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Pseudoelastic Behavior of Shape Memory Alloys: Constitutive Theory and
Identification of the Material Parameters Using Neural Networks∗

D. Helm

In shape memory alloys, some exceptional effects, like the one- and two-way shape memory effect, are observ-
able. In a certain temperature range, the so-called pseudoelastic effect due to stress induced martensitic phase
transitions is additionally observed in NiTi and other shape memory alloys. To identify the pseudoelastic mate-
rial behavior of NiTi shape memory alloys, tension tests with different strain-rates are discussed. The observed
phenomena are modeled within the framework of continuum thermomechanics regarding a geometric linear the-
ory. The proposed model consists of a free energy function in order to represent the occurring energy storage and
release effects. Additionally, evolution equations for internal variables, like the inelastic strain tensor and the frac-
tion of martensite, are introduced. The developed system of constitutive equations represents the observed history-
dependent material behavior. For the identification of the material parameters, the theory of neural networks is
applied. Finally, the numerical simulations show a good agreement between the experimental observations and
the predictions of the phenomenological model.

1 Introduction

The pseudoelastic behavior of shape memory alloys enables exceptional products like for example stents, en-
doscopic devices for minimally invasive surgery, and eyeglass frames. In order to develop and improve such
innovative products, the structural behavior must be simulated in the framework of thermomechanics. The pseu-
doelastic properties of shape memory alloys are well known from uniaxial tension and torsion as well as biaxial
experiments: e.g. Funakubo (1987), Helm (2001), Huo and Müller (1993), Lim and McDowell (1999), Raniecki
et al. (2001), Shaw and Kyriakides (1995), and Tobushi et al. (1998). Additionally, the microstructural origin of
the observed macroscopic behavior is well understood (cf. Funakubo (1987), Miyazaki (1996), and Otsuka and
Wayman (1998)): In a certain temperature range, stress induced phase transitions from the parent phase (austen-
ite) into martensite occur if a critical stress is reached. Due to this stress state, the atoms move in a cooperative
manner until the crystal structure of the produced phase (martensite) is reached. The occurring phase transitions
take place without diffusion processes. In the case of NiTi, the austenite is body-centered cubic and the martensite
consists of a monoclinic lattice. Consequently, the martensitic phase transition is accompanied by a remarkable
shear deformation. In contrast to this, the change in volume is negligible. Figure 1 illustrates the discussed mate-
rial behavior. Therein, the abbreviations A for austenite and~M for oriented martensite as well asMf (martensite
finish), Ms (martensite start),As (austenite start), andAf (austenite finish) for the characteristic phase transition
temperatures are used. Additionally, the temperatureMd represents the beginning of plastic deformations due to
the production and motion of dislocations. AboveMd, the necessary stress to induce plastic deformations is lower
than the stress necessary to produce martensitic phase transitions. BetweenAf andMd, the pseudoelastic behavior
of shape memory alloys is observed. During loading, phase transitions from austenite into martensite take place.
In the case of NiTi, a nearly horizontal phase transition plateau is often observed if the temperature is approxi-
mately constant. After a certain deformation, the phase transition is almost finished and the produced martensite
is stretched elastically. During unloading the retransformation occurs at a lower stress level. After loading, the
material reaches the initial configuration. Therefore, this material behavior is called pseudoelasticity.

In the last decades, material models of different types have been proposed in the literature: A number of models
describe merely the uniaxial behavior like e.g. Müller (1982), Seelecke (1997), Falk (1983), and Frémond (1996).
These models are able to represent the behavior of one-dimensional structures like wires. However, the simulation
of complex structures requires three-dimensional constitutive models: e.g. Boyd and Lagoudas (1994), Helm and

∗This article is based on a contribution to the 11th SPIE Annual International Symposium on Smart Structures and Materials: cf. Helm
(2004).
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Figure 1: Pseudoelasticity due to stress induced phase transitions

Haupt (2003), Lubliner and Auricchio (1996), Raniecki et al. (1992), and Raniecki and Lexcellent (1994). Due to
the strong thermomechanical coupling phenomena reported for example in Leo et al. (1993), Shaw and Kyriakides
(1995), and recently in Helm and Haupt (2001), an adequate constitutive theory must be formulated in the context
of thermomechanics.

The article is organized as follows: In Sect. 2, the results of tension experiments are discussed. For the representa-
tion of the pseudoelastic behavior of shape memory alloys, a fully three-dimensional material model is proposed
in the framework of continuum thermomechanics (Sect. 3): The introduced free energy function is the result of a
two-phase mixture between austenite and martensite. Additionally, evolution equations for internal variables are
defined. Altogether, the material model contains a lot of material parameters. In order to identify these material
parameters, the theory of neural networks is applied (Sect. 4). Here, the neural network is trained by results of
appropriate simulations. Thereafter, the experimental data are used as input variables for the identification process.
A part of the discussed tension test results are applied to identify the set of material parameters. The other data are
useful to verify the proposed theory.

2 Experimental Investigations

In a previous experimental study, cf. Helm (2001) and Helm and Haupt (2001), the material behavior of thin-walled
NiTi tubes was investigated. Some results from this series of experiments are summarized in this section. The
experimental setup and the tested material is explained in Helm (2001) and Helm and Haupt (2001): To summarize,
a hydraulic testing machine is used to apply the mechanical loads, the deformation is measured by means of an
extensometer (initial lengthl0 = 12.5mm, measurement range±2.5mm), the axial force is determined with a load
cell (measurement ranges:±5kN), and the surface temperature field of the specimen is recorded by means of an
infrared thermography system (minimal resolution±0.03K). Using this experimental setup, the thermomechanical
properties of the investigated shape memory alloy are observed and not only the pure mechanical behavior. The
investigated tubes consist of a Ni-content of 55.92 wt.-% and a complementary Ti-content of 44.08wt.-%. The
tubes have an outer diameter of 4.674mm and the inner diameter amounts 3.978mm. The specimen has a full
length of 80mm and a free length of 30mm. At room temperature the material is able to show pseudoelasticity due
to anAf -temperature of11.4◦C.

First, the pure tension behavior is studied using a relatively slow strain rate of|ε̇| = 0.0001s−1: Figure 2 depicts
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Figure 2: Step test:|ε̇| = 0.0001s−1, hold times 600s
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Figure 3: Step test:|ε̇| = 0.001s−1, hold times 600s

the stress-strain diagram as well as the accompanying temperature vs. strain curve. The shown temperature
values are average temperatures arising from a small area between the blades of the extensometer. In the so-
called step test, the strain amplitude increases stepwise fromεmax = 0.01 in the first cycle toεmax = 0.06 in
the last cycle. Thereafter, a full cycle up toεmax = 0.06 is executed and the deformation process is interrupted
by 12 hold times of 600s atε = 0.005, 0.015, . . . , 0.055, . . . , 0.015, 0.005. This strain controlled experiment is
qualified to discuss the main properties of the investigated alloy: Up to a stress of approximately 75MPa, the
material behavior is approximately elastic. But already at a strain far belowε = 0.01, partially martensitic phase
transitions from austenite to martensite occur in grains with preferred orientations (cf. Brinson et al. (2004) and
Li and Sun (2002)). Thereafter, the main phase transition initiates and progresses at nearly constant normal stress.
Although the strain rate is relatively small, the temperature increases due to the exothermic nature of the austenite
to martensite transformation. After the initiation of the phase transition in preferred regions it is well known that an
inhomogeneous deformation takes place because phase transition fronts move through the specimen: cf. Brinson
et al. (2002), Brinson et al. (2004), Li and Sun (2002), Shaw and Kyriakides (1995), and Shaw (2000). However,
the investigations in Brinson et al. (2004) on polycrystalline NiTi verify that the phase transition occurs throughout
the specimen. Only parts of a grain transform to martensite. Consequently, the macroscopically observed phase
transition fronts represent regions, where a larger amount of austenite transforms to martensite. At the end of
the phase transition plateau, a strong stress increase is observed. In this region, the microstructure consists of
an austenite-martensite mixture (cf. Brinson et al. (2004), Helm (2001)), which is deformed elastically. However,
further phase transitions likewise occur. Consequently, different loading and unloading tangents exist in this region.
During unloading, the reverse transformation from martensite to austenite takes place after a small elastic region.
All unloading processes lead to almost horizontal retransformation plateaus and, due to the endothermic nature of
the reverse transformation, the temperature is below the initial temperature. After each loading/unloading path, the
specimen returns approximately to its initial state. After the sixth step, a further loading/unloading process with
hold times is carried out. During the hold times, both stress relaxation and temperature compensation processes
take place.
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In the second tension test, the same strain path is carried out, but the strain rate is ten times larger than in the
foregoing test:|ε̇| = 0.001s−1. The experimental results are depicted in Fig. 3. The observed behavior is based on
the same deformation mechanisms. In contrast to the experiment with the slower strain rate, the occurring thermo-
mechanical coupling phenomena lead to a stronger increase (decrease) in temperature during loading (unloading):
E.g. the maximum rise in temperature is approximately 10K during loading. Additionally, the required stress to
stimulate the martensitic phase transition from austenite to martensite is larger than in an isothermal experiment. In
the last cycle, twelve hold times with zero strain rate are carried out. Both stress relaxation as well as temperature
compensation effects occur. The reason for the stress behavior can be explained as follows: The required stress to
initiate and progress the martensitic phase transition is strongly temperature-dependent. In relation to the investi-
gated NiTi alloy, the necessary phase transition stress in order to stimulate the austenite-martensite transformation
increases with 5.5MPa/K. In contrast to this, the reverse transition stress changes with 8MPa/K. Consequently, the
temperature compensation processes during the hold times lead to stress relaxation effects. The whole amount of
relaxation cannot be explained by temperature change alone: E.g., during the fourth hold time a stress relaxation
of 41MPa and a temperature decrease of 4K takes place. However, the temperature-dependence of the phase tran-
sition stress leads merely to an influence of approximately 22MPa (4K·5.5MPa/K). Consequently, there must be
an additional rate-dependent phenomena due to the viscosity of the material (cf. Helm and Haupt (2001)). This
material property can be separately observed in the case of pseudoplasticity (cf. Helm (2001)).

3 Modeling in the Framework of Continuum Thermomechanics

Based on the experimental observations (see Sect. 2 and Helm and Haupt (2001)), a suitable system of constitutive
equations should represent the following phenomena: the mixture of austenite and martensite during phase transi-
tions, the different loading and unloading slopes in the region of the second elasticity, the temperature-dependent
phase transition stress and other temperature-dependencies, as well as the thermomechanical coupling effects. In
previous studies (cf. Helm (2001), Helm and Haupt (2002), and Helm and Haupt (2003)) a basic phenomeno-
logical model was developed in the context of continuum thermomechanics, which is able to represent some of
the experimentally observed phenomena. In the present article, an enhanced model is proposed, which incorpo-
rates among other details the different elastic properties of austenite and martensite as well as an improved phase
transition function and phase transition rule.

3.1 Introducing the Basic Structure of the Material Model

In order to model the experimentally observed energy storage and release phenomena, the basic structure of the
free energy function is introduced as follows:

ρψ(θ,EM
e ,EA

e , z, {Yei}) = zρψM
e (θ,EM

e ) + (1− z)ρψA
e (θ,EA

e ) + ρψs(θ, {Yei}). (1)

Therein,ρ is the mass density of the total mixture consisting of the partial densities of the austenite phaseρA =
(1− z)ρ and martensite phaseρM = zρ:

ρ = ρM + ρA = zρ + (1− z)ρ. (2)

The internal variablez ∈ [0; 1] represents the fraction of martensite. It should be remarked that the partial densities
ρA andρM are not the material densities of austenite and martensite (cf. Bowen (1969); Haupt (2002)). The partial
densityρω (ω =A, M) is the mass of the componentω per volume of the mixture. In Eq. (1),θ is the absolute
thermodynamic temperature;EM

e andEA
e represent the elastic strain state in the martensite and austenite phase,

respectively. Additionally, a set{Yei} of n internal variablesYei is introduced to model the energy storage
resulting from internal stress fields, which are also called back stresses.

As discussed in Helm and Haupt (2003), it is sufficient to apply the 2nd Law of thermodynamics in form of the
Clausius-Duhem inequality,

θγ = −ψ̇ − θ̇η +
1
ρ
T · Ė− 1

ρθ
q · grad θ ≥ 0, (3)

instead of other irreversibility constrains (cf. Hutter (1977), Jou et al. (1996), and Müller and Ruggeri (1998)). In
the Clausius-Duhem inequality,η represents the entropy,T the stress tensor,E the linearized strain tensor, andq
the heat flux vector. The developed model structure allows the partition of the Clausius-Duhem inequality into the
internal dissipation inequality,

δ = −ψ̇ − θ̇η +
1
ρ
T · Ė ≥ 0, (4)
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and the heat conduction inequality,

− 1
ρθ

q · grad θ ≥ 0. (5)

If the Fourier-model for heat conduction,q = −λ grad θ, with the coefficientλ > 0, is applied, the heat conduction
inequality is always satisfied.

In order to develop a thermodynamically consistent material model, the internal dissipation inequality (4) is studied
for the proposed structure of the free energy function according to Eq. (1). In this sense, the basic structure of the
free energy function is introduced into the internal dissipation inequality to give

ρδ = −ρ
∂ψ

∂z
ż − zρ

∂ψM
e

∂EM
e

· ĖM
e − (1− z)ρ

∂ψA
e

∂EA
e

· ĖA
e − zρ

∂ψM
e

∂θ
θ̇ − (1− z)ρ

∂ψA
e

∂θ
θ̇ − ρ

∂ψs

∂θ
θ̇ − ρηθ̇

−
n∑

i=1

ρ
∂ψs

∂Yei

· Ẏei
+ T · Ė ≥ 0.

(6)

Due to the choice of the free energy function (Eq. (1)), the dissipation inequality contains different internal vari-
ables of strain type: In the context of a geometric linear theory, the linearized Green strain tensor is decomposed
into an elastic and inelastic part:

E = Ee + Ed. (7)

Here, the elastic partEe can be understood as an average value of the elastic deformations occurring in the austenite
and the martensite phase. In order to describe the elastic interaction between the austenite and martensite phases,
the most simple approach is the assumption that the strains are equal in both phases:

Ee = EM
e = EA

e . (8)

Additionally, the inelastic strain tensorEd is additively decomposedn-times:

Ed = Yei + Ydi with i = 1, . . . , n. (9)

Thus, the model containsn internal variablesYei andn internal variablesYdi , all being of strain type. The
variablesYdi are introduced to model dissipation effects during the generation of internal stress fields. Combining
Eqs. (7)-(9) and the internal dissipation inequality (6), the resulting inequality,

ρδ =
[
T− zρ

∂ψM
e

∂EM
e

− (1− z)ρ
∂ψA

e

∂EA
e

]
· Ėe − ρ

[
z
∂ψM

e

∂θ
+ (1− z)

∂ψA
e

∂θ
+

∂ψs

∂θ
+ η

]
θ̇

− ρ
∂ψ

∂z
ż +

n∑

i=1

ρ
∂ψs

∂Yei

· Ẏdi +

[
T−

n∑

i=1

ρ
∂ψs

∂Yei

]
· Ėd ≥ 0,

(10)

leads to potential relations for the stress tensor

T = zρ
∂ψM

e

∂EM
e

+ (1− z)ρ
∂ψA

e

∂EA
e

(11)

and the entropy

η = −∂ψ

∂θ
= −z

∂ψM
e

∂θ
− (1− z)

∂ψA
e

∂θ
− ∂ψs

∂θ
, (12)

if the standard argumentation is applied. The remaining internal dissipation inequality,

ρδ = −ρ
∂ψ

∂z
ż +

n∑

i=1

ρ
∂ψs

∂Yei

· Ẏdi +

[
T−

n∑

i=1

ρ
∂ψs

∂Yei

]
· Ėd ≥ 0, (13)

motivates the definition of the internal stress tensorsXεi as well as the resultant of all internal stresses:

Xεi = ρ
∂ψs

∂Yei

and Xε =
n∑

i=1

Xεi . (14)

Using these definitions, the remaining dissipation inequality can be written in the following form,

ρδ = −ρ
∂ψ

∂z
ż +

n∑

i=1

Xεi · Ẏdi + [T−Xε] · Ėd ≥ 0, (15)
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which is necessary for the next considerations: Due to the physical origin of the pseudoelastic effect, the fraction
of martensite depends on the occurring inelastic deformations. In the case of pseudoelasticity, the stress-induced
phase transitions lead to inelastic deformations. This phenomenon is represented in the material model by a simple
function (cf. Helm and Haupt (2003), Juhász et al. (2000), Levitas (1998), and Souza et al. (1998))

z =
‖Ed‖√

3
2γd

=⇒ ż =
Ed · Ėd√
3
2γd‖Ed‖

, (16)

which is similar to the definition of a limit function as proposed in Bertram (1982). Therein,γd is a positive
material parameter, which has an effect on the width of the hysteresis. Finally, Eq. (16) and a zero in form of
Xθ ·Ėd−Xθ ·Ėd = 0 is introduced into the internal dissipation inequality (15), leading to the compact formulation

ρδ =


Xθ −

ρ∂ψ
∂z Ed√

3
2γd‖Ed‖


 · Ėd +

n∑

i=1

Xεi · Ẏdi
+ [T−X] · Ėd ≥ 0 (17)

with the definition
X = Xε + Xθ. (18)

In analogy to Helm and Haupt (2003), the internal variableXθ is introduced in order to model the temperature-
dependent phase transition stress.

The remaining internal dissipation inequality (17) is always satisfied if appropriate evolution equations forEd and
Ydi are introduced and if a phase transition criterion is defined:

• First, evolution equations of the form

Ėd = λd
TD −XD

‖TD −XD‖ with λd ≥ 0 (19)

for the inelastic strain tensor and

Ẏdi = ξiXεi with ξi ≥ 0 (20)

for the internal variablesYdi are suggested. Therein, the scalar-valued proportionality factorsλd andξi

must be non-negative. These proportionality factors are specified in Sect. 3.3.1 and 3.3.2.

• In order to guarantee the positiveness of the internal dissipation, an appropriate phase transition criterion
must be defined. Inserting the evolution equations according to Eq. (19) and (20) into the remaining dissipa-
tion inequality,

ρδ = λd





Xθ −

ρ∂ψ
∂z Ed√

3
2γd‖Ed‖


 ·

[
TD −XD

]

‖TD −XD‖ + ‖TD −XD‖



︸ ︷︷ ︸
= f +

√
2
3
k(θ) ≥

√
2
3
k(θ)

+
n∑

i=1

ξi‖Xεi‖2 ≥ 0, (21)

the dissipation is always non-negative if the following phase transition criterion or yield criterion is applied:

f =


Xθ −

ρ∂ψ
∂z Ed√

3
2γd‖Ed‖


 ·

[
TD −XD

]

‖TD −XD‖ + ‖TD −XD‖ −
√

2
3
k(θ)

︸ ︷︷ ︸
fMises

≥ 0. (22)

Therein, the temperature-dependent material parameterk(θ) has an effect on the height of the hysteresis.
In general, the yield radiusk(θ, . . .) depends on temperature and additional internal variables due to the
representation of effects similar to isotropic hardening in metal plasticity. The applied phase transition
criterion represents a modified v. Mises yield functionfMises. In the case of multiaxial deformations, the
proposed theory is a non-associative yield theory, because the evolution equation for the inelastic strains
according to Eq. (19) cannot be derived by a normality rule from the phase transition functionf . It should
be mentioned that e.g. in the case of non-associative plasticity the direction of the inelastic deformations can
be derived from a pseudopotential (cf. Lemaitre and Chaboche (1990)).
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3.2 Free Energy Function

In the foregoing section, the basic structure of the material model was developed on the basis that the free energy
function as introduced in Eq. (1) generally depends on temperature and a set of internal variables. In this section,
the free energy function is specified in detail in order to model the occurring energy storage effects.

3.2.1 Elastic Part of the Free Energy Function

For a single phase material, consisting of austenite,ω = A, or martensite,ω = M, the free energy function

ψω
e = ψ̂ω

e (Eω
e , θ) =

µω(θ)
ρ

EωD

e ·EωD

e +
κω(θ)

2ρ
(trEω

e )2 − 3αω(θ)κω(θ)
ρ

(trEω
e ) (θ − θ0)+

+

θ∫

θ0

cω
d0

(θ̄)dθ̄ + uω
0 − θ




θ∫

θ0

cω
d0

(θ̄)
θ̄

dθ̄ + ηω
0




(23)

represents the energy storage due to elastic deformations and thermomechanical effects. In general, all material
parameters are temperature-dependent.

The simple mixture of the austenite and martensite phase,

ρψe(EM
e ,EA

e , θ, z) = zρψM
e (EM

e , θ) + (1− z)ρψA
e (EA

e , θ), (24)

leads to the following elastic part of the free energy function for the two-phase material,

ρψe(Ee, θ, z) =
[
zµM(θ) + (1− z)µA(θ)

]
ED

e ·ED
e − 3

[
zαM(θ)κM(θ) + (1− z)αA(θ)κA(θ)

]
(trEe) (θ − θ0)

+
zκM(θ) + (1− z)κA(θ)

2
(trEe)

2 + zρ

θ∫

θ0

cM
d0

(θ̄)dθ̄ + (1− z)ρ

θ∫

θ0

cA
d0

(θ̄)dθ̄

+ ρ
[
uA

0 + z∆u0

]− θ


zρ

θ∫

θ0

cM
d0

(θ̄)
θ̄

dθ̄ + (1− z)ρ

θ∫

θ0

cA
d0

(θ̄)
θ̄

dθ̄ + ρ
[
ηA
0 + z∆η0

]

 ,

(25)

if the assumption of equal elastic strains is applied (cf. Eq. (8)). Therein, the abbreviations

∆u0 = uM
0 − uA

0 and ∆η0 = ηM
0 − ηA

0 (26)

are introduced: Both∆u0 and∆η0 play an important role in the description of the heat production during marten-
sitic phase transitions (cf. Helm and Haupt (2003), Huo and Müller (1993)).

3.2.2 Inelastic Part of the Free Energy Function

As discussed in Sect. 2, different slopes of the loading and unloading tangents are observed in the region of the
second elasticity. To represent this phenomenon and also the stress evolution at the beginning of the phase transition
plateaus, the inelastic part of the free energy function

ρψs = ρψ̂s(θ, {Yei}) =
n∑

i=1

ci(θ)
2

Yei ·Yei (27)

is proposed. In general, the coefficientsci(θ) are non-negative temperature-dependent material parameters. If
required, the free energy function may depend on further internal variables. For example, the experiments depicted
in Fu et al. (1992) show that the number of interfaces between austenite and martensite is proportional to the
fraction of martensite. Consequently, the modeling of such an effect in the present theoretical framework would
require an inelastic part of the free energy, which depends on the fraction of martensitez.

45



3.2.3 Implications of the Free Energy Function

Due to the potential relation Eq. (11), the proposed free energy function according to Eq. (1) and (24)–(27) leads
to the stress relation

T = 2
[
zµM(θ) + (1− z)µA(θ)

]
ED

e +
[
zκM(θ) + (1− z)κA(θ)

]
(trEe)1

− 3
[
zαM(θ)κM(θ) + (1− z)αA(θ)κA(θ)

]
(θ − θ0)1.

(28)

Furthermore, the internal stress tensorsXεi are defined according to Eq. (14):

Xεi = ci(θ)Yei . (29)

As a consequence of the proposed material model, the partial derivative

ρ
∂ψ

∂z
=

[
µM(θ)− µA(θ)

]
ED

e ·ED
e − 3

[
αM(θ)κM(θ)− αA(θ)κA(θ)

]
(trEe) (θ − θ0)

+
κM(θ)− κA(θ)

2
(trEe)

2 + ρ




θ∫

θ0

[
cM
d0

(θ̄)− cA
d0

(θ̄)
]
dθ̄ + ∆u0




− ρθ




θ∫

θ0

cM
d0

(θ̄)− cA
d0

(θ̄)
θ̄

dθ̄ + ∆η0




(30)

is of particular importance. In contrast to the previous study (Helm and Haupt (2003)), the consideration of
different elastic properties of the austenite and the martensite phase leads to additional terms in the partial derivative
∂ψ
∂z . As will be shown in the next section, these additional terms influence the phase transition range.

3.3 Evolution Equations for Internal Variables

To complete the evolution equations for the internal variables, the proportionality factorsλd andξi in the evolution
equations forEd andYdi are defined in this section.

3.3.1 Evolution Equation for Ed

The final structure of the remaining dissipation inequality (17) motivates the evolution equation (19):

Ėd = λd N with N =
TD −XD

‖TD −XD‖ =
TD − [

XD
ε + XD

θ

]

‖TD − [
XD

ε + XD
θ

] ‖ . (31)

Here, the abbreviationN for the direction of the inelastic strain rate is used. Obviously, the tensorN has the
property‖N‖ = 1. The deviatoric evolution ofEd is assumed, because the phase transition occurs approximately
at constant volume.

Until now, the internal variableXθ of stress type was introduced in view of the basic structure of the theory, but
a constitutive relation forXθ is still missing: This variable is an essential element of the model: it represents the
temperature-dependent phase transition stress. Regarding the remaining dissipation inequality (21), the definition

Xθ =
ρ∂ψ

∂z Ed√
3
2γd‖Ed‖

(32)

could be reasonable to be introduced (see the discussion in Helm and Haupt (2003) and cf. Juhász et al. (2000)
as well as Souza et al. (1998)). However, this equation contains the term‖Ed‖ in the denominator, which is
sometimes zero. This leads to singularities in the tensorN and the phase transition function, but these singularities
can be removed, if a v. Mises yield function is applied (see Helm and Haupt (2003) for details). In order to avoid
the singularity in the tensorN, the constitutive relation

Xθ =
ρ

〈
∂ψ
∂z

〉
ED

√
3
2γd (‖ED‖+ a)

(33)

46



is suggested in the present model. Instead of the inelastic strain tensorEd, the internal variable depends on the
deviatoric part of the linearized strain tensorE. In the additional case of pseudoplasticity due to stress induced
phase transitions,‖ED‖ can be zero: Therefore, the regularization parametera > 0 is considered in avoidance of
the singularity.

Finally, the inelastic multiplierλd is defined: In order to model the experimentally observed rate-dependent effect
due to the viscosity of the material (cf. Sect. 2), an inelastic multiplier of Perzyna-type (cf. Perzyna (1963) and
Hohenemser and Prager (1932)) is applied:

λd =





1
ηd(θ)

〈
f

rd

〉md(θ) A → ~M if: z < 1, ∂ψ
∂z > 0, andEd ·N ≥ 0

~M → A if: z > 0, ∂ψ
∂z > 0, andEd ·N < 0

0 in all other cases

. (34)

In general, the introduced material parametersηd andmd are temperature-dependent. In contrast to a general
theory,rd is merely used to obtain a dimensionless argument in the McCauley bracket. The McCauley bracket is
defined by

〈x〉 =
|x|+ x

2
. (35)

In order to distinguish between the austenite→ martensite and the reverse transformation, a few case distinctions
are added: TheA → ~M phase transition occurs if austenite is available (z < 1), the partial derivative∂ψ

∂z is
positive, andEd ·N ≥ 0. The last condition guarantees that the fraction of martensite increases (cf. Eq. (16)). In
contrast to this, the reverse transformation~M → A takes place if orientated martensite~M is available (z > 0), the
partial derivative∂ψ

∂z is positive, and the fraction of martensite decreasesEd ·N < 0.

The advantage of the new definition (33) forXθ is that the tensorN is well-defined and thatXθ is a smooth function
of E. Through this, the movement of the phase transition surface in the stress space due toXθ is continuous.
Unfortunately, the definition ofXθ according to Eq. (33) leads also to a phase transition function (Eq. (22)), i.e.

f = ‖TD −XD‖ −
√

2
3


k − ρ

γd




〈
∂ψ
∂z

〉
ED

‖ED‖+ a
−

∂ψ
∂z Ed

‖Ed‖


 ·N


 , (36)

wherein a singularity at‖Ed‖ = 0 exists. However, the singularity inf is simply removable: In the evolution
equation forEd (Eq. (31)), the time derivative is approximated by the finite difference:

Ed(t + ∆t)−Ed(t)
∆t

= λd N. (37)

The case‖Ed(T )‖ = 0 is valid at the beginning of the phase transition. The associated time is denoted byT and
Eq. (37) merge into

Ed(T + ∆t)
∆t

= λd N (38)

with the property
‖Ed(T + ∆t)‖ = λd∆t (39)

due to‖N‖ = 1. Consequently, the ratio

Ed

‖Ed‖ = N =
TD −XD

‖TD −XD‖ . (40)

is determined for‖Ed‖ = 0. Only in this case (‖Ed‖ = 0), the phase transition function

f = ‖TD −XD‖ −
√

2
3


k − ρ

γd




〈
∂ψ
∂z

〉
ED ·N

‖ED‖+ a
− ∂ψ

∂z





 (41)

is valid.
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Figure 4: Basic structure of the constitutive theory in a stress-temperature diagram

3.3.2 Evolution Equation for Ydi

The non-negative entropy production is guaranteed if the internal variablesYdi are proportional toXεi with non-
negative proportionality factorsξi (cf. Eq. (20)). For the modeling of the different slopes in the loading and
unloading path in a stress-strain diagram (see Fig. 2), a proportionality factorξi depending on the temperatureθ,
the rate of the accumulated inelastic strain

ṡd =

√
2
3
‖Ėd‖, (42)

and the fraction of martensitez is specified:

ξi = ξ̂i(θ, ṡd, z) =





1
2

(tanh [−βi(θ)(z − γi(θ))] + 1)
bi(θ)
ci(θ)

ṡd if: ż > 0

bi(θ)
ci(θ)

ṡd if: ż < 0
. (43)

In general, the material parametersbi, βi, andγi depend on temperature.

3.4 Effect of the Internal Variable Xθ on the Phase Transition Stress

Figure 4 outlines the effect of the introduced internal variableXθ on the stress necessary to initiate and progress
martensitic phase transitions. In this Figure, the uniaxial case is considered:T → σ, Xε = 0, Xθ → Xθ,
Ed → εd, andE → ε. For simplicity,a = 0 is assumed. The phase transition from austenite to martensite starts in
such a diagram if the stresses cross the A→ ~M-start line. In contrast to this, the retransformation starts if the stress
is lower than the~M →A-start line. The introduced internal variableXθ represents the center line between the
martensite and austenite start lines. Due to the partial derivative∂ψ

∂z = ∆u0− θ∆η0 + . . ., the internal variableXθ

depends approximately linear on temperature, because the ratioε/ |ε| is plus or minus one. The root ofXθ is nearly
given by∆u0/∆η0 and the slope ofXθ is mainly influenced by∆η0. Furthermore, the elastic range is described
by f < 0. Due to the regarded uniaxial case, the additional non-v. Mises terms in the phase transition function
(Eq. (22)) vanishes. Consequently, the uniaxial phase transition function is given byf = |σ −Xε −Xθ| − k.
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Figure 5: Simple example of a feedforward network

4 Identification of the Material Parameters using the Theory of Neural Networks

In the present study, the theory of neural networks is applied in order to identify the material parameters of the
proposed constitutive model. The theory of neural networks is described in many textbooks: e.g. Haykin (1994),
Rojas (1996), and Zell (1994). A short description of neural networks in Sect. 4.1 and the learning strategy in
Sect. 4.2 is explained on the basis of these textbooks. In order to apply the method of neural networks in Sect.
4.3, the software package SNNS (Stuttgart Neural Network Simulator; SNNS (2000) and Zell (1994)) is used.
The application of neural networks in order to identify the material parameters is a well-known strategy: cf. Huber
(2000) and Huber and Tsakmakis (2001) and the detailed citations therein. The neural network method has the
advantage that a trained network is able to identify the temperature-dependent material parameters of different
alloys.

4.1 Basic Structure of Multilayered Neural Networks

Basically, an artifical neural network consists of neurons and connecting links, which are also called synapses. In
the theory of neural networks, different kinds of networks are introduced. In the present context, so-called feed-
forward networks, as exemplarily shown in Fig. 5, are applied: In a feedforward network with at least one hidden
layer (so-called multilayer networks), the neurons are connected from an input layer over the hidden layer(s) to an
output layer. Consequently, connections in the opposite direction (feedback) and connections between neurons of
the same layer do not exist in a feedforward network. If the feedforward network is fully connected, a neuron can
only be chained with neurons in the next layer. In contrast to this, if shortcut connections are considered, a neuron
can be aligned with neurons in all next layers. A synaptic weightwjk is assigned to a connecting link. Here, the
synaptic weightwjk represents a connection from the neuronj to neuronk.

In a natural classification, the neurons are assigned to different layers. In the present context, the layers are
counted from zero (input layer) toL (output layer). If the neuronk is an element of the layer numberm, the
neuron numeratork is a component of the set

Lm = {k ∈ N|No. of the neurons in the layer numberm}. (44)

The task of the neurons in the input layerI = L0 is simple, because the input valueik is equal to the outputok of
the neuron:

ok = ik ∀ k ∈ I. (45)

A simple mathematical model of a neuron in the other layers can be introduced as follows (cf. Fig. 5): First, the
neuronk consists of an adder for summing up the input signals. In a linear combiner, a single input signal of the
neuronk is equal to the output of the neuronj multiplied by the synaptic weightwjk:

īk =
∑

j

wjkoj . (46)
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As a result of this model, a positive weightwjk > 0 amplifies and a negative valuewjk < 0 reduces the influence
of the outputoj .

In order to represent the degree of stimulus, a component of the neuron is an activation functionAk:

ak = Ak (̄ik −Θk). (47)

Therein,Θk is the threshold value, which models the stimulus threshold of a neuron. Different kinds of activation
functions can be used in the theory of neural networks: e.g. the identity function

A(x) = x (48)

or the logistic function

A(x) =
1

1 + e−x
, (49)

which is a sigmoid function. In general, the activation function must not be differentiable, but some learning
strategies require an appropriate differentiability (see Sect. 4.2).

In a natural partition of a multilayer network, the input layerI = L0 is followed by layers of hidden neurons.
The neurons in a hidden layer with the number0 < m < L are specified by the setHm = Lm. Additionally, the
hidden layers are followed by an output layer:O = LL. The set of all neurons is given byL, the set of all neurons
of the firstf -layers is calledPf , and the set of all hidden layers is denoted byH:

L =
L∪

m=0
Lm, Pf =

f∪
m=0

Lm, and H =
L−1∪
m=1

Hm. (50)

Due to simple algebraic operations, the output of a neural network can be calculated:

ok = Ak(
∑

j∈PL−1

wjkoj −Θk) ∀ k ∈ O. (51)

However, the synaptic weightswjk and the threshold values are unknown. The determination of these variables
is one of the major topic in neural network technology. A well-known learning method is described in the next
section.

4.2 Learning due to Supervised Training Processes using the Back-Propagation Algorithm

Before the so-called back-propagation algorithm is described, the structure of the neural network is slightly reorga-
nized: In order to regard the threshold valuesΘk effectively in the mathematical framework of training algorithms,
an input neuroni0 = −1 is introduced in the network. Consequently, additional weightsw0k with the property

w0k = Θk (52)

are considered for each neuronk. Through this, the threshold value can be eliminated from the activation function:

ok = Ak (̄ik). (53)

The determination of the synaptic weightswjk can be done in different ways. However, to determine the weights
a set of training data is necessary. In a supervised training process, the input of the neurons in the input layer and
output of the neurons in the output layer must be known: e.g. as the result of numerical simulations. Through this,
the synaptic weights can be determined with different methods: E.g. if an appropriate error measure is additionally
defined, classical optimization strategies can be applied. In the classical back-propagation algorithm, the sum
E(W) of the squared errore(p,W) over all training patternsp is regarded as error function:

E(W) =
∑

p

e(p,W) → min with e(p,W) =
1
2

∑

k∈O
[tk(p)− ok(p,W)]2 . (54)

Therein,tk(p) represent the output value of the neuronk in the training patternp andW is the weight matrix
consisting of the elementswjk. The weights of non-existing links are zero. To find the minimum ofE, the
back-propagation algorithm uses the method of gradient descent, which is given by the series

i+1wmn = iwmn + ∆wmn (55)
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with the weight correction terms

∆wmn = −ηL
∂E(W)
∂wmn

= −ηL

∑
p

∂e(p,W)
∂wmn

. (56)

Therein,ηL is the so-called learning-rate, which is very important in a gradient descent method in order to obtain
a convergent seriesi+1wmn. In Eq. (56), the gradient∂e(p,W)

∂wmn
must be determined. Therefore, the chain-rule is

applied,
∂e(p,W)

∂wmn
=

∂e(p,W)
∂on

∂on(p)
∂in︸ ︷︷ ︸

−δn(p)

∂in(p)
∂wmn

, (57)

wherein the abbreviation

δn(p) = −∂e(p,W)
∂on

∂on(p)
∂in

(58)

is introduced for simplification:δn(p) is called the local gradient. The first partial derivative∂e(p,W)
∂on

will be
discussed at the end, because merely the difference between the training datatk and the output neuronsok of the
output layerO are calculated in the error function. The second derivative is nothing else as the derivative of the
applied activation function:

∂on(p)
∂in

=
∂An(in(p))

∂in
= A′n(in(p)). (59)

In the back-propagation algorithm, the differentiability of the activation function is necessary. The last partial
derivative is equal to the output value of the neuronm:

∂in(p)
∂wmn

=
∂

∂wmn

∑
m

wmnom(p) = om(p). (60)

Therefore, the weight correction terms can be written in the following form :

∆wmn = ηL

∑
p

δn(p)om(p). (61)

However, for the determination of the first partial derivative∂e(p,W)
∂on

in Eq. (58), two cases must be considered:

1. If the outputon belong to the neurons in the output layer (i.e.n ∈ O), the partial derivative

∂e(p,W)
∂on

= − [tn(p)− on(p,W)] (62)

is simply calculable and the belonging local gradient is given by

δn(p) = −∂e(p,W)
∂in

= A′n(in(p)) [tn(p)− on(p,W)] . (63)

2. The second case regards output neurons in the set of hidden neurons. These neurons are hidden due to the
neurons in the output layer. Consequently, the chain-rule must be carefully applied. Due to the considerations
in Appendix A, the local gradientδn of a hidden neuron in the hidden layer numberm is given by

δn = A′n(in(p))
∑

l∈Lm+1

δlwnl ∀ n ∈ Hm = Lm. (64)

Here, the local gradientδn of a neuron in the hidden layerHm is influenced by all local gradients of con-
nected neurons, which lie in the next layerLm+1 (for hidden layers:0 < m < (L− 1)).

On the basis of the equations above, the weight correction terms∆wmn can be calculated:

∆wmn = ηL

∑
p

δn(p)om(p) =





ηL

∑
p

A′n(in(p)) (tn(p)− on(p,W)) om(p) if: n ∈ O

ηL

∑
p

A′n(in(p))

(
∑

l∈Lm+1

δlwnl

)
om(p) if: n ∈ H

. (65)
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This equation clarifies the used terminology: back-propagation. The determination of the weights starts in the
output layer. Thereafter, theδn’s in the hidden layers can be determined layer-by-layer, because the valuesδl’s in
the summation overl are known from the foregoing regarded layer.

In the exact method of gradient descent (cf. Eq. (65)), the weight correction terms of each patternp must be
summed up. This back-propagation algorithm is often called batch back-propagation and requires more local
storage for the synaptic weights as the so-called pattern-by-pattern mode: This modification changes the synaptic
weights after each presentation of a training pattern, i.e.∆wmn = ηLδn(p)om(p). To avoid that informations
about the sequence of training patterns are learned by the network in a pattern-by-pattern mode, the training data
are shuffled after each training epoch. An epoch is finished if the network was trained with all patterns. In addition
to this modification (pattern-by-pattern mode), a lot of additional modifications of the back-propagation algorithm
are developed in order to improve the properties of the neural network as well as the training algorithm. An useful
modification, which is used in the next section, is the so-called weight decay: The minimization of the mean square
error according to Eq. (54) leads in some cases to large synaptic weights. Consequently, the participated neurons
show strong activations and the according derivative of the activation function is in the worst-case approximately
zero, which is disadvantageous in a gradient decent method. Applying the modified error function

E(W) =
∑

p

e(p,W) → min with e(p,W) =
1
2

∑

k∈O
[tk(p)− ok(p,W)]2 +

β

2

∑

m,n∈L

iwmn, (66)

large synaptic weights are penalized due to the penalty factorβ. Through this modification, the method of gradient
descent leads to

∆wmn = −ηL
∂E(W)
∂wmn

=
∑

p

[
−ηL

∂e(p,W)
∂wmn

− β iwmn

]
=

∑
p

[
ηLδn(p)om(p)− β iwmn

]
. (67)

4.3 Application of Neural Network Technology to Identify the Material Parameters

The proposed constitutive theory contains a series of material parameters, some of them are in general
temperature-dependent: The representation of the thermoelastic part of the model requires the identification of
eleven material parameters (µA, µM, κA, κM, αA, αM, cA

d0
, cM

d0
, ρ, ∆u0, and∆η0). In contrast to these para-

meters, the values ofuA
0 andηA

0 are not of interest. For each internal stress stateXεi , the inelastic part of the
free energy function (Eq. (27)) contains one material parameterci. In the evolution equation of the inelastic strain
tensorEd, two material parameters must be identified:ηd andmd. The parameterrd is used to obtain a dimen-
sionless argument in the McCauley bracket. In addition, the yield radiusk in the yield function and the parameter
γd in z = ẑ(Ed) must be identified. Finally, the evolution equation forYdi contains for each internal stress state
Xεi three material parameters:bi, βi, andγi. In all, the model contains(15 + 4 · n) material parameters. Due to
the large number of material parameters, the identification of these parameters is a challenge.

In a first study, the problem is reduced as follows: An experiment with an appropriate slow loading rate is regarded
as nearly isothermal. In such a case, the specific heat capacities and the thermal expansion coefficients are not of
interest. Additionally, for appropriate slow loading rates the viscous phenomena of the material can be neglected.
Therefore, parametersηd andmd play a minor rule: To solve the system of constitutive equations, the values
ηd = 2 · 107 MPa

s andmd = 3 are used. Indeed, the temperature-dependent phase transition stress cannot be
identified in an isothermal experiment. Therefore, the temperature-dependence is considered as follows: In the
material model the internal variableXθ is responsible for the representation of the temperature-dependent phase
transition stress. Atχ0 = {θ = θ0, a = 0,Ee = 0}, the partial derivative

ζ0 =

∥∥∥∥∥
∂Xθ

∂θ

∣∣∣∣
χ0

∥∥∥∥∥ = − ρ∆η0√
3
2γd

⇐⇒ ∆η0 = −

√
3
2γdζ0

ρ
(68)

represents in a first approximation the slope of the temperature-dependent phase transition stress. Note, that due to
thermodynamical restrictions,∆η0 and∆u0 are non-positive material parameters if equal thermoelastic material
parameters are regarded (cf. Helm and Haupt (2003)). In appropriate experiments, an average slope of 6.75MPa/K
was measured for the investigated alloy (cf. Sect. 2). Consequently, forζ0 = 6.75MPa/K the material parameter
∆η0 can be determined for givenγd andρ. In the present study, the material density isρ = 6400kg/m3. The
important parameter∆u0 is not determined directly: Instead of∆u0, the auxiliary parameterϑ0

ϑ0 =
∆u0

∆η0
⇐⇒ ∆u0 = ϑ0 ∆η0 (69)
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is identified. Finally, the Poisson numberνA = ν = 0.36 is predetermined in a torsion test and the Poisson number
of the martensite phase is assumed to be equal to the Poisson number of the austenite phase:νM = νA. Therefore,
the bulk modulus is given byκω = 2µω(1 + νω)/(3(1 − 2νω)) for ω = A, M. For simplicity, only one internal
variableYdi is used in the present framework (n = 1 in Eq. (27)). Therefore, nine material parameters (cf. Tab. 1)
must be determined.

Numberj Parameterpj pmin
j pmax

j Unit

1 µA 13000 20000 MPa

2 µM 6000 12000 MPa

3 k 10 50 MPa

4 ϑ0 255 280 K

5 γd 0.0425 0.06 –

6 c1 15000 40000 MPa

7 c1/b1 20 90 MPa

8 β1 5 15 –

9 γ1 0.7 1 –

Parameter Value Unit

ν = νA = νM 0.36 –

ηd 2 · 107 MPa
s

md 3 –

ζ0 6.75 MPa
K

ρ 6400 kg
m3

Table 1: Left table: training range of the material parameters; right table: predetermined material parameters

For the identification process, the experimental data of the step test with the amplitudesεmax = 0.03 andεmax =
0.06 are used. Due to the strain rate of|ε̇| = 0.0001s−1 the loading process is in a first approximation isothermal.
The other parts of the step test are applied to verify the identified material parameters. These different strain
amplitudes are necessary in order to capture the different stiffness of the material during the phase transitions.
The training of the neural network requires data of an appropriate simulation. Concerning this, the initial-value
problem is solved for a homogeneously deformed rod under simple tension (cf. the procedure in Helm and Haupt
(2003)). In the simulation, the rod is loaded to six percent strain and then unloaded in the strain free state within
1200s. This pre-process leads to an evolution of the internal stress tensorXεi , which strongly influences the stress-
strain behavior. Thereafter, the training data are calculated: loading/unloading cycles to a maximum amplitude of
εmax = 0.03 andεmax = 0.06 with |ε̇| = 0.0001s−1. The training of the neural network takes place with 400
sets of material parameters, which are randomly distributed in the selected ranges given in Tab. 1. Additionally,
20 sets of material parameters are applied to verify the training process. The used feedforward network consists of
102 input units, 36 hidden units in the first hidden layer as well as 18 hidden units in the second hidden layer, and
also nine output units (cf. Fig. 6). The output units representing the nine material parameters. In order to consider
most of the observed experimental phenomena in the input data of the neural network, the input units consists of
102 stress values in chronological order. The number of hidden layers and also the number of units in each hidden
layer are the result of an iterative process based on experience. In the applied neural network, all units are only
connected with units of the next layer (full connection). The logistic function (cf. Eq. (49)) is used as activation
function in each unit. In order to improve the efficiency of the network, the input dataσk and output datapk are
linearly scaled:

ik = −0.25 +
1
2

σk − σmin
k

σmax
k − σmin

k

∀ k ∈ I and ok = 0.25 +
1
2

pk − pmin
k

pmax
k − pmin

k

∀ k ∈ O. (70)

As training algorithm, the pattern-by-pattern back-propagation algorithm with weight decay as described in Sect.
4.2 (ηL = 0.2 and β = 2 · 10−6) were applied. In contrast to this strategy, Helm (2004) uses the resilient
propagation method (RProp). After 2000 training cycles (epochs), the mean square error (MSE) according to the
definition (P : number of training patterns;O: number of output neurons)

eMSE =
E(W)
PO

=
1

PO

∑
p

∑

k∈O

1
2

[tk(p)− ok(p,W)]2 (71)

amounts0.00599 for the set of training data and0.00595 for the set of validation data.
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Figure 6: Outline of the applied neural network

Thereafter, the trained neural network is applied to identify the material parameters: 102 measured stress values,
depicted in Fig. 7, are applied as the input values for the neural network. The results of the neural network are the
identified material parameters, which are summarized in Tab. 2.

µA µM k ∆u0 ∆η0 γd c1 b1 β1 γ1

MPa MPa MPa J/kg J/(kg K) – MPa – – –

16377.1 9139.4 13.6 −17877.91 −66.42 0.05142 21790.5 357.5 8.6 0.8471

Table 2: Identified set of material parameters (note:∆η0 results from Eq. (68) and∆u0 from Eq. (69))

The calculated model response is also depicted in Fig. 7 (left figure). Concerning the depicted tension behav-
ior, the proposed system of constitutive equations in combination with the set of identified material parameters
represents most of the experimentally observed effects: In particular, the model represents the stiffness of the
austenite-martensite mixture, the initiation of the phase transition at low stresses, the approximately horizontal
phase transition plateaus, the stress increase at a larger amount of martensite, as well as the very small elastic
ranges during unloading. The whole step test is likewise depicted in Fig. 7 (right figure): As expected, this simple
verification of the model leads to a good agreement between model response and the experimental data. Taking
into account the capability of the model, the identification process seems to be successful.

5 Conclusions

The material behavior of shape memory alloys strongly depends on temperature and loading path history. The
basic material characteristic can be identified in uniaxial tension tests: e.g. different elastic properties of austenite
and martensite phase, temperature-dependent phase transition stress, different loading and unloading slopes in the
region of the second elasticity, as well as impressing thermomechanical coupling phenomena. An appropriate
thermomechanical material model, which represents these observations, is proposed in the article. The model
consists of a free energy function and evolution equations for internal variables. In particular, the introduced
internal variableXθ is an important part of the model: This variable moves the phase transition surface in the
stress space if the temperature is changed.
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Figure 7: Experiment vs. model response (|ε̇| = 0.0001s−1): used training process (left figure) and the total step
test (right figure)

Due to the complexity of the material properties a constitutive theory contains many material parameters, which
are generally functions on temperature and maybe other variables. In spite of the expensive and precise produc-
tion process, the material properties change in each charge. These circumstances motivate the usage of neural
network technology for the identification process, because a trained network is able to identify the temperature-
dependent material parameters of different alloys if the applied constitutive theory has the capability to represent
the experimental observation. However, the generation of an appropriate neural network needs a lot of experience.
In the present context, a fully connected feedforward network is applied whose synaptic weights are determined
by an pattern-by-pattern back-propagation algorithm with weight decay. The depicted results show that the neu-
ral network is able to identify the material parameters and that the proposed constitutive theory represents the
experimentally observed material behavior.

Appendix

A Calculating the weight correction terms in the hidden layers during back-propagation

In Sect. 4.2, the back-propagation algorithm is introduced to determine the synaptic weights. In this context, the
partial derivatives∂e(p,W)

∂on
are needed to specify the local gradientδn. However, the outputs of the hidden neurons

are functions of the neurons in the output layer. Consequently, the chain rule must be applied: For example, the
output valueson with n ∈ HL−1 in the last hidden layer influences the mean square error due to

e(p,W) =
1
2

∑

k∈O
[tk(p)−Ak (̄ik)]2 =

1
2

∑

k∈O


tk(p)−Ak(

∑

n∈PL−1

wnkon)




2

. (72)

This results in the derivative

∂e(p,W)
∂on

= −
∑

k∈O
[tk(p)− ok(p,W)] A′k(ik(p))︸ ︷︷ ︸

δk

wnk = −
∑

k∈O
δkwnk (73)

and the local gradient
δn = A′n(in(p))

∑

k∈O
δkwnk. (74)

Consequently, the local gradientsδn of neurons in the last hidden layer are influenced by all local gradientsδk of
neurons in the next layer, which is in this case the output layer.
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In contrast to this, the neuronson in the hidden layerHL−2 have the local gradient

δn = A′n(in(p))
∑

l∈HL−1

δlwnl. (75)

because of

e(p,W) =
1
2

∑

k∈O


tk(p)−Ak(

∑

l∈PL−1

wlkAl(
∑

n∈PL−2

wnlon))




2

. (76)

and

∂e(p,W)
∂on

=
∑

k∈O
− [tk(p)− ok(p,W)] A′k(ik(p))

∑

l∈PL−1

wlkA′l(̄il)wnl

︸ ︷︷ ︸∑
l∈PL−1

δlwnl

=
∑

l∈HL−1

δlwnl.

(77)

This equation has the same interpretation as the result discussed before: The local gradientδn of neurons in the
hidden layerHL−2 is influenced by all local gradients of connected neurons, which lie in the next layerHL−1.

As a result of this, the local gradients for neurons in the hidden layers

δn = A′n(in(p))
∑

l∈Lm+1

δlwnl ∀ n ∈ Hm = Lm, (78)

are influenced by the local gradients of the next layer multiplied by the synaptic weights.
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M. Frémond; S. Miyazaki, eds.,Shape Memory Alloys, pages 69–147, Springer (1996).

Müller, I.: Stress–Strain–Temperature Curves in Pseudoelastic Bodies. In: D. E. Carlson; R. T. Shield, eds.,Finite
Elasticity, IUTAM Symposium Lehigh University, PA,USA (1982).

57



Müller, I.; Ruggeri:Rational Extended Thermodynamics. Springer–Verlag, Berlin Heidelberg New York (1998).

Otsuka, K.; Wayman, C.:Shape Memory Materials. Cambridge University Press (1998).

Perzyna, P.: The Constitutive Equations for Rate Sensitive Plastic Materials.Quartely of Applied Mathematics, 20,
(1963), 321–332.

Raniecki, B.; Lexcellent, C.:RL–models of pseudoelasticity and their specification for some shape memory solids.
European Journal of Mechanics A–Solids, 13, (1994), 21–50.

Raniecki, B.; Lexcellent, C.; Tanaka, K.: Thermodynamic models of pseudoelastic behavior of shape memory
alloys.Archives of Mechanics, 44, (1992), 261–284.
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University Tübingen (2000).

Souza, A.; Mamiya, E.; Zouain, N.: Three–dimensional model for solids undergoing stress–induced phase transi-
tions.Eur. J. Mech. A/Solids, 17, (1998), 789–806.

Tobushi, H.; Shimeno, Y.; Hachisuka, T.; Tanaka, K.: Influence of strain rate on superelastic properties of TiNi
shape memory alloy.Mechanics of Material, 30, (1998), 141–150.

Zell, A.: Simulation Neuronaler Netze. Addison–Wesley (1994).

Address: Dr.-Ing. Dirk Helm, Institute of Mechanics, Department of Mechanical Engineering, University of
Kassel, M̈onchebergstr. 7, 34109 Kassel, Germany; email:helm@ifm.maschinenbau.uni-kassel.de

58


