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Conventional sensors, such as proximeters and accelerometers, are add-on devices usually adding additional 
weights to structures and machines. Health monitoring of flexible structures by electroactive smart materials has 
been investigated over the years. Thin-film piezoelectric material, e.g., polyvinylidene fluoride (PVDF) 
polymeric material, is a lightweight and dynamic sensitive material appearing to be a perfect candidate in 
monitoring structure’s dynamic state and health status of flexible shell structures with complex geometries. The 
complexity of shell structures has thwarted the progress in studying the distributed sensing of shell structures. 
Linear distributed sensing of various structures have been studied, e.g., beams, plates, cylindrical shells, conical 
shells, spherical shells, paraboloidal shells and toroidal shells.  However, distributed microscopic neural signals 
of nonlinear shell structures have not been carried out rigorously. This study is to evaluate microscopic signals, 
modal voltages and distributed micro-neural signal components of truncated nonlinear conical shells laminated 
with distributed infinitesimal piezoelectric neurons.  Signal generation of distributed neuron sensors laminated 
on conical shells is defined first. The dynamic neural signal of truncated nonlinear conical shells consists of 
microscopic linear and nonlinear membrane components and linear bending component based on the von 
Karman geometric nonlinearity.  Micro-signals, modal voltages and distributed neural signal components of a 
truncated nonlinear conical shell are investigated and their sensitivities discussed. 
 
 
1  Introduction 
 
Typical off-the-shelf sensors to be added at discrete locations within a system are not always the best method for 
monitoring the health of today’s complex precision designed machines and structures.  While many common 
types of these “discrete” sensors, such as proximeters, LVDT, and accelerometers, are readily available with 
their specifications and limitations included, they typically add weight and do not always measure the true 
system response since their presence may affect the system’s behavior. In comparison, thin-film piezoelectric 
material, e.g., polyvinylidene fluoride (PVDF) polymeric material, is a lightweight and dynamic sensitive 
material and it can be easily segmented and shaped to account for various in-situ distributed monitoring 
applications of flexible structures (Gabbert and Tzou, 2001; Tzou and Anderson, 1992). Unlike conventional 
discrete add-on sensors, thin piezoelectric layers can be spatially spread and distributed over the surfaces of 
precision structures. Accordingly, these distributed piezoelectric layers can serve as distributed neurons and 
actuators in sensing and control of advanced structures and machines (Howard et al., 2001; Howard, 1991; Tzou, 
1993). One possible application is the housing for optical instruments.  Whether trying to capture light from a 
distant galaxy to form a clear image of the positions and numbers of stars or creating a high powered beam for a 
particular laser, unwanted vibration can be a problem when precision is extremely important for such devices 
(Tyson, 1998).  To minimize the effects from many possible sources of disturbances which can lead to vibration, 
the housing needs to damp out the vibration before it reaches the lenses.  Depending on the application and 
desired configuration, the housing structure will most likely be some form of shell, possibly a cylindrical shell or 
even a shallow conical shell. Dynamics and vibrations of conical shell structures have been investigated over the 
years (Hu, 1964; Platus, 1965; Newton, 1966; Hu et al., 1966; Krause, 1968; Bazhenov and Igonicheva, 1987; 
Wang and To, 1991; Lim and Liew, 1996; Tong, 1996; Xu et al., 1996). Distributed sensing characteristics of 
rings, cylindrical shells, toroidal shells, paraboloidal shells, etc. have been evaluated (Tzou et al., 1993; Tzou et 
al., 1996; Tzou and Wang, 2002; Tzou and Ding, 2004; Ding and Tzou, 2004; Tzou, 1992). However, distributed 
sensing and control of conical shells have not been thoroughly investigated. Dynamic sensing characteristics, 
micro-signal generations, and distributed modal voltages of truncated linear conical shell sections have been 
evaluated recently (Tzou et al., 2003). This study is to investigate microscopic signal generations and neural 
spatial distributed modal signals of nonlinear conical shells based on infinitesimal piezoelectric neurons. 
 
Signal generation of distributed neuron sensors laminated on nonlinear conical shells is defined first. Closed-
form sensing signal generation of distributed conical shell sensors is then defined based on given boundary 
conditions and mode shape functions following the Donnell-Mushtari-Vlasov theory. Micro-signals, modal 
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voltages and distributed sensing components of a free-free truncated nonlinear conical shell are investigated and 
their sensitivities discussed in a case study. 
 
2  Distributed Sensing of Nonlinear Shells 
 
The generic shell sensing signal equation is derived based on the direct piezoelectric effect, the Gauss theory, the 
open circuit assumption, the Maxwell equation, and also the generic double curvature shell theory. In general, in-
plane strains  in the neural sensor layer contribute to the signal generation : s

ijS sφ

 

 ( )∫ ∫
α α

αα++=
1 2

2121123622321131 ddAAShShSh
S
h sss

e

s
sφ ,                               (1) 

 
where hs is the thickness of the sensor layer; the superscript ‘s’ denotes the distributed sensor layer; Se is the 
effective electrode area of the sensor layer. α1 and α2 are the two principal directions in generic shell continuum; 
A1 and A2 are the Lamé parameters; and h31, h32 and h36 are the piezoelectric constants. The effect of transverse 
strains S13, S23 and S33 are neglected, since the variation is small in the α3 direction, provided the shell and the 
sensor are thin. Moreover, the sensor material is assume to be insensitive to the in-plane twisting . eq.(1) 
becomes   

sS12

 

 ( ) ψβ•+= ∫ ∫
ψ

ψψ xddxShSh
S
h

x

ss
xxe

s
s *

3231 sinφ              (2) 

 
The strain terms can be written as the summation of the membrane strain  and the bending strain k : 

 and . The large deformation effect takes place in the membrane strains 
only, the membrane strains of the nonlinear conical shell are defined as 
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Furthermore, in-plane displacements ux and uψ are neglected in bending strains based on the Donnell-Mushtari-
Vlasov theory. Thus, the bending strains of the conical shell are 
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A generic sensing signal equation with explicit displacement expression is derived by substituting the membrane 
strains and bending strains into eq.(1).  
 
 
 
3  Nonlinear Conical Shell Sensing Equation 
 
Note that the generic sensing equation can account for both the linear and nonlinear effects. Moreover, the strain 
terms in the sensing signal equation can be divided into the membrane strains and the bending strains. Thus, the 
signal generation of a generic shell sensor layer laminated on an elastic thin shell with the von-Karman 
geometric nonlinearity becomes 
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where Ai is the Lamé parameter; Ri is the radius of curvature of the iα  axis; ui is the displacement in the iα  

direction;  denotes the sensor location away from the shell neutral surface; the terms inside the parentheses 

following the piezoelectric constant denote the membrane strain; the terms with  are the bending strains; and 
the quadratic terms in the membrane strains are the large deformation effect based on the von Karman geometric 
nonlinearity (Tzou and Yang, 2000). Application of the generic sensing equation depends on two Lamé 
parameters, two radii of curvatures and two principal direction of a given geometry. Figure 1 illustrates a conical 
shell and its parameters. The Lamé parameters, radii of curvature, and principal directions of conical shells are 
respectively defined  by  A

s
ir

s
ir

1 = 1, A2 = *sinβx , ∞== xRR1 , *tan2 β== ψ xRR , α1 = x, and α2 = ψ. β* is the 
half-apex angle; x is the distance measured from the apex. Note that the Donnell-Mushtari-Vlasov theory is used 
and micro-signal generations of a free-free truncated nonlinear conical shell are investigated in this study. 
 
 

 
 
 

Figure 1.  A conical shell of revolution 
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Thus, according to eq.(5) and with neglected in-plane twisting , the sensing signal equation of a distributed 
neural sensor laminated on a nonlinear conical shell becomes 

sS12
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Boundary shear forces and moments are zero for free-free boundaries conditions, i.e.,  
and . Thus,  
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Accordingly, the assumed displacement solutions for a free-free truncated conical shell are  
 
 

tmxUu xmx ωψ= sincos)( ,  tmxUu m ωψ= ψψ sinsin)( ,    u tmxU m ωψ= sincos)(33 ,           (9a,b,c) 

 
ψmxU xm cos)(  denotes the longitudinal mode shape function; U  denotes the circumferential mode 

shape function; and U  denotes the transverse mode shape function, where U
ψψ mxm sin)(

ψmxm cos)(3 xm(x), Uψm(x) and  U3m(x) 
are the longitudinal displacement functions defined as functions of x and they can be specified depending on 
accuracy requirement (Platus, 1965); m is the (circumferential) wave number. In free vibration analysis, the 
longitudinal displacement function is chosen to be (x/x2)p where p is the power of the polynomial function that 
can be regarded as the wave number in the longitudinal direction; x2 is the (longitudinal) length from the apex to 
the bottom perimeter. Higher-order polynomial function of Uxm(x), Uψm(x) and U3m(x), i.e., more flexible, can 
improve the accuracy of the free vibration analysis, especially for higher natural modes at higher natural 
frequencies. The power p of the longitudinal mode shape polynomial function selected in this analysis is based 
on a free vibration analysis evaluated previously (Platus, 1965). Note that the microscopic signal analysis is to 
reveal the modal signals corresponding to spatially distributed microscopic directional strains generated by free 
vibrations. Accordingly, one can infer that precise free-vibration analysis leads to better strain prediction 
resulting in accurate modal signal prediction and vibration diagnosis. Based on this analysis, one can easily 
utilize piezoelectric neurons placed at optimal locations and directions to diagnose shell dynamic states. 
Substituting mode shape functions and taking derivatives with respect to ψ, one can derive the sensing signal 
generation of a free-free truncated nonlinear conical shell.  
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Furthermore, using the generic displacement function (x/x2)p with p = 1 and taking derivatives with respect to x 
yields the signal generation of the first mode group (1,m) of truncated nonlinear conical shells. 
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Following the same procedures and using p=2 yields the signal generation of the second mode group (2,m) of 
truncated nonlinear conical shells. 
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Note that the above sensing signal is defined for a distributed sensor neuron with an effective electrode area Se. 
Removing the surface integration and dropping the surface average yields a microscopic signal component of an 
infinitesimal sensor neuron. Detailed spatial distribution of local micro-signals (i.e., the distributed modal 
voltages) can be established and spatially distributed modal sensing characteristics can be evaluated. For higher 
mode groups of nonlinear truncated conical shells, one can assign p=n and follow the same procedures to define 
explicit signal generations. 
 
 
4  Evaluation of Micro-Signal Generation and Distribution 
 
Micro-signal generations and spatially distributed neural signals of a nonlinear truncated conical shell of 
revolution are investigated in this section. Dimensions for the conical shell model used in the case study are 
listed in Table 1, also refer to Figure 1. Spatial signal distributions of two mode groups (p=1,2) and four natural 
modes (m=2,3,4,5) of the model are evaluated and detailed micro-signal contributions are compared and 
analyzed. (Note that the m=1 mode is a rigid-body mode. Hence, there is no signal generation.) 
                        

  Geometry 
Conical Shell Half-Apex Angle 
β* 

60.42o 

Major Radius, R 10.00 in 

Minor Radius, r 4.45 in 

Length, L 3.15 in 

Thickness, h 0.01 in 

 

Table 1.  Definitions of the two conical shell models 
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The First Mode Group (1,m=2-5) 
 
Distributed micro-signal components and modal neural voltages of the first mode group (1,m=2-5) are presented 
in Figures 2-5. The top-left signal distribution denotes the signal component resulting from the longitudinal 
membrane strain; the top-right signal denotes the signal component resulting from the circumferential membrane 
strain; the bottom-left signal denotes the signal component resulting from the circumferential bending strain; and 
the bottom-right denotes the overall signal distribution – the (k,m)-th modal voltage, including all contributing 
micro-signal components. Note that the longitudinal bending strain (kxx) signal vanishes due to the selected 
displacement function with p=1. The wire-frame illustrates the spatially distributed signals superimposed on the 
shaded conical shell model. 

 
Figure 2.  Signal components and modal voltage of (1,2) mode 

 

 
 

Figure 3.  Signal components and modal voltage of (1,3) mode 
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Figure 4.  Signal components and modal voltage of (1,4) mode 
 
 
 
 

 
 

Figure 5.  Signal components and modal voltage of (1,5) mode 
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The Second Mode Group (2, m=2-5) 
 
Distributed micro-signal components and modal voltages of the second mode group (2, m=2-5) are presented in 
Figures 6-9. The top-left signal distribution denotes the signal component resulting from the longitudinal 
membrane strain; the top-right signal denotes the signal component resulting from the circumferential membrane 
strain; the middle-left signal denotes the signal component resulting from the longitudinal bending strain; the 
middle-right signal denotes the signal component resulting from the circumferential bending strain; and the 
bottom-left denotes the overall signal distribution – the (k,m)-th modal voltage, including all contributing signal 
components. Note that the longitudinal bending strain exists in this case, with the displacement function p=2. 
Note that the spatially distributed signal generations basically exhibit distinct modal characteristics and the 
spatially distributed signal patterns – the modal voltages - clearly reveal the distinct modal dynamic and micro-
strain characteristics of conical shells. (Usually, high strain regions result in high signal magnitudes.) Observing 
these micro-neural signal components (i.e., the longitudinal/circumferential membrane components and the 
longitudinal/circumferential bending components) suggests that 1) the dominating micro-signal component 
among the four signal components is the circumferential membrane component, and 2) the micro-signals 
resulting from the nonlinear membrane strain is insignificant. 
 
 

 
 

Figure 6.  Signal components and modal voltage of (2,2) mode 
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Figure 7.  Signal components and modal voltage of (2,3) mode 

 

Figure 8.  Signal components and modal voltage of (2,4) mode 
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Figure 9. Signal components and modal voltage of (2,5) mode 
 

 
 

5  Conclusions 
 
Health monitoring and diagnosis is an important issue in modern high-performance precision structures and 
systems. Although dynamics and vibration of conical shell structures have been investigated over the years, 
distributed sensing and control of precision conical shells have not been thoroughly investigated. Conventional 
“discrete” add-on sensors, such as proximeters, LVDT, and accelerometers, usually add additional weights and 
often influence dynamic responses of precision structures and machines. However, unlike conventional discrete 
add-on sensors, thin-film piezoelectric layers are lightweight and they can be spatially spread and distributed 
over the surfaces of precision structures. Accordingly, these distributed piezoelectric layers can serve as 
distributed neurons and actuators in sensing and control of advanced structures and machines. Dynamic sensing 
characteristics, micro-signal generations, and distributed modal voltages of truncated nonlinear conical shell 
sections with infinitesimal piezoelectric neurons are investigated in this study. Signal generation of distributed 
neuron sensors laminated on nonlinear conical shells was defined first. Microscopic sensing signal generations 
for a free-free truncated nonlinear conical shell were defined based on the Donnell-Mushtari-Vlasov theory and 
assumed mode shape functions with a polynomial expression pxx )2(  for the longitudinal waves and 
trigonometric (sine or cosine) expression for the circumferential waves.  
 
Micro-neural signals, modal voltages and distributed sensing components of a free-free truncated nonlinear 
conical shell were investigated and their sensitivities discussed in case studies. Two mode groups (p=1,2) and 
four modal signals (m=2-5) of the conical shell model were calculated and plotted. Directional micro-signal 
components (i.e., the longitudinal membrane component, the circumferential membrane component, the 
longitudinal bending component, and the circumferential bending component) and spatially distributed modal 
voltages of the conical shell model were investigated. These microscopic signal generations reveal that the 
dominating signal component among the four contributing micro-signal components is the circumferential 
membrane component. Both geometry and boundary conditions influence modal characteristics, strain 
distributions, as well as signal generations.  The spatially distributed neural signal patterns – the modal voltages - 
clearly represent the distinct modal dynamic characteristics and micro-strain variations of conical shells.    
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