
TECHNISCHE MECHANIK,Band 25, Heft 1, (2005), 1– 8

Manuskripteingang: 15. Januar 2004

Free Vibrations and Buckling of a Thin Cylindrical Shell of Variable
Thickness with Curvelinear Edge

S. B. Filippov, D. N. Ivanov, N. V. Naumova

Low-frequency vibrations and buckling under an uniform external lateral pressure of a thin cylindrical shell of
variable thickness with curvelinear edge are analyzed. The asymptotic and finite element methods are used to get
the vibration frequencies and critical loads. The vibration and buckling modes are also presented. The comparison
of numerical and asymptotic results is performed.

1 Introduction

Interest in studying of the shell arises from the fifties of the twentieth century. The assemblies, containing thin
shells, find wide use in the modern engineering, especially in aircraft and spacecraft industry. In many papers
the shell vibrations and buckling are analyzed by means of numerical methods (Bathe, 1984; Rikards and Chate,
2001; Kulikov and Plotnikova, 2002). Asymptotic integration methods developed in Bauer et al. (1993) and Tovstik
(2001) clarify qualitatively allocation of vibration frequencies, critical loads and behavior of vibration and buckling
modes.

The vibration and buckling modes of thin elastic shells essentially depend on some determining functions such as
the radii of the curvature of the neutral surface, the shell thickness, the shape of the shell edges, etc. In simple cases
when these functions are constant, the vibration and buckling pits occupy the entire shell surface. This case takes
place for low-frequency vibration and buckling of a circular cylindrical shell under uniform external pressure. If
the determining functions vary from point to point of the neutral surface then localization of the vibration and
buckling modes near some weakest lines on the shell surface is possible. Vibrations and buckling of cylindrical
shell under external pressure can be accompanied by the appearance of concavities which are stretched along
the shell generatrix from one shell edge to another. The depth of the concavities is maximum near the weakest
generatrix and decreases fast away from the generatrix.

The asymptotic expansions for critical pressure and buckling modes localized near the weakest generatrix of the
cylindrical shell are constructed in Tovstik (2001). In particular, the buckling of the cylindrical shell of variable
thickness with straight edges and the cylindrical shell of constant thickness with slanted edge are analyzed. In the
first problem the thickness changes only in circular direction and the weakest generatrix corresponds to a minimum
value of the thickness. In the second case the buckling mode is localized near the longest generatrix of cylindrical
shell.

In Eliseeva and Filippov (2003) the effect of both variable thickness and slanted edge on the vibration and buckling
modes of the free supported cylindrical shell is studied by means of asymptotic method. It is shown that depending
on the values of parameters one weakest line or two such lines may be appear on the shell surface. In this paper
the same problem for clamped cylindrical shell is solved using the asymptotic and numerical methods.
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2 Basic Equations

We take the radius,R, of the cylindrical shell as unit of measurement and introduce on the middle surface of the
shell the orthogonal dimensionless coordinate system (s, ϕ):

s ∈ [0, l(ϕ)] ϕ ∈ (−π, π],

where l(ϕ) is the length of the shell generatrix. The shell edges = 0 is straight and the edges = l(ϕ) is
curvelinear.

If l(ϕ) = lc − tg β cos ϕ then the edges = l(ϕ) is slanted by the angleβ. In caseβ = 0 the both shell edges are
straight. In Figure 1 are shown two cross-sections of the cylindrical shell with slanted edge.

Figure 1. Cylindrical shell with slanted edge.

We suppose that dimensionless shell thicknessh is small and depends on the coordinateϕ:

h(ϕ) = h0 g(ϕ)

whereh0 is a small parameter,g ∼ 1.

In particular, for the cylindrical shell which cross-section is obtained by the cutaway the circle of the radiusr from
the circle of the radiusR = 1 (see Figure 1) functiong(ϕ) and parameterh0 have the following form

g(ϕ) = 1 + γ(1− cosϕ) h0 = h(0) = 1− r − e γ = e/h0 (1)

wheree is the distance between the circles centers. In casee = 0 the shell has the constant thicknessh0. In
general caseh0 = h(0) is the least value ofh(ϕ) whereashm = h(π) = 1− r + e is the maximum ofh(ϕ). The
dependence of the thickness ratioη = hm/h0 onγ has the formη = 1 + 2γ.

The dimensionless equations describing the small free vibrations and buckling of a thin elastic cylindrical shell
(see Eliseeva and Filippov (2003)), can be written as

ε4∆(g3∆w)− ∂2Φ
∂s2

+ λZ = 0 ε4∆(g−1∆Φ) +
∂2w

∂s2
= 0 (2)

Herew(s, ϕ) is the normal deflection,Φ(s, ϕ) is the force function,

∆ =
∂2

∂s2
+

∂2

∂ϕ2
ε8 =

h2
0

12(1− ν2)

ν is Poisson’s ratio. In case of the buckling under an uniform external lateral pressurep

Z = ε2 ∂2w

∂ϕ2
λ =

p

Eh0ε6
,

whereE is Young’s modulus. For the problem of the shell vibrations

Z = −gw λ =
ρR2ω2

ε4E
,

whereω is the vibration frequency,ρ is the mass density.

To find the parameterλ we have to take into account the boundary conditions on the shell edgess = 0 and
s = l(ϕ).
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3 Asymptotic Analysis

According to a procedure proposed by Tovstik (2001), the asymptotic solution of the boundary value problem for
equations (2), can be expressed as

w(s, ϕ, ε) = exp
(

i

ε

∫ ϕ

ϕ0

q(ϕ) dϕ

) ∞∑

k=0

εkwk(s, ϕ) λ =
∞∑

k=0

εkλk (3)

where

Im q(ϕ0) = 0 Im
{

dq

dϕ
(ϕ0)

}
> 0 (4)

FunctionΦ has similar asymptotic expansion. It follows from conditions (4) that the functionsw and Φ are
localized near the lineϕ = ϕ0. By substituting expressions (3) into (2) and boundary conditions we get the
equations forq(ϕ), wk(s, ϕ),Φk(s, ϕ) andλk. In the zeroth-order approximation we obtain

d2Φ0

ds2
− q4g3w0 + λ0Nw0 = 0

d2w0

ds2
+

q4

g
Φ0 = 0 (5)

whereN = q2 for the buckling problem,N = g for the vibration one. The elimination of the functionΦ0 from
system (5) gives the following equation

d4w0

ds4
− α4w0 = 0 α4 = λ0

q4N

g
− g2q8 (6)

We suppose that the shell edges are clamped. Then the boundary conditions for equation (6) are

w0 =
dw0

ds
= 0 s = 0 s = l(ϕ) (7)

The asymptotic solution in case of freely supported shell edges is analyzed in Eliseeva and Filippov (2003). The
choice of boundary conditions for equation (6) is discussed in Tovstik (2001).

The solutions of boundary value problem (6), (7) have the form

w0n = U(αns)T (αnl)− T (αns)U(αnl) n = 1, 2, . . .

where
T (z) = sinh z − sin z U(z) = cosh z − cos z

andαn is a root of the equation

cosh(αl) cos(αl) = 1 (8)

The values ofαn depend on the boundary conditions. If the shell edges are freely supported thenαn = πn/l.

Taking into account second formula (6) we get thatλ0 is the function of the parametersq andϕ:

λ0 = f(q, ϕ) =
α4g

q4N
+

q4g3

N
. (9)

As the zeroth-order approximation for the eigenvalueλ we select

λ0 = min
q,ϕ

f(q, ϕ) = f(q0, ϕ0) (10)

Then

λq =
∂f

∂q
= 0 λϕ =

∂f

∂ϕ
= 0 for q = q0 ϕ = ϕ0 (11)
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The first-order correctionλ1 for the eigenvalueλ can be found by the following formula

λ1 =
m + 1

2

√
λqqλϕϕ − λ2

qϕ m = 0, 1, 2 . . . (12)

where the partial derivatives

λqq =
∂2f

∂q2
λϕϕ =

∂2f

∂ϕ2
λqϕ =

∂2f

∂q∂ϕ

are calculated forq = q0, ϕ = ϕ0.

The asymptotic expansion exists on conditions that

λqqλϕϕ − λ2
qϕ > 0 (13)

sinceλ1 is a real number. If the inequality (13) is true then the vibration and buckling modes are localized near
the generatrix of cylinderϕ = ϕ0, whereϕ0 satisfies equations (11). The generatrixϕ = ϕ0 is called the weakest
generatrix.

4 Buckling of the Cylindrical Shell

Consider the buckling of a thin cylindrical shell of a variable thickness with a curvelinear edge under an uniform
external lateral pressure. To obtain the critical pressure we will search the minimal value of the parameterλ. In
the buckling problem formula (9) takes the form

f(q, ϕ) =
α4g

q6
+ q2g3

whereα ' 4.73/l is the least positive root of equation (8). Equations (11) are equivalent to the following equations

q8 =
3α4

g2

2l′

l
=

5g′

g
(14)

wherel′ = dl/dϕ, g′ = dg/dϕ. The parameterϕ0 is a root of the second equation (14). Ifϕ0 is known then the
numberq0 can be found by the first equation (14).

The first-order correctionλ1 can be express as

λ1 = 2qg3

√
Λ1

3
Λ1 =

10g′′

g
− 4l′′

l
+

15g′2

g2
.

The generatrixϕ = ϕ0 is the weakest one ifΛ1 > 0.

As an example we will consider the buckling problem for the cylindrical shell with slanted edge. We assume that
the thickness of the shellh = h0g(ϕ), whereh0 andg are given by formulas (1).

In this case the second equation (14) has the form

A(ϕ) sin ϕ = 0 (15)

whereA(ϕ) = 5γ/g − 2t/l, l = lc − t cos ϕ > 0, t = tg β, β is the edge slope angle,lc is the length of the shell
axis (see Figure 1). It follows from the inequalityl > 0 thatlc > t.

Equation (15) has two roots0 andπ in the interval(−π, π] if γ ≤ γ1 or γ ≥ γ2, where

γ1 =
2t

5lc + t
γ2 =

2t

5lc − 5t

In caseγ1 < γ < γ2 equation (15) has four roots0, π, ϕ∗ and−ϕ∗ in the same interval, where

ϕ∗ = arccos
5γlc − 2t(1 + γ)

3γt
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The rootϕ0 of equation (15) corresponds to the weakest generatrix if

Λ1 = 2A(ϕ0) cos ϕ0 + 15γ2 sin2 ϕ0/g2(ϕ0) > 0

It is easy seen that forγ < γ1 exists only one weakest generatrixϕ = π, for γ1 < γ < γ2 we have two weakest
lines ϕ = ±ϕ∗ and in caseγ > γ2 on the shell is again only one weakest generatrixϕ = 0. The location of
weakest lines does not depend on the boundary conditions.

Assume that the parameterslc andβ > 0 are fixed whereas the thickness ratioη = hm/h0 = 1 + 2γ increases.
The caseη = 1 corresponding to a shell of a constant thickness was analyzed in Tovstik (2001). Ifη = 1 then the
longest bottom generatrixϕ = π of the cylindrical shell is its weakest generatrix. The generatrixϕ = π remains
the weakest one whileη ≤ η1 = 1 + 2γ1. The further increase inη leads to appearance of two weakest lines
ϕ = ±ϕ∗ near the generatrixϕ = π. These lines disperse, go up and forη = η2 = 1 + 2γ2 join on the top of the
shell turning into the generatrixϕ = 0. By the subsequent increase inη the generatrixϕ = 0 stands the weakest
one. In Tovstik (2001) is shown that for the shell with straight edges the generatrixϕ = 0 is the weakest one if
η > 1. Hence, forη > η2 the change of the shell thickness makes larger effect on the location of the weakest
generatrix than the slanted edge.

In Table 1 are shown the results of calculations of the critical pressure for the cylindrical shell of variable thickness
with slanted edge. The following values of parameters are used:R = 1 m, lc = 3, h0 = 0.001, β = 45o, ν = 0.3,
E = 1.93 1011 Pa. For such parametersη1 = 1.25, η2 = 1.4.

Critical pressure (Pa)
η

Asymptotic FEM result

1.10 2858 2857
1.30 4143 4084
1.45 4354 4351
3.00 4988 4989
4.00 5238 5201
5.00 5454 5375

Table 1. The values of the critical external pressure vs. ratioη.

The critical pressure obtained for various values of ratioη with the help of the asymptotic formulas (3), (10) and
(12) is presented in the second column. In the third column one can see the numerical results computed by finite
elements method. About 5000 four-node shell elements defined by four thicknesses was used in calculation. The
computation time of a value of pressure by FEM is a few minutes. The calculations by means of the asymptotic
formulas execute in a trice. The maximal relative error in the asymptotic results compared with the numerical ones
is 1.5%.

The buckling modes plotted by FEM for various values ofη are shown in Figures 2–4. Whileη < 1.25 (Figure 2)
the buckling mode decrease away from the longest bottom generatrix of the cylindrical shell.

Figure 2. Buckling mode of the cylindrical shell forη = 1.1

If 1.25 < η < 1.4 then in accordance with the asymptotic analysis the buckling mode must be localized near two
weakest linesϕ = ±ϕ∗ on the shell surface. The buckling mode shape presented in Figure 3 shown that the areas
of localization are covered. For more thin shell the localization near linesϕ = ±ϕ∗ will be more apparent.

In caseη > η2 = 1.4 (Figure 4) the weakest line is the shortest top generatrix.
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Figure 3. Buckling form of the cylindrical shell (η = 1.3)

Figure 4. Buckling form of the cylindrical shell (η = 1.45)

5 Vibrations of the Cylindrical Shell

Consider free low-frequency vibrations of a thin cylindrical shell of a variable thickness with a curvelinear edge.
Then formula (9) and equations (11) take the following forms

f(q, ϕ) =
α4

q4
+ q4g2

q4 =
α2

g

2l′

l
=

g′

g
(16)

We find the first-order correction

λ1 = 2(m + 1)q3g2
√

2Λ1 Λ1 =
2g′′

g
− 4l′′

l
− g′2

g2

using formula (12).

As an example consider the vibrations of the cylindrical shell with slanted edge assuming that the functionh(ϕ) is
given by (1). The generatrixϕ = ϕ0 is the weakest one ifϕ0 satisfies equation

A(ϕ) sin ϕ = 0 A(ϕ) = γ/g − 2t/l. (17)

and
Λ1 = 2A(ϕ0) cos ϕ0 − γ2 sin2 ϕ0/g2(ϕ0) > 0

The roots of equation (17) in the interval(−π, π] are0, π and roots of equationA(ϕ) = 0. If ϕ0 is the root of
equationA(ϕ) = 0 then

Λ1 = −γ2 sin2 ϕ0/g2(ϕ0) ≤ 0

and the generatrixϕ = ϕ0 is not the weakest line. The vibration mode is localized near the top generatrixϕ = 0
if A(0) > 0. The last inequality is fulfilled ifγ > γ1 = 2t/(lc − t). The bottom generatrixϕ = π is the weakest
one ifA(π) < 0. The inequalityA(π) < 0 is true for allγ > 0 if t ≤ lc ≤ 3t. If lc > 3t then inequalityA(π) < 0
is fulfilled only for 0 < γ < γ2 = 2t/(lc − 3t).

Therefore, in case of vibrations, in contrast to buckling, the location of the weakest lines on the shell surface does
not depend on ratioη = 1 + 2γ. Onη depends only the number of such lines. Ifη < η1 = 1 + 2γ1 then bottom
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generatrixϕ = π is weakest one. In caseη1 < η < η2, whereη2 = 1 + 2γ2, both linesϕ = 0 andϕ = π are
weak. The number of the weakest lines forη > η2 is a function of geometric shell parameters. Ift ≤ lc ≤ 3t, then
two weakest lines are on the shell surface, otherwise forη > η2 only generatrixϕ = 0 is the weakest line.

The values of the fundamental frequency for the cylindrical shell of variable thickness with slanted edge are shown
in Table 2. The mass density of the shell materialρ=7860 kg/m3. Others shell parameters have the same values as
in the buckling problem.

Fundamental frequency (s−1)
η

Asymptotic FEM result

1.0 24.833 24.144
2.0 34.715 33.123
4.0 48.585 45.082
5.0 49.666 47.625

Table 2. The values of the fundamental frequency vs. ratioη.

The values of the fundamental frequency obtained by the asymptotic formulas and with the help of FEM are placed
in the second column and third column respectively. The relative discrepancy in asymptotic and numerical results
is less than 8%. The computation time of a value of frequency is approximately the same as of the value of pressure.

The vibration mode shapes computed by FEM and plotted in Figures 5 and 6 amplify asymptotic results. In case
η < η1 = 3 (Figure 5) the vibration mode, corresponding to the fundamental frequency is localized near the
longest bottom generatrixϕ = π of the cylindrical shell.

Figure 5. Vibration form of the cylindrical shell (η = 2)

If η > η1 = 3 then on the shell surface are two weakest linesϕ = π andϕ = 0 corresponding in general to
different frequencies. In Figure 6 is shown the vibration mode corresponding to the fundamental frequency. This
mode is localized near the shortest top generatrixϕ = 0.

Figure 6. Vibration form of the cylindrical shell (η = 5)

6 Conclusion

By means of both asymptotic solution and numerical analysis it is shown that vibrations and buckling of thin
cylindrical shell of variable thickness with curvelinear edge may be accompanied by the appearance of concavities
which are stretched along the shell surface. Near a weakest generatrix the concavities have the maximum depth.
The depth of the concavities decreases fast away from the weakest lines.
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In contrast to previously studied problems, the number and the location of the weakest lines on the shell surface
depend on the shell parameters. This dependence for buckling is different from one for vibration. In particular, for
the symmetric cylindrical shell with the slanted edge and circular inner and outer surfaces the vibration modes are
localized only near the longest and the shortest generatrixes. The buckling modes of such shell may be localized
near two any generatrixes, centered at the symmetry plane.

The simple approximate asymptotic formulas for the lowest frequencies and critical external pressure are derived.
The comparison of asymptotic and FEM results shows that for the thin shell the error of asymptotic formulas is
small.
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