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Over the past years a lot of scientific work has been done in the field of smart lightweight structures to reduce 
the structural vibrations and the radiated sound. In the paper a virtual overall model of adaptive vibro-acoustic 
systems, completely based on the finite element method (FEM), is presented. Beside the passive structure, this 
model contains the active piezoelectric elements, the acoustic fluid, the vibro-acoustic coupling, and the 
controller influence. According to the requirements of an effective numerical analysis of thin walled structures, 
the coupling between active layered shell elements and acoustic 3D hexahedron elements is implemented. It is 
possible to take into consideration the interior as well as the exterior radiation problem. Because of the large 
number of degrees of freedom of the FE model, a modal truncation technique based on a complex eigenvalue 
analysis is performed. After transforming the model into the state space form, the Matlab/Simulink software is 
used to design an appropriate controller. To show the accuracy and the performance of the developed software 
approach, a vibrating elastic plate and the resulting sound field are numerically investigated. 
 
 
1 Introduction 
 
The investigation of smart structural concepts stretches across a wide range of applications, such as vibration 
suppression, noise attenuation, shape control, damage detection and others (see e.g. Gabbert, 2002 and Tzou, 
1998). In many cases structures are actively influenced by applying piezoelectric materials as distributed 
actuators and sensors connected with an appropriate control unit. The development and the design of such smart 
structures require powerful numerical analysis and simulation tools as well as suitable models including the main 
functional parts of the system under investigation. In vibro-acoustic systems the model should include the passive 
structure, the acoustic fluid, the piezoelectric sensors and actuators and the control algorithms. Such an overall 
virtual model can be established on the basis of the finite element method, which has to include the coupled 
electro-mechanical fields of the piezoelectric materials as well as the control (see Gabbert et al., 2000, 2002). 
Furthermore,  the fluid-structure interactions have to be taken into account (see Everstine 1971).  In order to 
solve such multi-field vibro-acoustic systems the finite element software COSAR has been extended by special 
1D, 2D, 3D and layered shell-type elements with coupled mechanical and electrical degrees of freedom and 
brick-type finite acoustic elements as well as semi-infinite acoustic elements to study interior and exterior 
radiation problems, respectively. This results in large-scale finite element models of such overall vibro-acoustic 
smart systems, which are in general infeasible for controller design purposes. Therefore, model reduction 
techniques have to be applied to reduce the number of degrees of freedom (see Gabbert et al., 2002). The low 
frequency range modal truncation seems to be an appropriate technique. But, in vibro-acoustic systems a 
complex eigenvalue problem has to be solved to perform an appropriate model reduction. This requires a higher 
numerical effort as the solution of a positive definite eigenvalue problem. On the other hand the reduced model 
can also be used to calculate the transient behavior of the system in a very efficient and fast way. For controller 
design purposes there are special software packages available, such as Matlab/Simulink, which can be coupled 
with the finite element package COSAR by a special bi-directional data interface. The overall equations of 
motion in the time domain, generated by the FE software COSAR, are transformed into the state space form and 
transferred to Matlab/Simulink through a data exchange interface. In the paper the procedure is briefly explained 
and as a test example – the control of sound radiated from a vibrating plate is numerically studied. 
 

 
2 Basic Equations and Finite Element Analysis 
 
The theoretical background of the simulation of piezoelectric smart structures and acoustic fluids is briefly 
presented here. All equations are developed in a Cartesian (x1, x2, x3)-coordinate system. 
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2.1 Finite Element Formulation of Piezoelectric Smart Structures 
 
The derivation of a finite element formulation for the analysis of piezoelectric structures is a well known 
procedure, published in a lot of papers during the last years (for an overview see Gabbert et al., 2000). Based on 
the linear coupled electromechanical constitutive equations 
 

eECεσ −= ,                                        (1) 
κEεeD += T ,                                         (2) 

 
with the stress vector σ , the vector of electric displacements D, the elasticity matrix C, the piezoelectric matrix 
e, the dielectric matrix κ , the strain vector ε  and the electric field vector E, the semi-discrete equations of 
motion of a system discretized by finite elements can be written as 
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In equation (3) w contains the nodal mechanical degrees of freedom, ϕ the nodal electric potentials. Mww is the 
mass matrix, Cww the damping matrix, Kww the stiffness matrix, Kϕϕ the electric matrix, Kwϕ the piezoelectric 
coupling matrix, fw the mechanical load vector and fϕ the electric load vector. 
  
 
2.2 Finite Element Formulation of the Acoustic Fluid 
 
The homogeneous and inviscid acoustic fluid is modeled by using the linear acoustic wave equation (see 
Kollmann, 2000)  
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considering the velocity potential Φ as a nodal degree of freedom.  The velocity potential Φ  is related to the 
fluid particle velocity v by 
 

ΦT−∇=v                 (5) 
 
and to the sound pressure p by 
 

Φρ &
0=p .               (6) 

 
The Nabla operator ∇  is defined as  
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Similar to the principle of virtual displacements it is possible to formulate a principle of virtual fluid potentials 
(Olson and Bathe, 1985). For these purposes equation (4) is multiplied by δΦ and integrated over the entire 
volume. After applying the Gaussian integral theorem and considering imposed normal velocities vn and 
impedance functions Z  as boundary conditions, the following result is obtained:  
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with 
  ΦΦ =  on ΦO ,                                (9) 
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Furthermore, the whole fluid volume Vf is divided into the inner and the outer region Vi and Vo. Both volumes are 
connected at their interface Ok by the normal velocity boundary condition. In order to take into account the 
influence of the outer fluid region, which extends to infinity, we follow the Doubly Asymptotic Approximation 
(DAA, Geers 1978). The behavior of the outer fluid is considered only in the low and high frequency range. At 
low frequencies the fluid of the outer region is assumed to be incompressible. In the high frequency range, the 
plane waves are considered. By superimposing these two effects the following equation is obtained  
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Following a standard finite element procedure with approximate function for the fluid potential Φ , the matrix 
equation of the acoustic fluid is derived as 
 
 ( ) ( ) aIaIaa fKKCCM =++++ ΦΦΦ &&& ,           (11) 
 
with the acoustic mass matrix Ma, the acoustic damping matrix Ca, the acoustic stiffness matrix Ka, the acoustic 
load vector fa and the matrices CI and KI, which characterize the outer fluid. It is important to remark that for the 
calculation of KI a so-called semi-infinite element has been developed (see Bettess, 1992), which enables the 
modeling of domains having an infinite boundary at least in one direction.  
  
 
2.3 Vibro-acoustic Coupling 
 
The vibro-acoustic coupling effect results in additional loads that act on the fluid-structure interface OS. There is 
load vector due to the sound pressure 
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and the load vector due to the structural vibrations 
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The matrices Nw and Na contain shape functions, n is the unity normal vector to the surface under consideration. 
Introducing these coupling forces, finally, the semi-discrete system of coupled equations consisting of the electro-
mechanical field (see equation (3)) and the acoustic field equation (11) together with equation (12) and (13) can 
be written as  
 

          
( ) 
































+−−

−
+

































− Φ
ϕ

Φ
ϕ

&

&

&

&&

&&

&& w

CC0C
000
C0Cw

M00
000
00M

Ia
T
wc

wcww

a

ww

00 ρρ
 

                
( ) 
















−
=

































+−
−+

a

w

Ia

T
w

www

f
f
fw

KK00
0KK
0KK

00 ρρ
ϕϕϕϕ

ϕ

Φ
ϕ .                      (14) 

 
 
2.4 Finite Element Implementation 
 
For the analysis and the simulation of piezoelectric smart structures a number of finite elements with coupled 
electro-mechanical degrees of freedom are available in the FE software COSAR. For smart thin-walled structures 
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a special layered shell type element, consisting of any number of passive and active (piezoelectric) layers (see 
Fig. 1a), is already available in the COSAR package (for details see Gabbert et al., 2002; Seeger, 2004). The 
development of this element is based on the classical SemiLoof-type shell element originally proposed by B. 
Irons (1980). Recently, new finite acoustic (see Fig. 1b) and semi-infinite acoustic finite elements (see Fig. 1c) 
have been developed and implemented into the COSAR software. Additionally, the coupling terms between the 
structural SemiLoof elements and the 3D acoustic finite elements have been developed and implemented, and, 
consequently, fully coupled vibro-acoustic simulations taking into account the interior as well as the exterior 
sound radiation can be performed numerically.  
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                            (a)                                                          (b)                                               (c) 
 

Figure 1. Coupling of shell elements and acoustic hexahedron elements: (a) piezoelectric SemiLoof-type shell 
element, (b) acoustic hexahedron element, (c) semi-infinite acoustic element 

 
 
3 Model Reduction and Controller Design 
 
As mentioned before due to the large number of degrees of freedom of a finite element model a model reduction 
technique is needed to design a controller. As it is well-known from the analysis of structural vibrations this 
reduction can be performed using a few preselected eigenmodes of the system. In the paper a modal truncation is 
applied, which is briefly presented in the following.  
 
  
3.1 Modal Truncation 
 
To apply the modal truncation technique to smart vibro-acoustic systems, equation (14) is rewritten in the 
following compact form  
 
 frKrCrM ~~~~
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Introducing the state space vector 
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from equation (15) it follows  
 

 











=+=













−
+













0
fzAzBz

M0
0Kz

0M
MC ~~~

~
~

~
~~

&&                                     (17) 

 
From equation (16) the linear eigenvalue problem can be derived 
 
 ( ) 0qBA =− ii ˆ~~

λ .                (18) 
 
The solution of equation (18) results in the modal matrix Q with 2k pairs of conjugate complex eigenvectors 
 
 [ ]k221 ˆ...ˆˆ qqqQ = .             (19) 
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If the modal matrix Q is ortho-normalized with ( )1diag~
== IQBQT  and ( )i

T λdiag~
== ΛQAQ , and new 

coordinates Qqz =  are introduced in equation (18),  the reduced state space form is obtained as 
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3.2 Controller Design 
 
If the state space equation (20) is extended by the measurement equation the set of equations, which  can be used 
to design an appropriate controller is obtained.  
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For this reason the state matrices A, B, E, C, D and F are transferred to Matlab/Simulink via a special data 
exchange interface.  Based on these model matrices in Matlab/Simulink a time independent LQ-controller was 
designed, which results in the following controller matrix R (for details see Nestorović et al., 2005) 
 
 ( ) ( )tt Rqu −= .               (22) 
 
 
4 Example 
 
The finite element model of a simply supported smart rectangular plate structure is used to demonstrate the 
capability of the presented software approach. Four piezoelectric patches as two collocated sensor/actuator pairs 
are attached to an elastic plate (see Fig. 2). The time-dependent behavior of the sound radiated into the upper half 

space was analyzed for the controlled and the uncontrolled case. The plate has been meshed with 96 layered 
SemiLoof-type finite shell elements. For the acoustic half space a discretization with 516 finite acoustic 
hexahedron elements and 236 semi-infinite acoustic hexahedron elements was performed to describe the behavior 
in the far field. 
 
For controlling the system a time-independent LQ-controller was designed taking into account the first five pairs 
of conjugate complex eigenvectors of the coupled system. In order to demonstrate the controlled and the 
uncontrolled behavior the plate is excited by a harmonic force containing the first three eigenfrequencies of the 
system. The designed controller is switched on after 1.5 s. In Figure 3 the measured sound pressure at a distance 

 
Figure 2.  Smart plate structure coupled with acoustic half space 
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of 639 mm above the middle of the plate is shown. After switching the controller on, the two collocated pairs of 
piezoelectric patch actuators and sensors result in a good noise reduction above the plate.  

 

 
 

5 Conclusions 
 
In the present paper the theoretical background of a general finite element simulation tool for the design of 
actively controlled thin lightweight structures to reduce the noise radiating is presented. Besides the passive 
structure, the finite element model includes active piezoelectric elements, the acoustic fluid, the vibro-acoustic 
coupling, and the controller influence. Piezoelectric layered shell type finite elements developed on the basis of 
the SemiLoof element have been extended to include a vibro-acoustic coupling with 3D acoustic finite elements 
and infinite elements for the far field. Because of the large number of degrees of freedom of the FE model, a 
modal truncation technique based on a complex eigenvalue analysis is performed in COSAR and the reduced 
model is transformed into the state space form. Based on a data interface the state matrices are transferred to 
Matlab/Simulink, where an appropriate controller can be designed and tested. The developed procedure is 
applied to a smart plate structure and the noise reduction after switching  the controller on is presented. The 
efficiency of the smart vibro-acoustic system can be improved by calculating optimal positions of the actuators 
and sensors at the structure. 
    
Acknowledgement: This work has been supported by the postgraduate program of the federal state of Sachsen-
Anhalt, which is gratefully acknowledged. 
 

Piezoelectric Material Properties: 
E11= E22= 60935 N/mm², G12= 22239 N/mm², ν=0.37,  
e31=-9.60⋅10-6 N/(mV)mm, κ33=1.87⋅10-14 N/(mV)²,  
ρ= 7.80⋅10-9 Ns²/mm4 
 
Material Properties of the Elastic Plate: 
E=70000 N/mm², ν=0.3, ρP=2.63⋅10-9 Ns²/mm4 
 
Material Properties of the Acoustic Fluid: 
c=340000 mm/s, ρ0=1.29⋅10-12 Ns²/mm4 
 
Dimensions of the Plate:  l1=600 mm, l2=400 mm, h= 2 mm 
 
Dimensions of the Patches: 100 mm × 50 mm × 0.2 mm 
 

Table 1.  Material properties and dimensions 

Figure 3. Resulting sound pressure 
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