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Numerical Treatment of Finite Rotation for a Cylindrical Particle

B. Renner, H. Altenbach and K. Naumenko

A problem for a rotation of a rigid cylindrical body in a medium is analyzed based on the laws of dynamics. The
resistance moment is taken into account. For the numerical solution equations governing the rotary motion are
formulated in terms of the right angular velocity and the rotation vector. The equations are solved numerically
applying the Runge-Kutta method. The results illustrate the time variation of the unit vector spanned on the
longitudinal axis of the body. By neglecting the moment of viscous friction the numerical results agree well with
the classical analytical solution.

1 Introduction

During the last years many industries have more and more beeninterested in construction materials, that are,
compared with metals or ceramics, lightweight and easy to process. Such materials are, for example, fiber
reinforced thermoplastics (fiber length about 0.1 - 1 mm, fiber diameter about 0.01 mm, fiber volume fraction
15 - 40 %). They have, compared with pure polymeric materials, improved mechanical properties. Load
transmitting, thin-walled structures can, like components made of pure polymers, be manufactured by injection
molding, see Michaeli (1999). Because of highly automated production, short cycle time and low production
costs this manufacturing process is of particular interest.
During the filling stage of the injection molding process a microstructure of preferred fiber orientation forms,
that is dominated by the flow. It leads to an anisotropy of the mechanical properties (Yasuda et al. (2002)). In
order to be able to predict the structural behavior (such as stiffness, strength, shrinkage, warpage) of an injection
molded component, it is necessary to know the fiber orientation at every point (VerWeyst et al. (1999)). It is
known from experiments that it is usually not constant (Bay and Tucker (1992) and Whiteside et al. (2000)), but
it is influenced by various factors like the processing conditions or the geometry of the mold cavity.
During the design of a construction component it is important to predict its strength and stiffness. Therefore
one needs a simulation software with which it is possible to demonstrate the formation of the fiber orientation
during the filling stage. Thus the characterization of the flow as well as of the developing microstructure and the
resulting anisotropy is of special interest for the design of components.
This paper deals with the rotational motion of one single particle that is surrounded by a medium. The numerical
treatment of a finite rotation is nontrivial and numerous contributions have been made in the framework of
continuum mechanics (e. g. Menzel et al. (2004)). The determination of the rotation of one particle is the first
step in the creation of a model to simulate the formation of the fiber orientation during the injection molding
process. In order to develop such a model for a suspension a field problem has to be solved (see e. g. Altenbach
et al. (2003)).
The scope of this paper therefore is to formulate and discussthe governing equations describing the motion of
a single cylindrical particle under the consideration of the resistance and the friction moment. In addition, we
discuss an efficient algorithm of this problem and compare our results with the classical solutions.

2 Basic Equations

The object of this paper is to present a solution technique with which one can determine the orientation of a single
particle that is suspended in a viscous fluid. The particle isregarded as a rigid body. The actual position of each
point of a body, in relation to a frame of reference, is specified with the help of its position vector. In Figure 1rrrQ

andrrr are the position vectors of the reference pointQ and of a pointP in the initial position (timet0) andRRRQ(t)
andRRR(t) are the time-dependent position vectors of the actual time (t > t0).
Each material point has three degrees of freedom. For the motion of a rigid body six degrees of freedom must be
considered (see e. g. Gummert and Reckling (1994)). The basic equation with which the motion may be described
is the fundamental theorem of the kinematics of rigid bodies, that takes the form

RRR(t) = RRRQ(t) + PPP(t) · (rrr − rrrQ) (1)
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Figure 1. Reference and Actual Position of the Points of a Rigid Body

with PPP(t) being the rotation tensor. In order to create a particle model the balance equations of the momentumKKK1

and of the angular momentumKKK2 have to be set up:

d

dt
KKK1 = FFF,

d

dt
KKK2 = MMM. (2)

The momentum and the angular momentum follow from the equation of the kinetic energyK of a body that is
known from the Eulerian mechanics

K = m

(

1

2
vvv · vvv + vvv · BBB · ω +

1

2
ω ·CCC · ω

)

. (3)

In equation (3)BBB andCCC are tensors of inertia,m the mass of the body,vvv its translatory andω its angular velocity.
Momentum and angular momentum are defined as follows

KKK1 =
∂K

∂vvv
, KKK2 = [RRR(t)− rrrP]× ∂K

∂vvv
+

∂K

∂ω

(4)

with rrrP being the position vector of a fixed pointPf in the reference frame, see Figure 1. From the first equation
of (4) and equation (3)

KKK1 = m(vvv + ω · BBB) (5)

can be derived. Concerning tensorBBB the following equation is valid:

BBB(t) = PPP(t) · BBB0 · PPPT(t), BBB0 = m(rrrS − rrrQ) ×EEE. (6)

EEE is the second rank unit tensor andrrrS is the position vector of the center of mass. If the referencepoint is located
in the center of mass (i. e.rrrS = rrrQ), BBB becomes the zero tensor000 and the momentum is

KKK1 = mvvv. (7)

From the second equation of (4) one obtains the following equation for the angular momentum:

KKK2 = (RRRQ − rrrP) ×KKK1 + BBB · vvv + CCC · ω (8)

and, accordingly withBBB = 000,

KKK2 = (RRRQ − rrrP) ×KKK1 + CCC · ω. (9)
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If the translatory velocity is equal to zero (vvv = 000), the momentum is also zero (KKK1 = 000) and the angular momentum
is reduced to

KKK2 = CCC · ω. (10)

The tensorCCC is time dependent

CCC(t) = PPP(t) ·CCC0 · PPPT(t) (11)

andCCC0 is the reference tensor of inertia. In order to calculateCCC0 consider a rigid body occupying a volumeV.
The moment of momentum for the body is calculated as follows:

KKK2 =
∫

V

̺ [RRR(t)− rrrP] × vvv dV, (12)

where̺ is the mass density of the body. Using Euler’s formula (Hamel(1949)) for the velocity distribution in a
rigid body

vvv(t) = vvvQ(t) + ω(t)×
[

RRR(t)−RRRQ(t)
]

= vvvQ(t) + ω(t)× PPP(t) · (rrr − rrrQ) (13)

as well as equations (11) and (12) one can obtain

CCC(t) = PPP(t) ·







̺
∫

V

[

(rrr − rrrQ)2 EEE − (rrr − rrrQ) ⊗ (rrr − rrrQ)
]

dV







· PPPT(t). (14)

By comparing equation (11) with equation (14) the tensorCCC0 in equation (11) can be determined as

CCC0 = ̺
∫

V

[

(rrr − rrrQ)2EEE − (rrr − rrrQ) ⊗ (rrr − rrrQ)
]

dV. (15)

The reference pointQ of the particle can arbitrarily be chosen without loss of generality. The simplest case is that
the reference point is selected in the center of mass. The origin of the co-ordinate system is also placed in this
point, i. e.rrrQ = 000. With these assumptions equation (15) is reduced to

CCC0 = ̺
∫

V

(

r2 EEE − rrr ⊗ rrr
)

dV, r2 = rrr · rrr. (16)

In what follows we consider a cylindrical body with the radius R and the heightH. In this case tensorCCC0 is
transversally isotropic and takes the form

CCC0 = λ mmm0 ⊗mmm0 + µ(EEE −mmm0 ⊗mmm0), (17)

λ = ̺
π

2
R4H, µ = ̺

π

12

(

3R4H + R2H3
)

whereλ andµ are the moments of inertia. ConsideringV = π R2H and̺ = mV one gets

λ =
m

2
R2, µ =

m

12

(

3R2 + H2
)

. (18)

3 Frictionless Motion of a Rigid Body. Classical Solution

Zhilin gives in Zhilin (2001) the classical analytical solution of the equation of motion of a rigid body in the
gravitational field. In the following the main results are briefly discussed. Its tensor of inertiaCCC0 is transversally
isotropic and in the reference position (i. e. at the timet = 0) given by

CCC0 = λ mmm0 ⊗mmm0 + µ(EEE −mmm0 ⊗mmm0), (19)
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wheremmm0 is the unit vector of the longitudinal axis of the body in its initial position. It is assumed that friction
between the body and its surrounding does not exist. The momentumKKK1 and the angular momentumKKK2 of the
body take the form

KKK1 = m ṘRRm(t), KKK2 = RRRm(t)× m ṘRRm(t) + LLL, LLL = PPP(t) ·CCC0 · PPPT(t) · ω(t) (20)

with ṘRRm ≡ d
dtRRRm, RRRm being the time dependent position vector of the center of mass. For the given angular

velocity the rotation tensor can be determined from the Poisson equation

ṖPP = ω × PPP. (21)

The first and the second law of dynamics are presented in the following. The momentum balance equation is given
by

d

dt

(

m ṘRRm
)

= −G
Mm

R3
RRRm, (22)

whereG is the universal gravitational constant (G = 6, 67259 · 10−11 m3 · kg−1 · s−2). Equation (22) has four
integrals (one scalar and one vectorial). The scalar integral represents the conservation of energy of the translatory
motion. It is obtained by the scalar product of both sides of equation (22) with vectoṙRRRm as follows

d

dt

[m

2
ṘRRm · ṘRRm

]

=
d

dt

[

G
Mm

R

]

⇒ 1

2
m ṘRRm · ṘRRm − G

Mm

R
= εT = const. (23)

In equation (23)εT is the energy of the translatory motion of the body. The vectorial integral represents the
conservation of the moment of momentum. It is obtained by thevector product of both sides of equation (22) with
vectorRRRm as follows:

m RRRm × R̈RRm = −G
Mm

R3
RRRm ×RRRm = 000 (24)

RRRm × m ṘRRm = HHH = const ⇒ RRRm · HHH = 0. (25)

With the help of the balance equation for the angular momentum

d

dt

[

RRRm(t)× m ṘRRm(t) + PPP(t) ·CCC0 · PPPT(t) · ω(t)
]

= 000 (26)

and equation (25) the following expression can be obtained:

PPP(t) ·CCC0 · PPPT(t) · ω(t) = LLL = const. (27)

Rearranging equation (27) yields

ω(t) = PPP(t) ·CCC−1
0 · PPPT(t) · LLL. (28)

Equation (28) must be solved together with the Poisson equation (21) in order to find the rotation tensor. The
initial conditions for the rotation tensorPPP and the angular velocityω must be given, for example, in the following
form:

PPP(0) = EEE, ω(0) = ω0 ⇒ LLL = CCC0 · ω0. (29)

The energy of the rotary motionεR is calculated by

εR =
1

2
ω(t) · PPP(t) ·CCC0 · PPPT(t) · ω(t) =

1

2
LLL · ω(t) =

1

2
LLL · PPP(t) ·CCC−1

0 · PPPT(t) · LLL. (30)

By differentiating equation (30) with respect to time and considering equations (28) and (21) one can show that
the energy of the rotary motion is conserved.
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The rotation tensor may be specified by the Euler theorem (e. g. Zhilin (1996))

QQQ[ψ(t)nnn(t)] ≡ [1 − cos ψ(t)]nnn(t)⊗nnn(t) + cos ψ(t)EEE + sin ψ(t)nnn(t)×EEE, (31)

where the unit vectornnn stands for the rotation axis and−π < ψ < π for the angle of rotation. The rotation
tensor contains nine components, but only three of them are independent (Gummert and Reckling (1994)). In
equation (31) the independent quantities are two components of the vectornnn and the angleψ.
Each rotation can be expressed as a composition of rotationsof the type (31) (Zhilin (2001)). In the case of the
free rotation of a transversely isotropic body we have

PPP(t) = QQQ [ψ(t)nnn] ·QQQ [ϕ(t)mmm0] , nnn ≡ LLL

|LLL| = const, (32)

whereϕ is the angle of the own rotation around the axis of isotropy ofthe body andψ is called the angle of
precession around the constant vectorLLL. Inserting equation (32) into equation (30) yields

εR =
1

2
LLL · ω(t) =

1

2
LLL ·QQQ(ψnnn) ·QQQ(ϕmmm0) ·CCC−1

0 ·QQQT(ϕmmm0) ·QQQT(ψnnn) · LLL (33)

=
1

2
LLL ·CCC−1

0 · LLL = const.

The angular velocity is calculated by

ω = ψ̇nnn + ϕ̇ QQQ(ψnnn) ·mmm0. (34)

Taking into consideration the equality

nnn ·QQQ(ψnnn) = nnn (35)

the angular velocity takes the form

ω = QQQ(ψnnn) · (ψ̇nnn + ϕ̇mmm0) . (36)

Inserting equations (32) and (36) into equation (28) and calculating the left dot product of the resulting equation
with QQQT(ψnnn) yields the following expression

ψ̇LLL + Lϕ̇mmm0 = LCCC−1
0 · LLL = Lω0, L =

√

µ2ω2
0 + (λ2 − µ2)(mmm0 · ω)2 (37)

with L being the magnitude of the vectorLLL. The solution of equation (37) is given by

ψ =
tL

µ
, ϕ =

t(µ − λ)

µ
(mmm0 · ω0) =

t(µ − λ)

λµ
(mmm0 · LLL). (38)

4 Moment of Friction

In order to describe the motion of the particle, the particle-medium-interaction must be known. We make the
following assumptions: (1) The particle under consideration is moment-free supported in its center of mass. From
this assumption follows that the interaction between the particle and the medium is described by a moment.
(2) Brenner supposes in (Brenner (1964)) that the medium is undisturbed in a large distance from the particle.
The hydrodynamic moment, exerted on the particle in a viscous fluid, can, according to Brenner, be presented as
follows:

MMM = −
[

GGG · (ω −φφφ) +(3) CCC · ·DDD
]

, φφφ =
1

2
∇× vvv, DDD =

1

2

(

∇vvv + (∇vvv)T
)

, (39)

wherevvv is the velocity of the undisturbed flow,GGG and(3)CCC are the second and third rank resistance tensors that
depend on the viscous properties of the fluid and the geometryof the particle. We limit our considerations to
the case that the undisturbed flow is at rest. Disturbances, that are caused by the particle itself, will here not be
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discussed. From that follows, that in equation (39)DDD = 000 andφφφ = 000, and therefore that the moment is a linear
function of the angular velocityω taking the form

MMM(t) = −PPP(t) ·GGG0 · PPPT(t) · ω(t). (40)

We call MMM resistance moment andGGG0 resistance tensor. Since the particle is assumed to be a cylinder with
transverse isotropy, the resistance tensor can be presented as follows:

GGG0 = α mmm0 ⊗mmm0 + β (EEE −mmm0 ⊗mmm0) (41)

with mmm0 being the unit vector of the symmetry axis of the particle. The constantsα andβ describe the influence
of the surrounding medium on the particle rotation. They depend on the geometry and the surface properties of
the particle and on the fluid.

dA

nnn
dFFFn

dFFFτ

rrrp

P

Figure 2. Cylindrical Particle

In Figure 2 a cylindrical particle is presented. In this figure dA is a differential element on the surface. Letnnn be
the outer normal unit vector of the surface. We assume that the resultant force exerted ondA can be presented as
follows:

dFFF = fff dA, (42)

wherefff is the force intensity. The interaction force consists of a tangential and a normal part

dFFFτ = fff τ dA, dFFFn = fff n dA. (43)

The resistance moment can then be calculated by means of

MMM =
∫

A

rrrp × ( fff τ + fff n) dA. (44)

The translatory velocity of a pointP may in analogous manner be divided into a normal and a tangential part:

vvvp = vvvn + vvvτ = vvvp · nnn ⊗nnn + vvvp · (EEE −nnn ⊗nnn) . (45)

For the intensitiesfff τ and fff n we assume a linear dependence on the velocities, i. e.

fff τ = −ζvvvτ = −ζvvvp · (EEE −nnn ⊗nnn), fff n =

{

−ξ vvvp · nnn ⊗nnn , vvvp · nnn > 0

000 , vvvp · nnn ≤ 0
. (46)

ζ andξ are the coefficient of friction and resistance, respectively. The resistance force does not act on the whole
surface, but only on a part of it. In order to calculate the partial area on which the resistance force acts, the
inequalityvvvp · nnn > 0 must be solved. With the angular velocityω the velocityvvvp may be specified as

vvvp(rrrp) = ω × rrrp. (47)
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Using cylindrical coordinatesr, ϕ, z, every point on the surface is described by the position vector

rrrp(z, ϕ) = reeer + zmmm0, (48)

wheremmm0 is the unit vector of the longitudinal axis of the cylinder inthe initial configuration. The unit normal
vectornnn and the position vectorrrrp are different for the lateral and the upper (lower) top surface. In the case of
the lateral surfacennn = eeer andrrrp = Reeer + zmmm0 with R being the radius of the cylinder. The points of the upper
(lower) top surface are described by means ofrrrp = reeer + Zmmm0, whereZ = ± H/2. The normal vectornnn is equal
to the unit vector of the longitudinal axismmm0. The inequalityvvvp · nnn > 0 then becomes

zeeer · (ω ×mmm0) > 0 (49)

for the lateral surface and

reeer · (ω ×mmm0) < 0 (50)

for the upper (lower) top surface, respectively. The cross productω×mmm0 is the normal vector to the plane spanned
onω andmmm0, see Figure 3. The meaning of the above inequalities is obvious. They characterize those parts of the
outer surface that are affected by the resistance force. Thesolution is presented in Fig. 3 for the upper part of the
cylinder (0 ≤ z ≤ H/2).

mmm0 ω

ω ×mmm

eeer (ϕ)

−
H

/
2

H
/

2

R

Figure 3. Part of the Surface, where the Resistance Force is Exerted.

Substitutingrrrp, fff τ and fff n in equation (44) by equations (46) and (48) one gets the constantsα and β of the
resistance tensor, being

α = πζ
(

R4 + 2R3H
)

, (51)

β = πζ

(

R3H +
1

2
R2H2 +

1

12
RH3

)

+ πξ

(

1

2
R4 +

1

24
RH3

)

.

5 Equation of Motion in Terms of the Right Angular Velocity and the Rotation Vector

From the balance equation of the angular momentum

d

dt
KKK2 = MMM, KKK2 = PPP(t) ·CCC0 · PPPT(t) · ω(t) (52)
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follows with equation (40)

[

PPP(t) ·CCC0 · PPPT(t) · ω(t)
]...

= −PPP(t) ·GGG0 · PPPT(t) · ω(t). (53)

Equation (53) is a system of three differential equations containing six unknown quantities (three independent
components of the rotation tensorPPP and three components of the angular velocityω), i. e. the system is indeter-
minate. It can be solved by taking into account the Poisson equation (21) and the relation

PPPT(t) · ω(t) = ΩΩΩ(t) (54)

between the left (ω) and the right (ΩΩΩ) angular velocity. It must be distinguished between them because the dot
product of two tensors is not commutative:

SSSl(t) ≡ ṖPP(t) · PPPT(t), SSSr(t) ≡ PPPT(t) · ṖPP(t). (55)

In equation (55)SSSl andSSSr are called the left and the right spin tensor. They are connected with the left and the
right angular velocities (see e. g. Zhilin (1996)) as

SSSl(t) = ω(t)×EEE = EEE × ω(t), SSSr(t) = ΩΩΩ(t) ×EEE = EEE ×ΩΩΩ(t). (56)

After introducing the right angular velocity equation (53)takes the form

Ω̇ΩΩ = CCC−1
0 · (GGG0 ·ΩΩΩ)−CCC−1

0 · [ΩΩΩ × (CCC0 ·ΩΩΩ)] . (57)

The quantitiesPPP, ω andΩΩΩ are also time-dependent, which is not explicitly noted. Equations (57) contain only
three unknowns, that are the components of the vectorΩΩΩ. By introducing it the rotation tensor is eliminated.
Together with the vectorial equation (57) the Poisson equation for the right angular velocity

ṖPP = PPP ×ΩΩΩ (58)

must be solved in order to calculate the components of the rotation tensor in dependence on time. With the
equivalent relation of equation (54)

ω = PPP ·ΩΩΩ (59)

the left angular velocityω can be obtained. Because of the non-linearity equations (57) can analytically be solved
only for simplified models. In this work a numerical solutionprocedure is presented. It is significantly easier
if, instead of the rotation tensor, the rotation vectorθθθ is used. It provides another opportunity to quantitatively
describe a rotation (see e. g. Menzel et al. (2004)). The equation

θ̇θθ = ΩΩΩ +
1

2
θθθ ×ΩΩΩ +

1 − g

θ2
θθθ × (θθθ ×ΩΩΩ) (60)

with

g =
θ sin θ

2(1− cos θ)
, θ2 = θθθ · θθθ, θ = |θθθ| =

√
θθθ · θθθ (61)

is equivalent to the Poisson equation (21) if the rotation vector is used (Zhilin (2000)). Now the system of
differential equations that is to be solved takes the form

Ω̇ΩΩ = −CCC−1
0 · (GGG0 ·ΩΩΩ) −CCC−1

0 · [ΩΩΩ × (CCC0 ·ΩΩΩ)] , (62)

θ̇θθ = ΩΩΩ +
1

2
θθθ ×ΩΩΩ +

1 − g

θ2
θθθ × (θθθ ×ΩΩΩ).

The initial conditions areΩΩΩ(0) = ΩΩΩ0 andθθθ(0) = 000. In order that the denominator of the term1−g

θ2 does not equal
zero during the solution procedure of the differential equations, the small number of0.001 was added. Apart from
that, the initial conditions of the components of the rotation vectorθθθ were also set0.001. Having solved equations
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(62) the rotation vectorθθθ as a function of time is known. With the following equation the rotation tensorPPP can be
calculated

PPP(θθθ) =
1 − cos θ

θ2
θθθ ⊗ θθθ +

sin θ

θ
θθθ ×EEE + cos θ EEE (63)

and with equation (59) the vector of the left angular velocity ω(t) which is the solution of the equation of motion.

6 Solution of the Equation of Motion

The numerical solution was calculated with the help of the commercial code Mathcadr with the Runge-Kutta
method with adaptive increment. It was assumed that the height of the cylindrical particle is 25 times greater than
its radius (H = 25R). The initial angular velocity was assigned to be

ΩΩΩ0 =





1

2

3



 . (64)

In order to prove the system of differential equations, the results of the numerical solution in the case of a friction-
free rotation was compared with the classical solution of the equation of motion. In that case the resistance tensor
GGG0 in the first equation of (62) equals the zero tensor000. The results of the, with both methods, calculated left
angular velocity are shown in Table 1. The differences between both solutions are very small and result from the
solution procedure of the numerical calculation, i. e. fromthe small difference of the initial conditions.

Table 1. Comparison of the Left Angular Velocityω [s−1], Calculated with the Analytical and the Numerical
Solution of the Equation of Motion

t [s] ω (analytical) ω (numerical) t [s] ω (analytical) ω (numerical)

1







−0.876

1.634

3.250













−0.876

1.628

3.253






6







−0.918

2.291

2.812













−0.907

2.304

2.805







2







0.603

2.660

2.561













0.590

2.668

2.556






7







0.994

2.087

2.942













1.001

2.083

2.943







3







−0.167

1.191

3.543













−0.186

1.202

3.538






8







−0.824

1.558

3.301













−0.819

1.567

3.297







4







−0.269

2.793

2.476













−0.265

2.798

2.471






9







0.516

2.709

2.529













0.528

2.710

2.525







5







0.684

1.397

3.403













0.689

1.400

3.401






10







−0.062

1.180

3.550













−0.042

1.200

3.544







The actual position of the particle can be illustrated sinceit can be calculated in the following manner

mmm(t) = PPP(t) ·mmm0. (65)

In equation (65)mmm(t) is the unit vector of the longitudinal axis of the particle inthe actual andmmm0 in the initial
position, which was chosen to be

mmm0 =
1√
3





1

1

1



 . (66)

In both cases, the classical solution and the above presented model of motion, the course of a rotating particle is
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similar as is shown in Figure 4 (marked with circles).
If interactions between the particle and the surrounding medium occur, the tensorGGG0 6= 000. To give a nu-
merical solution of equations (62) the coefficientsζ and ξ have to be known. In the computations we set
ζ = ξ = 0.003 kg/m2s. It can be shown that, if interactions are taken into consideration, the motion of the
particle is slowing down. In Figure 4 the line with circular symbols shows the motion if friction is neglected. The
consideration of friction results in the line with triangular symbols.

0 0

0

0

-1
-1

-1

1

11

x

y

z

mmm(t)

Figure 4. Course of the Rotation of the Particle in the Interval 0 s ≤ t ≤ 5 s; Circles without Friction; Triangles
with Friction

7 Conclusions

In this work a model was developed with which the orientationof a rigid particle, that is suspended in a medium,
may be determined. For that the equation of motion of the particle was derived from the balance equation of the
angular momentum. The equation of motion was solved numerically on the basis of the Runge-Kutta method.
In a first step the obtained angular velocity of the model developed here was, in the case of friction-free motion,
compared with the classical solution. It could be shown, that the numerical solution agrees with the analytical one.
After that interactions (friction, resistance) between the particle and the surrounding medium were considered.
With the assumed values ofζ andξ the particle rotates with a minor velocity. The rotation of the semi axis of the
particle in a time scale of5s was presented graphically.
In order to develop a simulation software with which the orientation of fibers during the filling stage of the
injection molding process can be predicted the model must beextended to a multi-particle system. In addition,
the friction and the resistance coefficient must be quantified.
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