f. at supercritical spin speed was investigated in Kushul (1963) also by asymptotic
method of Krylov – Bogolyubov.

A new approach to investigation of the forward synchronous precession (whirling motion) of a 4 d.o.f. unbalanced
rigid rotor supported in non-linear elastic bearings has been suggested in Pasynkova, (1997, 1998, 2000). Depend-
ing on the surface traced by the revolution axis in 3D space a precession can be qualified as cylindrical, conic or
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hyperboloidal. In the last case this surface is one-sheet hyperboloid. Dependence on parameters of a complex am-
plitude for different types of precessions (cylindrical, conic or hyperboloidal) has been defined. Notion of a set of
non-linear resonances has been determined as a concept generalization of a resonance (or critical) angular velocity,
that allows to investigate rotor dynamics problem with essentially non-linear characteristics of rotor supports. The
dynamics response, stability and scenarios of stability loss for the cylindrical precession of the unbalanced rotor in
non-linear supports with Hertzian contact have been studied in Pasynkova (2006).

Studying of a four-degrees-of-freedom Jeffcott rotor supported in non-linear elastic bearings based on the new
method has been performed in Pasynkova (2005). The rotor was considered to be statically and dynamically unbal-
anced. The behavior of a massless shaft was assumed to be linear. It was shown that a symmetrical hyperboloidal
precession could take place for some values of rotor parameters.

The present research of precessional motion of a statically unbalanced Jeffcott rotor mounted in non-linear elastic
bearings is carried out by using the approach developed for rigid rotors and results obtained in Pasynkova (2005,
2006).

2 Model Description and Equations of Motion

Let us consider a Jeffcott rotor model with four degrees of freedom, i.e. a rigid body with axial symmetry attached
to a massless elastic shaft (see Figure 1). Let the rotor be of mass M and length Lr. Its moments of inertia are
Jp (polar) and Jt (transversal). Imbalance is characterized by a static eccentricity e, a dynamic eccentricity δ and
a phase angle ε of the dynamic eccentricity. The rotor is supported vertically in two immovable bearings in such
a way that a point of attachment Q is placed at a distance equal to ej L, from j-bearing (j = 1, 2), L being a
distance between bearings. If Q is between the bearings, then both ej > 0. If Q is located outside the j-bearing,
then ej < 0, so that e1 + e2 = 1 is always right. The angular velocity of the rotor is constant and equal to ω. The
rotor displacement along the axis of revolution is negligible.
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Figure 1: Model of a four-degree-of-freedom Jeffcott rotor supported in non-linear elastic bearings

Let us introduce the following frames of reference: the inertial frame O x y z with Oz-axis coinciding with the
rotation axis in its equilibrium state; the frame Q ξ η ζ fixed with the rotor and Qζ-axis directed along the tangent
to the deflected shaft.

The rotor’s state can be parameterized by eight parameters:

• (x, y) - Cartesian coordinates of Q-point;

• (α, β) - angles characterizing the direction of Qζ-axis;

• (xj , yj) - Cartesian coordinates of Qj-point, (j = 1, 2).
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The kinetic energy of the rotor accurate to linear terms of imbalance e, δ and quadratic terms of small angles α, β
and its derivatives α̇, β̇ can be computed as in Genta (1999):

T =
1
2
M

(
ẋ2 + ẏ2 + eω(ẏ cos(ω t)− ẋ sin(ω t))

)
+

1
2
Jp(ω2 − 2ωβ̇α)+

+
1
2

Jt (α̇2 + β̇2) + (Jp − Jt) δ ω
(
α̇ sin(ω t− ε)− β̇ cos(ω t− ε)

)
.

(1)

The shaft is assumed to be linear elastic, so the potential energy of a deflected shaft is given by

Πâ =
1
2

c11

(
(x− x0)2 + (y − y0)2

)
+

1
2

c22

(
(α− α0)2 + (β − β0)2

)
+

+c12 ((x− x0)(α− α0) + (y − y0)(β − β0)) .
(2)

Here we denote C = { clm}, (l, m = 1, 2) – a stiffness matrix of the elastic shaft supported in the rigid bearings;
(x0, y0) – Cartesian coordinates of Q0-point; angles (α0, β0) characterize the direction of the straight line Q1Q2.
Parameters (x0, y0, α0, β0) define the rotor displacement as a rigid body (see Figure 1) and can be determined as
functions of Cartesian coordinates xj , yj :

x0 = e2 x1 + e1 x2, y0 = e2 y1 + e1 y2,

α0 = (x2 − x1)/L, β0 = (y2 − y1)/L.
(3)

For the bearings they are considered to be isotropic and non-linear elastic. Bearings isotropy allows to introduce
complex variables

S = x + i y, Sj = xj + i yj , (j = 0, 1, 2)
γ = α + i β, γ0 = α0 + i β0.

(4)

The restoring forces only have radial components. The j-bearing reaction can be written as

Rel
j = −Fj(|Sj |)nj . (5)

Here Sj is a displacement of Qj-point from its equilibrium position, nj is a unit vector of Sj-direction. Functions
Fj(|Sj |) are continuously differentiable and Fj(0) = 0.

Let forces of external damping be given by a dissipative function Φ1 and forces of internal damping from material
of the shaft be given by a dissipative function Φ2 (see, e.g., Grobov (1961)):

Φ1 =
1
2

µ̃e

(
Ṡ2 + L2γ̇2

)
, Φ2 =

1
2

µ̃i

(
|Ṡ − i ω S|2 + L2 |γ̇ − i ω γ|2

)
. (6)

Lagrange equations with respect to scalar variables include four differential equations and four algebraic equations,
which can be written with respect to complex variables as

MS̈ + (µ̃e + µ̃i)Ṡ − iωµ̃iS + c11(S − S0) + c12(γ − γ0) = Meω2 exp(iωt),

Jtγ̈ − iJpωγ̇ + (µ̃e + µ̃i)L2γ̇ − iωµ̃iL
2γ + c12(S − S0) + c22(γ − γ0) =

= (Jt − Jp)δ ω2 exp(i(ω t− ε)),

(7)

(
c11e2 − c12

L

)
(S − S0) +

(
c12e2 − c22

L

)
(γ − γ0) = F1(|S1|) S1

|S1| ,(
c11e1 +

c12

L

)
(S − S0) +

(
c12e1 +

c22

L

)
(γ − γ0) = F2(|S2|) S2

|S2| .
(8)

The algebraic equations (8) reflect an equality between elastic forces from the deflected shaft and restoring forces

F1(|S1|) S1

|S1| , F2(|S2|) S2

|S2| from deformed bearings. These equations can be considered as constraints equations

of coordinates S, γ and S1, S2. Either sets of variables (S, γ) or (S1, S2) can be chosen as generalized coordinates.
If we choose the (S, γ)-set, then we obtain differential equations with modified stiffness matrix. If we choose the
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(S1, S2)-set as generalized coordinates, then we obtain differential equations with modified matrix of inertia. By
choosing the (S1, S2)-set we can apply methods and results of the investigation received for rigid and flexible
rotors with 4 d.o.f. supported in non-linear elastic bearings in (Pasynkova, 1997, 1998, 2005, 2006). So let
(S1, S2) be generalized coordinates.

Equations (8) are linear with respect to (S, γ). Thus we can find an exact solution:

S = ã1(|S1|)S1 + ã2(|S2|) S2, γ = −b̃1(|S1|) S1

L
+ b̃2(|S2|) S2

L
;

ãj = e3−j + κ1j
Fj(|Sj |)
|Sj | , b̃j = 1 + κ2jL

Fj(|Sj |)
|Sj | ;

κ1j = c∗11 + (−1)j c∗12 ej L, κ2j = c∗22 ej L + (−1)j c∗12,

(9)

C∗ = {c∗lm} – a compliance matrix. Values c∗lm depend on a way of shaft supporting. They are well-known and
reported in many handbooks, for example in Dimentberg (1961).

By substituting solution (9) into equations (7) one can obtain differential equations with respect to S1, S2. Denote
the differential operators as

Mt(∗) = M
d2

dt2
(∗) + (µ̃e + µ̃i)

d

dt
(∗)− iωµ̃i(∗),

Jt(∗) = Jt
d2

dt2
(∗) +

(−i ωJp + (µ̃e + µ̃i)L2
) d

dt
(∗)− iωµ̃iL

2(∗),
(10)

then differential equations (7) can be rewritten as

∑

j=1,2

(
Mt(ãj(|Sj |)Sj) + Fj(|Sj |) Sj

|Sj |
)

= Meω2 exp(iωt),

∑

j=1,2

(−1)j

(
Jt(b̃j(|Sj |)Sj) + ejL

2Fj(|Sj |) Sj

|Sj |
)

= (Jt − Jp)Lδω2 exp(iωt− ε)).
(11)

It is convenient to rewrite the system (11) in non-dimensional form by introducing non-dimensional variables and
non-dimensional time

sj = Sj/h, τ = ω0 t. (12)

Here h is a certain small length, e.g., the statical eccentricity e or Lδ. The choice of ω0 depends on the nonlinearity
Fj(|Sj |).

Operators (10) with respect to non-dimensional time are reduced to

Mτ (∗) =
d2

dτ2
(∗) + (µe + µi)

d

dτ
(∗)− iΩµi(∗),

Jτ (∗) =
d2

dτ2
(∗) + (−i Ωλ + k l(µe + µi))

d

dτ
(∗)− iΩk lµi(∗).

(13)

Here the following denotations have been introduced

Ω =
ω

ω0
, λ =

Jp

Jt
, l = 1− λ, k =

ML2

Jt − Jp
, µe =

µ̃e

Mω0
, µi =

µ̃i

Mω0
. (14)

Then equations (11) can be obtained in form

∑

j=1,2

(
Mτ (aj(|sj |)sj) + fj(|sj |) sj

|sj |
)

= d1 Ω2 exp(iΩτ),

∑

j=1,2

(−1)j

(
Jτ (bj(|sj |)sj) + k l ej fj(|sj |) sj

|sj |
)

= l d2 Ω2 exp(i (Ωτ − ε)).
(15)
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Non-dimensional statical and dynamic eccentricities d1, d2 and non-dimensional nonlinear forces fj(|sj |) can be
computed as

d1 =
e

h
, d2 =

L δ

h
, fj(|sj |) =

1
hM ω2

0

Fj(h|sj |).

We denote

aj(|sj |) = e3−j + σ1j
fj(|sj |)
|sj | , σ1j = κ1j M ω2

0 ,

bj(|sj |) = 1 + σ2j
fj(|sj |)
|sj | , σ2j = κ2jLM ω2

0 , j = 1, 2.

(16)

One can see that equations (15) admit an exact solution in a form

sj = Rj exp(i ϕj) exp(i Ωτ), j = 1, 2, (17)

which is a forward synchronous circle precession. The forward synchronous precession can be cylindrical, conic
or hyperboloidal according to the surface traced by the straight line Q1 Q2 in 3D space. If ϕ1 = ϕ2 and R1 = R2,
then (17) represents a cylindrical precession. If ϕ1 = ϕ2 or ϕ1 = ϕ2 + π for ∀R1, R2, it is a conic precession,
and if ϕ1 6= ϕ2 for ∀R1, R2, it is a hyperboloidal one. In the last case the surface traced by Q1 Q2 is one-sheet
hyperboloid (see Pasynkova (2005)).

3 Cylindrical precessions

Let the rotor be only statically unbalanced, i.e. e 6= 0 and δ = 0. Let us consider the elastic bearings with non-
linear characteristics of Hertz’s type, so restoring forces are given by formula Fj(|Sj |) = cj |Sj |3/2. In this case
one can choose

h = e, ω2
0 =

c1
√

e

M
.

Then the system (15) can be written as

∑

j=1,2

(
Mτ (aj(|sj |)sj) + νj

√
|sj |sj

)
= Ω2 exp(iΩτ),

∑

j=1,2

(−1)j

(
Jτ (bj(|sj |)sj) + k l νjej

√
|sj |sj

)
= 0,

(18)

where
aj(|sj |) = e3−j + σ1j

√
|sj |, bj(|sj |) = (1 + σ2j

√
|sj |),

νj = cj/c1, σ1j = κ1jcj

√
e, σ2j = κ2jLcj

√
e, j = 1, 2.

(19)

By substituting (17) into (18) one can obtain an inhomogeneous algebraic system with respect to the complex
amplitude Rj exp (i ϕj):

A1R1 exp(i ϕ1) + A2R2 exp(i ϕ2) = Ω2,

−B1R1 exp(i ϕ1) + B2R2 exp(i ϕ2) = 0,
(20)

with coefficients
Aj = νj

√
Rj − aj(Rj)Ω2 + i µeaj(Rj)Ω,

Bj = kνjej

√
Rj − bj(Rj)Ω2 + i k µebj(Rj)Ω.

(21)

Note that the imaginary parts of Aj , Bj only depend on the damping coefficient µe in a linear manner.

It is convenient to denote
X = Ω2, Yj =

√
Rj . (22)

Then the system (20) can be considered with respect to exp (i ϕj) and the solution can be written as

exp(i ϕj) =
X B3−j

Y 2
j ∆µ

, ∆µ 6= 0, (23)
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where ∆µ is a determinant of the system (20). Under µe = 0 the denominator in (23) turns into

∆ = <(A1)<(B2) + <(A2)<(B1), (24)

where <(∗) – a real part of (∗).

The surface ∆ = 0 determines a set of non-linear resonances in {X,Y1, Y2}-space. The definition of a set of
non-linear resonances was introduced in Pasynkova (1997, 2005).

If the rotor is attached at the midspan, then e1 = e2 = 1/2. In this case elements of the compliance matrix
c∗p,q, (p, q = 1, 2) are given by well-known formulae (see for example Dimentberg (1961))

c∗12 = c∗21 = 0, c∗11 =
L3

48EJ
, c∗22 =

L

12EJ
, (25)

with E – Young’s modulus, J – moment of inertia of the shaft’s cross-section.

If the bearings are identical, then c1 = c2. One can obtain

σ11 = σ12 = c∗11c1

√
e = σ, σ21 = σ22 = c∗22L

2e1c1

√
e = 2σ. (26)

Under these assumptions one can find out the solution s1 = s2, which presents a cylindrical precession. Then the
second equation in (18) is satisfied identically.

There are equalities R1 = R2 = R and ϕ1 = ϕ2 = ϕ for a cylindrical precession. Denote Y1 = Y2 = Y and
coefficients A1 = A2 = A(X, Y ), B1 = B2 = B(X, Y ), where

A(X, Y ) = Y − a(Y )X + iµea(Y )
√

X, a(Y ) =
1
2

+ σY,

B(X, Y ) =
k

2
Y − b(Y )X + iµeb(Y )

√
X, b(Y ) = 1 + 2σY.

(27)

By using a property | exp(iϕ)| = 1, one can obtain amplitude-frequency and phase-frequency responses from the
formula (23) as

Y 2 |A(X,Y )| = X/2, tan(ϕ) = −=(A(X,Y ))
<(A(X,Y ))

,

or in form

Y 2
√

(Y − a(Y )X)2 + (µea(Y ))2X = X/2, tan(ϕ) = − µea(Y )
√

X

Y − a(Y )X
, (28)

From formulae (28) it results, that the self-centering takes place at the large spin speed. The limit value of Y∞
under X →∞ is equal to a positive root of the following equation

2σY 3
∞ + Y 2

∞ − 1 = 0. (29)

It is easy to check that under σ > 0 this equation always has one positive and two negative roots. If one returns to
dimensional parameters then the value Y∞ > 0 corresponds to the location of mass center on the Oz-axis, i.e. on
the supports line.

The set of non-linear resonances ∆ = 0 degenerates into a set <(A(X,Y ))<(B(X, Y )) = 0. In the plane (X, Y )
every resonance curve

A = Y − 1
2

(1 + 2 σY )X = 0, B =
kY

2
− (1 + 2σY )X = 0 (30)

presents a part of the half-hyperbola with vertical asymptotes X = 1/σ and X = k/(4σ).

Let us consider a dynamically prolate rotor (as a long rotor), then λ < 1 and k > 0. On Figure 2 the dynamic
responses of cylindrical precessions are shown with thick lines, non-linear resonances A(X,Y ) = 0, B(X, Y ) = 0
are shown with thin lines, and the limit value Y∞ = 0.919 is shown with dashed line.
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Figure 2: Dynamic responses of cylindrical precessions.
Parameters are k = 2.8, σ = 0.1, µe = 0 (an unclosed curve), µe = 0.1, µe = 0.2.

As it was shown in Pasynkova (1997, 2006), non-linear resonances for a rigid rotor are parameterized by straight
lines in the (X, Y )-plane and under µe = 0 infinite large radii of precession only exist at infinite large angular
velocity. For the rotor attached to a flexible shaft unlimited radii of precession can be at a finite angular velocity, as
the non-linear resonances have vertical asymptotes. It follows from the assumption on linear behavior of the shaft.

4 Stability loss in the proximity to non-linear resonances

The linear analysis of stability can be applied to study cylindrical precessions. To obtain equations of the linear
approximation in the immediate vicinity of the cylindrical precession with parameters R, ψ under the rotor angular
velocity Ω, one can let

sj = (R + rj) exp(i (ψ + αj)) exp(i Ω τ), (31)

where rj , αj are the new variables. Note that |sj | = R + rj .

Substituting these values for sj into equations (18) we get the equations for perturbed motion. Non-linear terms
are expanded into power series in rj and αj . Then, by confining ourselves to terms of the first order with respect
to rj , αj , we get the equations of the linear approximation. At first let us write out linear components of the
non-linear terms in equations (18):

L(aj(|sj |) sj) = (a0 rj + i a1 αj) exp(i ψ) exp(i Ω τ),

a0 =
1
2

(1 + 3 σ
√

R), a1 =
1
2

R(1 + 2σ
√

R),

L(bj(|sj |) sj) = (b0 rj + i b1 αj) exp(i ψ) exp(i Ω τ),

b0 = 1 + 3 σ
√

R, b1 = R(1 + 2 σ
√

R).

(32)

Linear components of the non-linear forces are

L(
√
|sj | sj) =

(
3
2

√
R rj + i R

√
R αj

)
exp(i ψ) exp(i Ω τ). (33)

The system of the first approximation can be written in complex form as
∑

j=1,2

(L1j + i L2j) = 0,
∑

j=1,2

(−1)j (L3j + i L4j) = 0, (34)

or in real form as
L11 + L12 = 0, −L31 + L32 = 0,

L21 + L22 = 0, −L41 + L42 = 0.
(35)

By using notation (22) one can compute Lmj ,m = 1.4, j = 1, 2 as

L1j = a0 r̈j + (µe + µi) a0 ṙj +
(

3
2

Y − a0 X

)
rj − a1

√
X(2 α̇j + µe αj),

L2j = a0

√
X(2 ṙj + µe rj) + a1 α̈j + (µe + µi) a0 α̇j +

(
Y 3 − a1 X

)
αj ,

(36)
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L3j = a0 r̈j + k l (µe + µi) a0 ṙj + l

(
3
4

k Y − a0 X

)
rj − a1

√
X ((1 + l) α̇j + k l µe αj) ,

L4j = a0

√
X ((1 + l) ṙj + k l µe rj) + a1 α̈j + k l (µe + µi) a0 α̇j + l

(
k

2
Y 3 − a1 X

)
αj .

(37)

An eighth-order characteristic polynomial of the system (35) splits up into two polynomials of the fourth order as
in the case of a rigid rotor (see Pasynkova (2006)). We denote these polynomials as M(p), N(p). Applying an
usual procedure, the coefficients of M(p)

M(p) = m0 p4 + m1 p3 + . . . + m4 = 0,

m0 = a0 a1, m1 = 2 (µe + µi) a0 a1,

m2 = (a0 Y 3 +
3
2

a1 Y ) + 2 a0 a1 X + (µe + µi)2 a0 a1,

m3 = (µe + µi) (a0 Y 3 +
3
2

a1 Y ) + 2 a0 a1 (µe − µi)X,

m4 = (
3
2

Y − a0 X)(Y 3 − a1 X) + a0 a1 µ2
e X

(38)

and the coefficients of N(p) can be computed as

N(p) = n0 p4 + n1 p3 + . . . + n4 = 0,

n0 = b0 b1, n1 = 2 k l (µe + µi) b0 b1,

n2 =
1
2
k l (b0 Y 3 +

3
2

b1 Y ) + (1 + l2)b0 b1 X + k2l2(µe + µi)2b0 b1,

n3 =
1
2

k2 l2 (µe + µi) (b0 Y 3 +
3
2

b1 Y ) + 2 k l b0 b1 (µe − l µi)X,

n4 = l2 (
3
4

k Y − b0 X)(
k

2
Y 3 − b1 X) + k2 l2 b0 b1 µ2

e X.

(39)

One can see that the first three coefficients of M(p), N(p) are positive. Coefficients m3, n3 can be negative for
sufficiently large values of X and limited values of Y , if µi > max(µe, µe/l).

Absolute terms m4, n4 do not depend on the internal damping.
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Figure 3: Dynamic response and a set of bifurcation. Parameters are k = 2.8, l = 0.7, σ = 0.1, µe = 0.03.

In the (X, Y )-plane the curves m4 = 0, n4 = 0 present a bifurcation set. The characteristic polynomials have
zero-roots at cross-section points of the dynamic response and bifurcation curves. These points are critical and
determine intervals of instability. On Figure 3 they are shown as I, II, III, IV and their coordinates are

{
XI = 1.54,
YI = 1.38,

{
XII = 2.88,
YII = 2.38,

{
XIII = 3.42,
YIII = 1.73,

{
XIV = 5.44,
YIV = 5.95.
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On Figure 3 the stable modes of the cylindrical precession are shown with a thick solid line, unstable modes are
shown with thick dashed lines. Curves m4 = 0, n4 = 0 are shown with thin solid lines.

Bifurcation of the critical points could be stiff or soft (see Arnold (1978); Neimark and Landa (1987)). The stiff
bifurcation and phenomenon of amplitude jump is observed at the cross-section points of the dynamic response
and the curve m4 = 0, but the precession keeps on to be cylindrical. Note that under µe = 0 one half of the
hyperbola m4 = 0 coincides with the non-linear resonance A = 0.

At the cross-section points of the dynamic response and the curve n4 = 0 the soft bifurcation takes place. Stability
loss is accompanied by detachment of two new points of stable relative equilibrium and the type of stable precession
changes to hyperboloidal one. The formulae (23) yield

exp (i(ϕ1 − ϕ2)) =
Y 2

2 B2

Y 2
1 B1

⇒ tan(ϕ1 − ϕ2) =
k2 µe

√
XY 2

2 (Y1 − Y2)
Y 2

1 <(B2 B1)
. (40)

If Y1 6= Y2, then value ϕ1 − ϕ2 is neither equal to 0, nor π. It confirms that new steady-state motion is a
hyperboloidal precession.

To find parameters of the complex amplitude for a fixed X from the instability interval n4 < 0 one can solve the
equations with respect to Y1, Y2:

| exp(i (ϕ1 − ϕ2))| = 1, | exp(i ϕ1)| = 1. (41)
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Figure 4: Location of stable and unstable points of relative
equilibrium in the (Y1, Y2)-plane under X = 2.3.

On Figure 4 the curve | exp(i (ϕ1 − ϕ2))| = 1 is
shown with a solid line. It consists of a bisectrix
and a curve symmetrical with respect to the bisec-
trix. The curve | exp(i ϕ1)| = 1 is shown with a
dashed line. The parameters are the same ones as
on Figure 3. An unstable cylindrical precession is
parameterized by the point located on the bisectrix
and its coordinates are Y1 = Y2 = 1.99. The co-
ordinates of two stable points parameterizing a hy-
perboloidal precession are (Y1 = 2.22, Y2 = 1.22)
and (Y1 = 1.22, Y2 = 2.22).

5 Stability loss at the supercritical range of angular velocities.
Results of numerical integration.

As it was shown in Pasynkova (2006) in case of a rigid rotor with 4 d.o.f. internal damping caused instability of
self-centering and appearance of autovibration. In case of a flexible shaft one can observe similar situation. The
first three coefficients (38), (39) of each polynomial M(p), N(p) are always positive. It can be easily checked that
the two first Hurwitz’s determinants are positive, too. If internal damping is significant, the coefficients m3, n3

could become negative for sufficiently large values of X and limited values of Y , but m4 > 0, n4 > 0 for these
values of X , Y . This fact indicates that self-centering cannot be stable. Moreover, if m3 < 0 and m4 > 0, then
the Hurwitz’s determinant of third order ∆3(M) < 0; likewise if n3 < 0 and n4 > 0, then ∆3(N) < 0 and modes
of cylindrical precession for large values of X become unstable.

Let us consider a supercritical range of angular velocities. If ∆3(M) = 0 and ∆3(N) = 0, then the polynomials
M(p), N(p) have a pair of pure imaginary roots. In the (X, Y )-plane these curves determine a bifurcation set.
While passing through the critical points of cross-section the dynamic response and the curves ∆3(M) = 0 and
∆3(N) = 0 a Hopf’s bifurcation happens. It could be super- or subcritical bifurcation (see Gilmore (1981)). For
the parameters corresponding to Figure 3 coefficient n3 > 0 and ∆3(N) > 0 for all X > 0. The bifurcation set
∆3(M) = 0 is shown with thin solid line on Figure 3. The coordinates of point V are {xV = 6.19, yV = 1.07}.

In case of a dynamically prolate rotor numerical computation reveals a supercritical bifurcation, i.e. stability loss
is accompanied with detachment of a stable limit cycle.
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Figure 5: The threshold of autovibration
excitation.

For Jeffcott rotor with 2 d.o.f. supported in linear elastic bearings
Smith (1933) showed that a threshold angular velocity only de-
pends on a ratio of µi/µe and performed a simple formula. For
Jeffcott rotor with 4 d.o.f. supported in non-linear elastic bearings
the threshold of autovibration excitation can be found as a positive
solution of equations:

Y 2 |A(X,Y )| = X/2, ∆3(M) = 0. (42)

Numerical solving of the system (42) practically confirms the
Smith’s result. For chosen parameters the plot Xth = Xth(χ)
with χ = µi/µe is presented on Figure 5.

As a result of computational study of autovibration the stable limit cycles corresponding to cylindrical precession
were found up to sufficiently large values X . At least, the upper bound for existence of autovibration was not
specified.

On Figure 6 the limit cycles are shown on the (R1, Ṙ1)-plane of the 6-dimensional phase space {R1, Ṙ1, R2, Ṙ2,
ϕ1−ϕ2, ϕ̇1− ϕ̇2}. The limit cycle on the (R2, Ṙ2)-plane is the same one. And the phase difference ϕ1−ϕ2 = 0,
that confirms a cylindrical type of precession.

0

1

-1

1 2 4

R

R1

1

3

Figure 6: Limit cycles for the shaft’s end Q1 (thick line) and for the point Q (thin line) under X = 6.6.
Parameters are k = 2.8, l = 0.7, σ = 0.1, µe = 0.03, µi = 0.042.

It is important to note that a stable limit cycles is excited always if the initial position of the rotor is close enough
to an element of cylinder, for example, initial conditions could be R1 = R2 and other variables are equal to zero
at τ = 0. The initial conditions for the limit cycle on Figure 6 are R1 = R2 = 0.75, Ṙ1 = Ṙ2 = 0, ϕ1 = ϕ2 = 0,
ϕ̇1 = ϕ̇2 = 0.

In computational modeling it has been revealed that the autovibration becomes sensitive to variation of initial con-
ditions in a narrow interval of X close to the threshold value. The autovibration loses its stability and chaotization
of limit cycles happens. Close to the upper bound of this interval limit cycles with double-loop can be excited.
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Figure 7: Poincaré’s map in the plane
{R1, R2} (τ = 0[mod(2π/Ω)]).

If we change the initial values to R1 = 0.75, R2 = 3.75, then
the chaotic revolution can be observed. Numerical integration of
the system (18) has been done in the time interval corresponding
to 700 revolutions of the rotor. A Fehlberg — Runge — Kutta
method of fourth-fifth order was used.
The Poincaré’s map confirms the chaos. A strange attrac-
tor is shown in a section of the 6-dimensional phase space
{R1, Ṙ1, R2, Ṙ2, ϕ1−ϕ2, ϕ̇1− ϕ̇2} by the plane {R1, R2} (τ =
0[mod(2π/Ω)]) on Figure 7.
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Figure 8: Time history of R1.

On Figure 8 time history R1 = R1(τ) is shown for the whole period of integration. One can clearly see four stages
of different behavior of R1. And in each stage the motion is chaotic as we cannot see any periodic pattern. Phase
trajectories in the {R1, Ṙ1}-plane are presented on Figure 9. One can see a transition ”chaos to chaos” in time
(see Neimark and Landa (1987)).
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Figure 9: Phase trajectories for different periods of time.
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The Lyapunov exponents are shown on Figure 10. They were computed as indicated in Parker and Chua (1989).
The initial point corresponds to 100 revolutions of rotor, the step is equal to 15 revolutions, 300 iterations have
been made. The Lyapunov exponents spectrum has a signature as (+, 0, 0, −, −, −, −, − ), which is typical for
chaos. The values of Λ in the last point are

Λ = {0.003, 0.000, −0.001, −0.028, −0.047, −0.048, −0.072, −0.072}.

1500
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−0.08

45003000

0.0

−0.06

−0.02

τ

Λ

Figure 10: Lyapunov exponents.

Under chosen parameters a phenomenon of chaotization of Hopf’s limit cycles was not revealed for X > 7. A
special interest is to study the behavior of R1 while X is approaching to the bound X ≈ 7. If initial conditions are
symmetrical, i.e. close to a cylinder, one-loop limit cycle appears (see Figure 11, a). If initial conditions are non-
symmetrical, no strange attractor appears but the double-loop limit cycle does (see Figure 11, b). The limit cycle
in the (ϕ1 − ϕ2, ϕ̇1 − ϕ̇2)-plane is shown on Figure 12, a. On Figure 12, b a function R1 = R1(τ) corresponding
to the double-loop cycle is shown for three period time.
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Figure 11: One-loop and double-loop Hopf’s limit cycle under X = 6.9.

a)

1

1-1

-1

ϕ − ϕ

ϕ − ϕ
1

1

2

2

0

b)

 

1

2

3

τ

R1

1130 1140  1150 1160

Figure 12: a) Limit cycle with respect to (ϕ1 − ϕ2, ϕ̇1 − ϕ̇2); b) R1 = R1(τ) for three period time.
Initial conditions R1 = 0.75,R1 = R2 = 5.75; X = 6.9.
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6 Conclusions

A model of the precessional motion of an unbalanced rotor has been developed. A notion of an hyperboloidal
precession of Jeffcott rotor with 4 d.o.f. has been introduced. The hyperboloidal precession can be considered as
geometrical sum of a cylindrical precession, which is a consequence of mass center motion, and a conic precession
with respect to the center of mass. Actually, it is necessary to define eight parameters to describe a current state of
the rotor. But a special choice of generalized coordinates allows to reduce a system of equations and make a clear
interpretation of intricate rotation of the rotor using notions of cylindrical, conic or hyperboloidal precession.

Notion of a set of non-linear resonances has been determined as concept generalization of a resonance (or critical)
angular velocity. It allows to investigate rotor dynamics problem with essentially non-linear characteristics of rotor
support.

Precessions of a statically unbalanced rotor supported in bearings with Hertzian contact have been studied in de-
tails. Dynamic response and two non-linear resonances of a cylindrical precession have been obtained in analytical
form and plotted in the plane Stability conditions of a cylindrical precession have been investigated within a full
range of angular velocity variation. In fact one-parameter bifurcation problem with the rotor angular velocity as
a parameter has been solved. Instability occurs in close proximity to non-linear resonances. Different scenarios
of stability loss were found out. While the parameter passing through the bifurcation value, stability loss could
happen without any change of a precession type. In this case the classical phenomenon of ”amplitude jump” and
bi-stability was revealed. But in other situations stability loss could be accompanied by detachment of two new
stable points of relative equilibrium, which are hyperboloidal. Consequently stable cylindrical precessions were
converted into stable hyperboloidal ones.

By numerical integration it has been found that at the supercritical angular velocities Hopf’s limit cycles could
appear and in a narrow range of angular velocities close to the threshold value chaotization of stable limit cycles
could take place. To confirm the chaotic character of rotation the Poincaré’s map and the Lyapunov exponents
spectrum have been determined. Limit cycles for parameters of complex amplitudes within different range of rotor
angular velocities as strange attractors and double-loop limit cycles have been presented.
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