
TECHNISCHE MECHANIK, Band 25, Heft 3-4, (2005), 218– 229
Manuskripteingang: 04. Juni 2005

Local Vibration and Buckling Modes of a Conic Shell. Comparison of
Numerical and Asymptotic Results

N.V. Naumova

Free vibrations and buckling under uniform external lateral pressure of a thin conic shell are analyzed. The
asymptotic and finite element methods are used to obtain the vibration frequencies, critical loads, and vibrations
and buckling modes.

1 Introduction

The hulls of many types of submarines and also aircrafts are systems of two connected shells. The forward part
of the connected shell system has the form of an indirect conic shell. Therefore, the investigation of the vibrations
and buckling under external pressure of such shells is very actual. In the paper free vibrations and buckling
under uniform external lateral pressure of a thin conic shell are analyzed. The asymptotic results for the vibration
frequency parameter and buckling parameter are compared with the numerical results (Finite Element Method)
for different types of indirect conic shells. The specific feature of the vibration and buckling modes of the shell
is their location in the neighbourhood of the longest shell generatrix. The figures presented in the paper show the
deformation process on the shell surface.

2 Basic Definitions. Geometry of an Indirect Conus

Consider an indirect circular conic shell. Further we use the terms ”direct conus” and ”indirect conus”. The
circular conus is called ”direct” if the conus top projection in the base plane (point C) coincides with the circle
center (point O). The circular conus is called ”indirect” if the points O and C are not coincident as shown in Fig. 1.
We introduce the orthogonal Cartesian coordinate system (x, y, z). The radius R of the shell base is taken as unit
length. The orthogonal dimensionless coordinate system (s, ϕ) is introduced on the middle surface of the shell (s
is the length of a meridian arc on the shell surface, ϕ is the angle in the circumferential direction). Later we prove
that coordinates s and ϕ are orthogonal. In Figure 1 the longitudinal section (left) and cross-section (right) of the
conic shell are shown.

Figure 1. An indirect circular conic shell surface (a) - side view, (b) - top view

The distance OC between the circle center (point O) and the conus top projection on the base plane (point C) is
denoted by e. The value ϕ = 0 corresponds to the longest generatrix AB of the shell, the distance OB = R is a
circle radius. The shell height H = AC. The point M is an arbitrary circumferencial point.
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3 Formula for the Length of the Shell Generatrix

The length of the generatrix AM = l of the indirect conic shell is not constant, but depends on the angle ϕ. To
obtain this dependence, we consider ∆COM in Figure 1(b). We denote the angle OCM further by ψ. According
to the sinus theorem and the Pythagoras theorem

CM =
sinϕ

sin ψ
, (1)

l2 = H2 + CM2, (2)

tg ψ =
sinϕ

e + cosϕ
, (3)

sin2 ψ =
tg2 ψ

1 + tg2 ψ
=

sin2 ϕ

e2 + 2e cosϕ + 1
. (4)

Substituting (1), (3), (4) into (2) we obtain the dependence between the generartix length of the shell and angle ϕ
in the following form l2(ϕ) = H2 + e2 + 2e cosϕ + 1.

4 Formula for a Curvature Radius of the Conic Surface

The cartesian coordinates (x, y, z) of point M of the conic surface can be expressed by curvilinear ones (s, ϕ) as

x =
s

l(ϕ)
· sin ϕ, y =

s

l(ϕ)
· (cosϕ + e), z =

s

l(ϕ)
·H. (5)

The equation for an indirect conic shell surface in vectorial form can be expressed as

r(s, ϕ) = sp(ϕ), lp = a = (sin ϕ, cos ϕ + e, H)
l2 = H2 + e2 + 2e cosϕ + 1, pp = 1, aa = l2.

(6)

To obtain the formula for the curvature radius of a conic surface it is necessary to find the coefficients of the first
quadratic form

dr2 = A2ds2 + 2AB cos γdsdϕ + B2dϕ2, dr = rsds + rϕdϕ,

A2 = rsrs, AB cos γ = rsrϕ, B2 = rϕrϕ
. (7)

For the conic surface considered

rs = p, rϕ = spϕ,

A2 = pp = 1, rsrϕ = sppϕ = s
2 (pp)ϕ = 0.

(8)

Hence, γ = π/2 and curvilinear coordinates s, ϕ are orthogonal.
Let us differentiate the equality lp = a with respect to ϕ

lϕp + lpϕ = aϕ = (cos ϕ, − sin ϕ, 0), aϕaϕ = 1. (9)

Let us differentiate the equality aa = l2 with respect to ϕ, hence: aaϕ = llϕ

paϕ = lϕ. (10)

Formulae (9) and (10) can be used to find the scalar product pϕpϕ:

l2pϕpϕ = (aϕ − lϕp)(aϕ − lϕp) = 1− l2ϕ. (11)

Then

B2 = s2pϕpϕ =
s2

l2
(1− l2ϕ), B =

s

l

√
1− l2ϕ, lϕ = −e

l
sin ϕ. (12)
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The main curvature radius of the conic surface can be defined through the second quadratic surface form Lds2 +
2Mdsdϕ + Ndϕ2, where

L = rssn, M = rsϕn, N = rϕϕn, n = m/|m|, m = rs × rϕ. (13)

For the conic surface L = M = 0, because of

rss = ps = 0, rsϕn = pϕ(p× spϕ)/|m| = 0. (14)

To obtain the main curvature radius of the conic surface R2 = −B2/N we have to find the coefficients N . If we
differentiate formula (9) with respect to ϕ

lϕϕp + 2lϕpϕ + lpϕϕ = aϕϕ (15)

and multiply it by vector m = sp× pϕ

pϕϕm =
1
l
aϕϕm (16)

taking into account the orthogonality of vectors p and pϕ we get the length of the vector m

|m| = s|p× pϕ| = s|p||pϕ| = s|pϕ| = B. (17)

According to formulae (9)–(18) we obtain

m =
s

l2
(lp× lpϕ) =

s

l2
[a× (aϕ − lϕp)] =

s

l2
(a× aϕ), (18)

N = rϕϕn =
s

B
pϕϕm =

s2

Bl3
(a× aϕ)aϕϕ. (19)

Taking into account the equality

(a× aϕ)aϕϕ =

∣∣∣∣∣∣

sin ϕ cos ϕ + e H
cos ϕ − sin ϕ 0
− sin ϕ − cosϕ 0

∣∣∣∣∣∣
= −H, (20)

we obtain

N = −Hs2

Bl3
, R2 = −B2

N
=

B3l3

Hs2
=

s

H
(1− l2ϕ)3/2. (21)

In case of the direct conus e = 0, lϕ = 0, B = s/l, R2 = s/H .

5 Buckling of the Conic Shell

The dimensionless equations describing the buckling of a thin elastic conic shell under uniform lateral external
pressure p Bauer et al. (1993), can be written as

ε4∆2w + λε2∆tw −∆kΦ = 0, (22)

ε4∆2Φ + ∆kw = 0, (23)

where

∆t =
1
B

∂

∂ϕ

(
t2
B

∂w

∂ϕ

)
, t2 = R2, λ =

p

Ehε6
, (24)

∆w =
1
s2

∂2w

∂ϕ2
+

1
s

∂

∂s

(
s
∂w

∂s

)
, ∆kw =

k

s

∂2w

∂s2
, ε8 =

h2

12(1− ν2)R2
. (25)
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Here w(s, ϕ) is a component of normal displacement, Φ(s, ϕ) is a stress function, k is a curvature of the shell
surface, h is a dimensionless shell thickness, R is a radius of a circumference in the base of conus, t2 is a dimen-
sionless tangent stress function, B is a distance between a point of a middle surface and the shell height, R2 is a
radius of curvature, λ is a buckling parameter (in the next section - a frequency parameter), ν is Poisson’s ratio, E
is Young’s modulus, ρ is the mass density, p is the value of the external pressure. The dimensionless thickness h is
a small parameter.

k(ϕ) =
s

R2(ϕ)
, R2(ϕ) =

s

H

(
1− l2ϕ

) 3
2 , B(ϕ) =

s

l

(
1− l2ϕ

) 1
2 , (26)

l2(ϕ) = H2 + e2 + 2e cosϕ + 1. (27)

The boundary conditions for system (22) – (23) can be written as

un = ut = w = θn = 0, (28)

when the shell edges are clamped. In case when the shell edges are simply supported

Tn = ut = w = Mn = 0 (29)

and when the shell edges are free

Tn = Snt = Mn = Nn = 0. (30)

In conditions (28) – (30) we use the variables proposed by (Filippov (1999))

un = u cos γ + v sin γ, ut = v cos γ − u sin γ, (31)

Tn = T1 cos2 γ + 2S sin γ cos γ + T2 sin2 γ, (32)

Mn = M1 cos2 γ + 2H sin γ cos γ + M2 sin2 γ, (33)

θn = θ1 cos γ + θ2 sin γ, Nn = N1 cos γ + N2 sin γ, (34)

Snt = (T2 − T1) sin γ cos γ + S
(
cos2 γ − sin2 γ

)
, sin γ =

e

l
sin ϕ. (35)

The angle γ in the expressions for the functions un, ut, Tn, Mn, θn, Nn, Snt, is the angle between the shell edge
and a coordinate line s = const. According to a procedure proposed by P.E.Tovsik (1995), the asymptotic solution
of the boundary value problem for equations (22)–(23), can be expressed as

w(s, ϕ, ε) = w0 exp





i

ε

ϕ∫

ϕ0

q(ϕ)dϕ



 , (36)

w0 =
∞∑

n=0

εnw0
n(s, ϕ), λ = λ0 + ελ1 + ε2λ2 + . . . , (37)

where

Im q(ϕ0) = 0, Im
{

dq

dϕ
(ϕ0)

}
> 0. (38)

Function Φ has similar asymptotic expansion. It follows from conditions (38) that the functions w, Φ have location
near the line ϕ = ϕ0. By substituting expressions (36) and (37) into (22), (23) and boundary conditions, we get
the equations for q(ϕ), wn(s, ϕ),Φn(s, ϕ) and values λn. In the zeroth-order approximation we obtain

k
∂2Φ0

∂s2
−

(
λ0 − q4

B4

)
w0 = 0, (39)
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k
∂2w0

∂s2
+

q4

B4
Φ0 = 0 (40)

with the boundary conditions

w0 = Φ0 = 0 if s = si(ϕ) (41)

when the shell edges are simply supported,

w0 =
∂w0

∂s
= 0 if s = si(ϕ), i = 1, 2. (42)

when the shell edges are clamped.

The boundary conditions (41)–(42) were obtained separating all boundary conditions (28)–(29) into the main and
additional ones. The choice of boundary conditions for equations (39)–(40) is discussed in Tovstik (1995). The
elimination of the function Φ0 from the system (39)–(40) gives the equation of fourth-order concerning a function
w0 and value λ0. The magnitude of a critical load can be deduced from λ0. Due to the fact that we can not define the
analytical exact solution of the equation system (39)–(40) we use a numerical method of a matrix orthogonalization
Godunov (1961). To apply this method we introduce a vector y which contains the unknown functions

y = (w0, w
′
0,Φ0,Φ′0). (43)

Then the system (39)–(40) of two differential equations of the second order can be reduced to the system of four
equations of the first order





ẏ1 = y2,

ẏ2 = − q4

kB4 y3,
ẏ3 = y4,

ẏ4 =
(

q4

B4 − λ0
q2R2

B

)
· 1

ky1

(44)

The system (44) can be presented in a vector form

ẏ = A · y. (45)

The boundary conditions (41)–(42) in the new variables take the form for simply supported shell edges

y4 = y3 = 0, (46)

for the clamped shell edges

y1 = y2 = 0. (47)

The system (44) can be solved by using numerical methods. Consider the buckling of a thin indirect conic shell
under uniform external lateral pressure. The shell generatrix ϕ = ϕ0 is the weakest one. For given examples
ϕ0 = 0 (we prove it in the next section) corresponds to the longest generatrix. As an example, a direct conic shell
under external lateral pressure is presented in Figure 2. The buckling modes plotted by FEM (side view (left) and
top view (right)) cover the shell surface uniformly .

Figure 2. Buckling mode of a direct circle conic shell (e = 0)
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Figure 3. Buckling mode of an indirect conic shell (e = 0.3)

When e 6= 0 (Fig. 3–5), the buckling mode has a location near the longest generatrix of the conic shell.

Figure 4. Buckling mode of an indirect conic shell (e = 0.5)

Figure 5. Buckling mode of an indirect conic shell (e = 1)

Assuming that the both shell edges are clamped and bounded by parallels s = si, i = 1, 2, numerical and
asymptotic calculations were performed.

e λ0 λ, h
R = 0.001 λ, h

R = 0.01
(FEM) (FEM)

0. 11.256 11.359 10.107
0.1 9.496 9.550 9.550
0.2 7.839 8.884 8.888
0.3 6.697 7.718 8.367
0.4 5.736 7.364 7.405
0.5 4.484 6.878 6.923

Table 1. The values of a critical external pressure in dependence on a shell eccentricity e.

The results of the asymptotic (formulae (37)—(55)) and numerical calculations (FEM) of the pressure parameter
are presented in a dimensionless form. In the third column for h

R = 0.001 and in the fourth column for h
R = 0.01

one can see the numerical results obtained by using of the Finite Elements Method. The following values of shell
parameters were used: R = 1 m, H = 1.6 m, ν = 0.3, E = 1.93 · 1011Pa. The data of Table 1 show that
the increase of the distance e leads to decrease of the external pressure. In case e = 0.3 (Fig. 3) we can see
the beginning of the location of a buckling mode near the longest shell generatrix. With a further increase of the
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distance e (Fig. 4–5), the buckling modes have a location only near the longest shell generatrix. In particular,
when e = 0.5 one of the shell generatrix has the length 1.9 for ϕ = π, when ϕ = 0 the longest shell generatrix
has the length 2.3, the zeroth-order approximation of the critical pressure and magnitude λ obtained by FEM are
very different. When the shell thickness increases, the relative errors in the asymptotic results compared with the
numerical ones increase respectively. When h

R = 0.001, the distinction between λ0 and λ (FEM) is equal to 0.9%
for e = 0, and 34% for e = 0.5. When h

R = 0.01, the distinction between λ0 and λ obtained by FEM is equal to
11.3% for e = 0, and 35% for e = 0.5. To correct the magnitudes of the zeroth-order approximation λ0, we search
the first-order approximation λ1 for the buckling parameter in the next section .

6 The First-Order Approximation for the Buckling Parameter

As was mentioned above, the system (39 - 40) of the second order differential equations can be reduced to one
differential equation of the forth order

−k
∂2

∂s2

(
B4

q4
k

∂2w0

∂s2

)
− q4

B4
w0 + λq2 R2

B2
w0 = 0. (48)

We divide the equation by q2 and multiply by −B2

R2
. Taking into account the connection between the curvature k

and the radius of the curvature R2: k = 1
R2

, the equation (48) will be

B2

q6R2
2

∂2

∂s2

(
B4

R2

∂2w0

∂s2

)
+

q2

B2R2
w0 = λw0. (49)

The differential operator situated at the left part of the equation (49) is denoted as

D4w0 =
B2

R2
2

∂2

∂s2

(
B4

R2

∂2w0

∂s2

)
. (50)

Then (49) can be presented as

1
q6

D4w0 = α4w0, α4 = λ− q2

B2R2
. (51)

We differentiate the equality (49) with respect to q

− 6B2

q7R2
2

∂2

∂s2

(
B4

R2

∂2w0

∂s2

)
+

2q

B2R2
w0 = λqw0 (52)

and multiply (52) by Bw0 and take the integral on the interval [s1, s2], taking into account (51), we obtain

λq = −6λ0

q
+ 8q

I1

I2
, (53)

where

I1 =
∫ s2

s1

w2
0

BR2
ds, I2 =

∫ s2

s1

Bw2
0ds. (54)

According to (51) buckling parameter λ is the function of the parameters q and ϕ: λ = q2

B2(ϕ)R2(ϕ) + α4 As the
zeroth-order approximation for the eigenvalue λ we select

λ0 = min
q,ϕ

f(q, ϕ) = f(q0, ϕ0). (55)

Then λq = ∂f
∂q = 0, λϕ = ∂f

∂ϕ = 0 for q = q0, ϕ = ϕ0. Solve equation λq = 0 and define the magnitude q0 that
gives the minimum of λ(q, ϕ). Further we assume q0 instead of q

q = q0 =
(

3I2λ

4I1

)1/2

. (56)
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We differentiate equality (52) with respect to q, multiply it by Bw0, and take the integral on interval [s1, s2] then

λqq =
42λ0

q2
− 40

I1

I2
. (57)

To find λϕ and λϕϕ we consider the zeroth-order approximation system (39)–(40). The system can be written by
the following differential operator

L(w0,Φ0) = 0. (58)

The elements of the matrix L can be written as

l11 = −
(

λ0 − q4

B4

)
, l12 = k

∂2

∂s2
, (59)

l21 = k
∂2

∂s2
, l22 =

q4

B4
. (60)

The first derivation of equality (58) with respect to ϕ can be expressed as

∂

∂ϕ
L(w0, Φ0) =

∂L

∂ϕ
(w0, Φ0) + L(wϕ, Φϕ) = 0. (61)

The generatrix ϕ = ϕ0 is the weakest one if ϕ0 satisfies equation λϕ = 0. In the case ϕ0 = 0. The second
derivative of equality (58) with respect to ϕ can be expressed as

∂2

∂ϕ2
L(w0, Φ0) =

∂2L

∂ϕ2
(w0, Φ0) + 2

∂L

∂ϕ
(wϕ, Φϕ) + L(wϕϕ, Φϕϕ) = 0. (62)

In equation (62) we use the following denotations:

∂2L

∂ϕ2
=


 −λϕϕ + ∂2

∂ϕ2

(
q2

B2R2

)
, ∂2

∂ϕ2

(
−B2

q2R2
2

)
· ∂2

∂s2

∂2k
∂ϕ2 · ∂2

∂s2 , ∂2

∂ϕ2

(
q4

B4

)

 (63)

∂L

∂ϕ
=


 −λϕ + ∂

∂ϕ

(
q2

B2R2

)
, ∂

∂ϕ

(
−B2

q2R2
2

)
· ∂2

∂s2

∂k
∂ϕ · ∂2

∂s2 , ∂
∂ϕ

(
q4

B4

)

 (64)

The coefficients in functions wϕ, Φϕ and their derivatives with respect to s in formula (62) are equal to zero when
ϕ = 0, hence, to find λϕϕ we take into account only the first and the third components of the sum in (62). Then

λϕϕ =
1
I2

(J1 + J2 + J3 + J4 + J5) (65)

where

J1 = − 1
q2

∫ s2

s1

∂2

∂ϕ2

(−B2

R2
2

)
Bw0 · ∂2Φ0

∂s2
ds, (66)

J2 = q2

∫ s2

s1

∂2

∂ϕ2

(
1

B2R2

)
Bw2

0ds, J3 = −q2

∫ s2

s1

∂2

∂ϕ2

(
1

B4

)
BΦ2

0ds, (67)

J4 = −
∫ s2

s1

∂2k

∂ϕ2
BΦ0

∂2w0

∂s2
ds, J5 = −

[
kBΦ0

∂wϕϕ

∂s

]s2

s1

. (68)

According to Tovstik (1995), the first-order correction for the eigenvalue λ can be found by the following formula

λ1 =
1
2

(λqq · λϕϕ − λqϕ)
1
2 (69)
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where the partial derivatives (57) and (65) are calculated for q = q0, ϕ = ϕ0 and λqϕ = 0.

As the example we consider an indirect conic shell with e = 0.5.

λ0 λ0 + ελ1 λ (FEM)
4.484 5.775 6.878

Table 2. The values of the critical external pressure.

The critical pressure obtained with the help of the asymptotic formulas (37), (69) is presented in the second column.
In the third column one can see the numerical results computed by the finite element method. About 1600 four-
node shell elements were used in calculation. The computation time for one pressure by FEM is a few minutes.
The maximal relative error in the asymptotic results compared with the numerical ones is 6%.

7 The Vibrations of an Indirect Conic Shell. The Zeroth-Order Approximation

For the problem of the shell vibrations, the component ε2∆tw in formula (22) should be changed into −w. The
dimensionless equations describing the small free vibration of a thin elastic conic shell, can be written as

ε4∆2w − λw −∆kΦ = 0, ε4∆2Φ + ∆kw = 0, (70)

where λ = ρR2ω2

Eε4 and ω is the vibration frequency. Further we apply the asymptotic method proposed by Tovstik
(see the formulae (36) – (37)). In the zeroth-order approximation we obtain

q4

B4
w0 − λ0w0 − k

∂2Φ0

∂s2
= 0,

q4

B4
Φ0 + k

∂2w0

∂s2
= 0. (71)

We can find the magnitudes for the frequency parameter λ0 by numerical integration of the differential equation
system (71) with boundary conditions (41) or (42). The magnitudes of λ0 and λ are presented in Table 3 for an
example where the shell edges are clamped

w0 =
∂w0

∂s
= 0 for s = si(ϕ), i = 1, 2. (72)

In the third and in the forth columns one can see the numerical results computed by the finite element method. In
the third column the relation of shell thickness and the radius of the shell base is equal to h

R = 0.001 and in the
forth column – h

R = 0.01.

e λ0 λ, h
R = 0.001 λ, h

R = 0.01
(FEM) (FEM)

0. 29.1 29.7 23.5
0.1 28.8 29.2 22.8
0.2 25.8 27.6 21.2
0.3 22.5 25.8 19.5
0.4 19.6 23.8 18.4
0.5 16.8 22.2 17.2

Table 3. The values of the frequency parameters vs. shell eccentricity e.

In case e = 0 the conic shell is a direct one. The data of Table 3 show that with increasing of the distance e
the zeroth-order approximations λ0 is noticeable distinguished from the magnitudes λ obtained by using the finite
element method. When the shell thickness increases, the relative errors in the asymptotic results compared with
the numerical ones increase respectively. When h

R = 0.001, the distinction between λ0 and λ (FEM) is equal to
2% for e = 0, and 19.5% for e = 0.5. When h

R = 0.01, the distinction between λ0 and λ obtained by FEM is
equal to 19.2% for e = 0, and 2.3% for e = 0.5. To correct the magnitudes of the zeroth-order approximation λ0

we obtain the correction of the first-order approximation λ1 for the frequency parameter.

For a direct circular conic shell (Fig. 6) the vibration modes are uniformly distributed over the shell surface. If
e = 0.3 (Fig. 7) one can see the beginning of the location of the vibration mode near the longest shell generatrix.
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Figure 6. Vibration mode of a direct conic shell (e = 0)

With further increasing of the distance e (Fig. 8–9), the vibration modes have a location near the longest shell
generatrix.

Figure 7. Vibration mode of an indirect conic shell (e = 0.3)

Figure 8. Vibration mode of an indirect conic shell (e = 0.5)

8 The First-Order Approximation for the Frequency Parameter

To define the correction of the first-order approximation λ1 for the frequency parameter, we use the method de-
scribed in previous section for the system (71). As a result we obtain

λq = −4λ0

q
+ 8q3 I1

I2
, (73)

where

I1 =
∫ s2

s1

w2
0

B3
ds, I2 =

∫ s2

s1

Bw2
0ds, (74)

λq = 0, (75)

q = qmin =
(

I2λ

2I1

)1/4

, (76)

λqq =
20λ0

q2
− 8q2 I1

I2
, (77)
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Figure 9. Vibration mode of an indirect conic shell (e = 1)

λϕϕ =
1
I2

(J1 + J2 + J3 + J4 + J5) . (78)

where

J1 = q4

∫ s2

s1

∂2

∂ϕ2

(
1

B4

)
Bw2

0ds, (79)

J2 = −
∫ s2

s1

(
∂2k

∂ϕ2
B

∂2w0

∂s2
+ 2

[
∂

∂s

∂2k

∂ϕ2

]
B

∂w0

∂s

)
ds, (80)

J3 = −q4

∫ s2

s1

∂2

∂ϕ2

(
1

B4

)
BΦ2

0ds, J4 = −
∫ s2

s1

∂2k

∂ϕ2
BΦ0

∂2w0

∂s2
ds, (81)

J5 = −
[
kBΦ0

∂wϕϕ

∂s
− kB

∂Φ0

∂s
wϕϕ

]s2

s1

. (82)

The first-order correction for the eigenvalue λ can be found by formula (69), where the partial derivatives (77) and
(78) are calculated for q = q0, ϕ = ϕ0 and λqϕ = 0.

As an example we consider an indirect conic shell with e = 0.5.

λ0 λ0 + ελ1 λ (FEM)
16.8 21.3 22.2

Table 4. The values of the frequency parameters.

According to the data of Table 4. the zeroth-order approximation is λ0 = 16.8, and if taking into account the
correction of the first-order approximation λ0 +ελ1 = 21.3. The relative discrepancy in asymptotic and numerical
results is 4.1%.

The presented numerical calculations were performed for conic shells with the following material properties: E =
7.3 · 1010 N/m2 is Young’s modulus, ν = 0.33 is Poisson’s ratio, ρ = 2770 kg/m3 is the mass density.

The simple approximation asymptotic formulas for the frequency and buckling parameters are derived. The com-
parison of asymptotic and FEM results shows the reliability of the presented formulae. However, the advantage
of the asymptotic formulas is their relative simplicity and effective applications compared with the finite element
method programs.
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