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Numerical Treatment of Finite Rotation for a Cylindrical Particle

B. Renner, H. Altenbach and K. Naumenko

A problem for a rotation of a rigid cylindrical body in a mediuis analyzed based on the laws of dynamics. The
resistance moment is taken into account. For the numeridation equations governing the rotary motion are
formulated in terms of the right angular velocity and theatiin vector. The equations are solved numerically
applying the Runge-Kutta method. The results illustrate time variation of the unit vector spanned on the
longitudinal axis of the body. By neglecting the momentsdais friction the numerical results agree well with
the classical analytical solution.

1 Introduction

During the last years many industries have more and more i¢erested in construction materials, that are,
compared with metals or ceramics, lightweight and easy twgss. Such materials are, for example, fiber
reinforced thermoplastics (fiber length about 0.1 - 1 mm,rfdiameter about 0.01 mm, fiber volume fraction
15-40 %). They have, compared with pure polymeric materismgroved mechanical properties. Load
transmitting, thin-walled structures can, like composantde of pure polymers, be manufactured by injection
molding, see Michaeli (1999). Because of highly automatexipction, short cycle time and low production
costs this manufacturing process is of particular interest

During the filling stage of the injection molding process amstructure of preferred fiber orientation forms,
that is dominated by the flow. It leads to an anisotropy of tleeimanical properties (Yasuda et al. (2002)). In
order to be able to predict the structural behavior (suchitisess, strength, shrinkage, warpage) of an injection
molded component, it is necessary to know the fiber orieiadt every point (VerWeyst et al. (1999)). It is
known from experiments that it is usually not constant (Bag aucker (1992) and Whiteside et al. (2000)), but
it is influenced by various factors like the processing ctiads or the geometry of the mold cavity.

During the design of a construction component it is impdrtanpredict its strength and stiffness. Therefore
one needs a simulation software with which it is possibledgmdnstrate the formation of the fiber orientation
during the filling stage. Thus the characterization of the/#s well as of the developing microstructure and the
resulting anisotropy is of special interest for the desifjooonponents.

This paper deals with the rotational motion of one singldiglarthat is surrounded by a medium. The numerical
treatment of a finite rotation is nontrivial and numeroustdbations have been made in the framework of
continuum mechanics (e. g. Menzel et al. (2004)). The detation of the rotation of one particle is the first
step in the creation of a model to simulate the formation effther orientation during the injection molding
process. In order to develop such a model for a suspensioldgfiblem has to be solved (see e. g. Altenbach
et al. (2003)).

The scope of this paper therefore is to formulate and disthiesgoverning equations describing the motion of
a single cylindrical particle under the consideration @& tesistance and the friction moment. In addition, we
discuss an efficient algorithm of this problem and compare®sults with the classical solutions.

2 Basic Equations

The object of this paper is to present a solution techniqte which one can determine the orientation of a single
particle that is suspended in a viscous fluid. The partictegarded as a rigid body. The actual position of each
point of a body, in relation to a frame of reference, is spedifiith the help of its position vector. In Figure g
andr are the position vectors of the reference p@nand of a poin® in the initial position (timetg) andR(¢)
andR(t) are the time-dependent position vectors of the actual time {().

Each material point has three degrees of freedom. For themat a rigid body six degrees of freedom must be
considered (see e. g. Gummert and Reckling (1994)). The bgsiation with which the motion may be described
is the fundamental theorem of the kinematics of rigid bodtest takes the form

R(t) = Rq(t) + P(t) - (r —rq) 1)
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Figure 1. Reference and Actual Position of the Points of adRgdy
with P(t) being the rotation tensor. In order to create a particle rhiha@ebalance equations of the momentKm
and of the angular momentuky have to be set up:

d d
ZKi=F 2K =M. @

The momentum and the angular momentum follow from the eqnaif the kinetic energ¥ of a body that is
known from the Eulerian mechanics

K—m(%v-v+v-3-w+%w~c-w). 3)

In equation (3B andC are tensors of inertiay the mass of the body,its translatory andv its angular velocity.
Momentum and angular momentum are defined as follows

oK 0K oK
K, = 0 K> = [R(t) —rp] X » | 5w (4)

with rp being the position vector of a fixed poifif in the reference frame, see Figure 1. From the first equation
of (4) and equation (3)

can be derived. Concerning tendthe following equation is valid:
B(t) = P(t)-By- P (1), By =m(rs —rg) X E. (6)

E is the second rank unit tensor angis the position vector of the center of mass. If the refergruist is located
in the center of mass (i. 5 = r), B becomes the zero tendband the momentum is

K = mo. (7)
From the second equation of (4) one obtains the followingaéiqo for the angular momentum:

K,=(Rg—rp)xK1+B-v+C w (8)
and, accordingly wittB = 0,

K2:(RQ—rp)><K1+C-w. (9)

152



If the translatory velocity is equal to zera & 0), the momentum is also zerK{ = 0) and the angular momentum
is reduced to

K2 =C w. (10)
The tensocC is time dependent
C(t) = P(t)-Co-PT(t) (11)

andCy is the reference tensor of inertia. In order to calcu@jeconsider a rigid body occupying a volunie
The moment of momentum for the body is calculated as follows:

K> = /g R(t) — rp] x vdV, (12)
14
whereg is the mass density of the body. Using Euler’s formula (Ha¢h@49)) for the velocity distribution in a
rigid body
v(t) = vo(t) + w(t) x [R(t) —=Rg(t)] = vo(t) + w(t) x P(t) - (r—rp) (13)
as well as equations (11) and (12) one can obtain

C(t) = P(t) - {Q/ [(r=rQE— (r—rg) @ (r —1q)] dV} PT(1). (14)

v

By comparing equation (11) with equation (14) the tergin equation (11) can be determined as
Cy= Q/ {(r —10)’E— (r—rg) ® (r — rQ)} av. (15)
1%

The reference poin® of the particle can arbitrarily be chosen without loss ofeyatity. The simplest case is that
the reference point is selected in the center of mass. Tlginaf the co-ordinate system is also placed in this
point, i. e.ro = 0. With these assumptions equation (15) is reduced to

CO:Q/(rZE—r®r)dV, P=r-r. (16)
v

In what follows we consider a cylindrical body with the rasliti and the height{. In this case tensdt is
transversally isotropic and takes the form

Co = Ampemy+ u(E —mymy), a7
_ TTra _ T 4 2173
A= oR'H, u 912(3RH+RH)
whereA andy are the moments of inertia. ConsideriVig= 7t RH ando = mV one gets

m m
A= —R? =—
2 =1

(3R2 + H2) : (18)

3 FrictionlessMotion of a Rigid Body. Classical Solution

Zhilin gives in Zhilin (2001) the classical analytical stan of the equation of motion of a rigid body in the
gravitational field. In the following the main results arédlfliy discussed. Its tensor of inerti is transversally
isotropic and in the reference position (i. e. at the time 0) given by

Co=Amy@my+ u(E —my@my), (19)
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wherem,, is the unit vector of the longitudinal axis of the body in itétial position. It is assumed that friction
between the body and its surrounding does not exist. The mtmK; and the angular momentuk of the
body take the form

Ky = mRy(t), K> = Ru(t) x mRy(t) +L, L="P(t)-Co-PT(t)- w(t) (20)

with R,, = %Rm, R, being the time dependent position vector of the center ofsm&sr the given angular
velocity the rotation tensor can be determined from thedeoigquation

P=wxP. (21)

The first and the second law of dynamics are presented in loe/fog. The momentum balance equation is given
by

d .

whereG is the universal gravitational constaiit = 6,67259 - 10~ m3 - kg~! - s=2). Equation (22) has four
integrals (one scalar and one vectorial). The scalar integpresents the conservation of energy of the translatory
motion. It is obtained by the scalar product of both sidesgpfagion (22) with vectoR,,, as follows

dm. . d Mm 1 . . Mm
E{ERmRm}—E[GT] éEmRnyRm—GT—ET—COI’]St (23)

In equation (237 is the energy of the translatory motion of the body. The wealtintegral represents the
conservation of the moment of momentum. It is obtained by#wtor product of both sides of equation (22) with
vectorR,, as follows:

mRmem:—G%Rmem:O (24)
R,, x mR,, = H = const = R, -H=0. (25)

With the help of the balance equation for the angular monmantu

%[Rm(t) < mRy(£) + P(1)-Co- P (1) w(t)] =0 (26)

and equation (25) the following expression can be obtained:

P(t)-Co-PT(t) - w(t) = L = const. (27)
Rearranging equation (27) yields

w(t)=P(t)-Cy' - PT(t)- L. (28)
Equation (28) must be solved together with the Poisson eué?l) in order to find the rotation tensor. The

initial conditions for the rotation tens@ and the angular velocity must be given, for example, in the following
form:

=
=
I
m
£
=
I

wy = L=Cy wp. (29)
The energy of the rotary motiary is calculated by

er = %w(t) P(H)-Co-PT(H) - w(t) = %L Cw(t) = %L-P(t) ;1 PT() L. (30)
By differentiating equation (30) with respect to time anahsidering equations (28) and (21) one can show that
the energy of the rotary motion is conserved.
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The rotation tensor may be specified by the Euler theorem (&higin (1996))

Qy(t)n(t)] =1 —cosy(t)|n(t) @n(t) + cos P (t)E +siny(t)n(t) X E, (31)

where the unit vecton stands for the rotation axis andr < @ < 7 for the angle of rotation. The rotation
tensor contains nine components, but only three of themratependent (Gummert and Reckling (1994)). In
equation (31) the independent quantities are two compserméihe vecton and the anglep.

Each rotation can be expressed as a composition of rotatfothe type (31) (Zhilin (2001)). In the case of the
free rotation of a transversely isotropic body we have

P(t) = Q[yp(t)n] - Q[g(t)mo], n = — = const (32)

whereg is the angle of the own rotation around the axis of isotropyhef body andp is called the angle of
precession around the constant vedtomserting equation (32) into equation (30) yields

e = L-w(t)= 3L QUm) Qlgmo)-Cy' Q" (pmo) - Q" (ym) L (39
= %L-C51~L:const.

The angular velocity is calculated by

w = ¢n+¢Q(yn) - my. (34)
Taking into consideration the equality

n-Q(yn) =n (35)
the angular velocity takes the form

w = Q(yn) - (4yn + pmo) . (36)

Inserting equations (32) and (36) into equation (28) andutating the left dot product of the resulting equation
with QT (yn) yields the following expression

17l7L + L(me = LCal -L = Lwy, L= \/yzw(z) + ()Lz — yz)(mo . w)2 (37)

with L being the magnitude of the vectbr The solution of equation (37) is given by

. (o) = “”A;“ (mo - L). (38)

4 Moment of Friction

In order to describe the motion of the particle, the partioledium-interaction must be known. We make the

following assumptions: (1) The particle under considerais moment-free supported in its center of mass. From
this assumption follows that the interaction between theigla and the medium is described by a moment.

(2) Brenner supposes in (Brenner (1964)) that the mediunmassturbed in a large distance from the particle.

The hydrodynamic moment, exerted on the particle in a visdloid, can, according to Brenner, be presented as
follows:

M=— [G.(w—¢)+<3>c--D}, ¢:%va, D:%(VIH—(Vv)T), (39)

wherev is the velocity of the undisturbed flog and (®)C are the second and third rank resistance tensors that

depend on the viscous properties of the fluid and the georoétitye particle. We limit our considerations to
the case that the undisturbed flow is at rest. Disturbanbasate caused by the particle itself, will here not be
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discussed. From that follows, that in equation (BB)}= 0 and¢ = 0, and therefore that the moment is a linear
function of the angular velocityw taking the form

M(t) = —P(t)-Go-PT(t) - w(t). (40)

We call M resistance moment ar@, resistance tensor. Since the particle is assumed to be radeylivith
transverse isotropy, the resistance tensor can be presenfellows:

Go=amyg@my+ B (E—mymy) (41)
with my being the unit vector of the symmetry axis of the particlee Tonstanta and describe the influence

of the surrounding medium on the particle rotation. Theyathepon the geometry and the surface properties of
the particle and on the fluid.

Figure 2. Cylindrical Particle

In Figure 2 a cylindrical particle is presented. In this figd® is a differential element on the surface. lmebe
the outer normal unit vector of the surface. We assume tleatetbultant force exerted @A can be presented as
follows:

dF = fdA, (42)
wheref is the force intensity. The interaction force consists afregential and a normal part

dF. = f_dA,  dF, =f, dA. (43)

The resistance moment can then be calculated by means of
M= [r,x(f,+f,)dA. (44)
A

The translatory velocity of a poii may in analogous manner be divided into a normal and a taiadpatt:
V=0, +0r =0, n@n+v, - (E-n®n). (45)
For the intensitieg . andf,, we assume a linear dependence on the velocities, i. e.

—Cv,-n®@n , v,-n>0
fT:_ng:_gpp.(E—n(@n), fn:{ po , vi-ngo ’ (46)

{ and¢ are the coefficient of friction and resistance, respegtivEhe resistance force does not act on the whole
surface, but only on a part of it. In order to calculate thetipharea on which the resistance force acts, the
inequalityv,, - n > 0 must be solved. With the angular velocitythe velocityv, may be specified as

vp(rp) = w x 1) (47)
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Using cylindrical coordinates ¢, z, every point on the surface is described by the positionorect
ry(z, @) = re, 4+ zmy, (48)

wherem, is the unit vector of the longitudinal axis of the cylinderthe initial configuration. The unit normal
vectorn and the position vectar, are different for the lateral and the upper (lower) top stefaln the case of
the lateral surface = e, andr, = Re, + zm( with R being the radius of the cylinder. The points of the upper
(lower) top surface are described by means,of- re, + Zm,, whereZ = & H/2. The normal vecton is equal

to the unit vector of the longitudinal axigy. The inequality, - n > 0 then becomes

ze, - (w x mgy) > 0 (49)
for the lateral surface and

re, - (w xmgy) <0 (50)
for the upper (lower) top surface, respectively. The crosdipctw x my is the normal vector to the plane spanned
onw andmy, see Figure 3. The meaning of the above inequalities is olsvibhey characterize those parts of the

outer surface that are affected by the resistance forcesdlnéion is presented in Fig. 3 for the upper part of the
cylinder 0 <z < H/2).

} o~
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Figure 3. Part of the Surface, where the Resistance Foroeeisds.

Substitutingr,, f. and f,, in equation (44) by equations (46) and (48) one gets the aotst andp of the
resistance tensor, being

8 = mg (R4+2R3H), (51)
B = nt RH + LR2H? + LRp + & Tpa Lppps
2 12 2 24 ‘

5 Equation of Motion in Terms of the Right Angular Velocity and the Rotation Vector

From the balance equation of the angular momentum

d

7K =M, Ky = P(t)-Co-PT(t) - w(t) (52)
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follows with equation (40)
[P(t) -Co-PI(t)- w(t)] = —P(t)-Go-PT(t) - wl(t). (53)
Equation (53) is a system of three differential equationst&ining six unknown quantities (three independent

components of the rotation tensBrand three components of the angular veloaily i. e. the system is indeter-
minate. It can be solved by taking into account the Poisso@atian (21) and the relation

PT(t) - w(t) = Q(t) (54)

between the left) and the right2) angular velocity. It must be distinguished between theabse the dot
product of two tensors is not commutative:

S;(t) = P(t)-PT(1), S,(t) = PT(t)-P(t). (55)

In equation (558, andS, are called the left and the right spin tensor. They are caedesith the left and the
right angular velocities (see e. g. Zhilin (1996)) as

S;(t) =w(t) x E=E x w(t), S:(t) =Q(t) x E=E x Q(t). (56)
After introducing the right angular velocity equation (38kes the form

Q=C'(Gy-Q)-Cyl-[Qx(Cy-N)]. (57)
The quantitied, w and2 are also time-dependent, which is not explicitly noted. &gpns (57) contain only
three unknowns, that are the components of the va@oBy introducing it the rotation tensor is eliminated.
Together with the vectorial equation (57) the Poisson eéqndibr the right angular velocity

P=Pxn (58)

must be solved in order to calculate the components of ttetioot tensor in dependence on time. With the
equivalent relation of equation (54)

w=P-0 (59)

the left angular velocityw can be obtained. Because of the non-linearity equationysésvanalytically be solved
only for simplified models. In this work a numerical solutiprocedure is presented. It is significantly easier
if, instead of the rotation tensor, the rotation vedas used. It provides another opportunity to quantitatively
describe a rotation (see e. g. Menzel et al. (2004)). Thetamua

b=0+20x0+1 50 @x0) (60)
with
__Osin6 02=0.0 6—16| =66 (61)
§= 2(1—cosb)’ - S

is equivalent to the Poisson equation (21) if the rotatiootaeis used (Zhilin (2000)). Now the system of
differential equations that is to be solved takes the form

o}
]

—Cy (Go-2)—Cyt [ % (Cy- )], (62)
1

1 —
Q+§0><.()+ 2g0><(0><ﬂ).

6
The initial conditions ar€2(0) = 0, and#(0) = 0. In order that the denominator of the teﬁg‘gg does not equal

zero during the solution procedure of the differential eures, the small number @001 was added. Apart from
that, the initial conditions of the components of the ratatvectoi® were also sed.001. Having solved equations
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(62) the rotation vectd® as a function of time is known. With the following equatiom ttotation tensoP can be
calculated

p(o)zl_T(;()Se0®0+¥0><E+cos9E (63)

and with equation (59) the vector of the left angular velpai(t) which is the solution of the equation of motion.

6 Solution of the Equation of Mation

The numerical solution was calculated with the help of theeercial code Mathcdd with the Runge-Kutta
method with adaptive increment. It was assumed that thénhefghe cylindrical particle is 25 times greater than
its radius @ = 25R). The initial angular velocity was assigned to be

1
Q=1 2 |. (64)
3

In order to prove the system of differential equations, #milts of the numerical solution in the case of a friction-
free rotation was compared with the classical solution efdfuation of motion. In that case the resistance tensor
Gy in the first equation of (62) equals the zero ter3oiThe results of the, with both methods, calculated left
angular velocity are shown in Table 1. The differences betwmoth solutions are very small and result from the
solution procedure of the numerical calculation, i. e. fritva small difference of the initial conditions.

Table 1. Comparison of the Left Angular Velocigy [s~!], Calculated with the Analytical and the Numerical
Solution of the Equation of Motion

| t[s] | w (analytical) | w (numerical) || t[s] | w (analytical) | w(numerical)|

—0.876 —0.876 —0.918 —0.907
1 1.634 1.628 6 2.291 2.304
3.250 3.253 2.812 2.805
0.603 0.590 0.994 1.001
2 2.660 2.668 7 2.087 2.083
2.561 2.556 2.942 2.943
—-0.167 —0.186 —0.824 —0.819
3 1.191 1.202 8 1.558 1.567
3.543 3.538 3.301 3.297
—0.269 —0.265 0.516 0.528
4 2.793 2.798 9 2.709 2.710
2.476 2471 2.529 2.525
0.684 0.689 —0.062 —0.042
5 1.397 1.400 10 1.180 1.200
3.403 3.401 3.550 3.544

The actual position of the particle can be illustrated sibcan be calculated in the following manner
m(t) = P(t) -my. (65)

In equation (65)n(t) is the unit vector of the longitudinal axis of the particletive actual anak in the initial
position, which was chosen to be

e
mp=— | 1], (66)
VERW

In both cases, the classical solution and the above prebserddel of motion, the course of a rotating particle is
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similar as is shown in Figure 4 (marked with circles).

If interactions between the particle and the surroundingliote occur, the tensoGy, # 0. To give a nu-
merical solution of equations (62) the coefficiedtsand ¢ have to be known. In the computations we set
{ =& =0.003kg/m?s. It can be shown that, if interactions are taken into consiiien, the motion of the
particle is slowing down. In Figure 4 the line with circulamnsbols shows the motion if friction is neglected. The
consideration of friction results in the line with triangusymbols.

Figure 4. Course of the Rotation of the Particle in the Irdéds < ¢t < 55; Circles without Friction; Triangles
with Friction

7 Conclusions

In this work a model was developed with which the orientatiba rigid particle, that is suspended in a medium,
may be determined. For that the equation of motion of thegdanvas derived from the balance equation of the
angular momentum. The equation of motion was solved nuigrion the basis of the Runge-Kutta method.
In a first step the obtained angular velocity of the model tipad here was, in the case of friction-free motion,
compared with the classical solution. It could be showrt,tti@numerical solution agrees with the analytical one.
After that interactions (friction, resistance) betweea garticle and the surrounding medium were considered.
With the assumed values dfand¢ the particle rotates with a minor velocity. The rotationtod semi axis of the
particle in a time scale dfs was presented graphically.

In order to develop a simulation software with which the otaion of fibers during the filling stage of the
injection molding process can be predicted the model musixbended to a multi-particle system. In addition,
the friction and the resistance coefficient must be quadtifie
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