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Hyperelastic Description of Polymer Soft Foams at Finite Defor mations

M. Schrodt , G. Benderoth, A.ihhorn, G. Silber

Soft foams are gaining importancy as materials for matt®gtems and seat cushions in such areas as aircraft
and automotive industries and in the field of medical cards $tudy will demonstrate that a strain energy func-
tion of finite hyperelasticity for compressible media pregad by Hill (1978), Storakers (1986) and Ogden (1972)
is applicable to describe the elastic properties of opehsat foams. This strain energy function is implemented
in the FE-tool ABAQUS and proposed for high compressiblefsams. To determine this constitutive equation,
experimental data from a uniaxial compression test are ugedthe parameters in the constitutive equation are
linked in a non-linear way, non-linear optimisation rout are adopted. Moreover due to the inhomogeneities
of the deformation field of the uniaxial compression tes,ghality function of the optimisation routine has to be
determined by an FE-tool. The appropriateness of the seaiergy function is tested by a complex loading test.
By using the optimised parameters the FE-simulation oftdssis in good accordance with the experimental data.

1 Introduction

The optimisation of mattress systems and seat cushiong@rbeg more and more important in such areas as
aircraft, automotive industries and medical care. Due ¢ogtteat variety of designable mechanical properties and
the low cost of production, soft foams are more widely usedfh systems. In spite of the more frequent usage
of soft foams, there are very few publications concernimgrtimechanical behaviour. According to DIN 7726, soft
foams are considered as a two-phase system where a gasi(eig dspersed in a continuous solid matrix (cell
structure) (Lenz, 1999).

For the mechanical description of hard foams, there are tarécles from Renz (1977), Renz (1978) and Czysz
(1986) where the last author describes Polyurethan saft fpaHooke elasticity. Presently, non-linear models for
soft foams are in general based on a hyperelastic approacbigpressible media with a particular strain energy
function. Most of these approaches are based on a straigyeharction for incompressible media proposed by
Ogden (1972) which is extended to the compressible caseelifitid invariant of the deformation gradient. In most
of these models the deformation gradient as well as thengtragrgy is splitted in a volumetric and a isochoric part
(Simo and Taylor, 1991), which leads in the case of largerdeditions, to nonphysical effects according to a study
by Eipper (1998). Additionally, there are ambitious contim models based on a detailed description of the inner
structure of the foam. Ehlers and Markert (2001) apply arhed mixtures of multiphase materials based on a
continuum mechanical theory of porous media to soft foanhgreby the solid-fluid-problem can be solved. Wang
and Cuitino (2000) introduce a hyperelastic continuum rhbeeed on the description of the tension/compression
and bending loading of a single cell and on an irregular sthagpeen cell structure. An analysis based on an
FE method for open cell Polyurethan soft foams was carrigdpWMills and Gilchrist (2000) using the a strain
energy function for high compressive soft foams (so-calgderfoam) has been implemented in the FE-program
ABAQUS (Hibbitt et al., 2000a), (Hibbitt et al., 2000b). Biis study comprises only parameter studies compared
with experimental data and no stringent parameter ideatifin was done. Additionally, for the volume strain the
important parametes was ruled out so that the appropriateness of the model fazthamined material becomes
questionable.

The objective of this study is to apply an implemented steaiergy function “Hyperfoam” in ABAQUS to describe
the mechanical properties of soft foams. This will be doneatgquate experiments and a stringent parameter
identification. The identification is carried out by nondar optimisation routines where the simulation of an
uniaxial compression test is used to solve the quality fonct The parameter vector derived in such a way is
used for the simulation of an indenter test. The comparigahi® simulation with the experimental data shows
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the appropriateness of this strain energy function. Thestigation is restricted to the elastic properties of the
foams only, thus these properties are separated from tlastiteones by suitable experiments with holding times.
Furthermore, the Mullins (1969) effect is eliminated by al@ypreprocess of the test specimen at the beginning
of each experiment.

2 Experiments

Figure 1: Buckling of a cubic test specimen at a uniaxial casgion test

Test specimens of polyurethane soft foam called SAF 606@ wevided by a Swiss soft foam producer (Foam
Partner Fritz Nauer AG). The test specimens are cubes withadrgtic cross section of 200 by 200 mm and a
height of 50 mm randomly taken out of a complete mattress. udeel test specimens differ in geometry from
a standard one (100 mm by 100 mm by 100 mm) because cubic strems show buckling at the uniaxial
compression test (see Figurel). The tested foam shows arcefietructure and has a density of 60 kd/amd a
compression load deflection of 6 kPa. All forces shown in theris are pressure loads.

Laboratory tests show a significant dependency of the méwdildpehaviour of the foams on temperature and
humidity (Figure 2), thus all tests were carried out at canstlimatic conditions (20 ° C temperature and 50%
humidity).
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Figure 2: Tests of the climatic dependency of the materigperties for SAF 6060.

Beside the material's dependency on temperature and hiynitdihows a combination of elastic and inelastic be-
haviour. To separate these properties, a testing procedopesed by James and Green (1975) and Van den Bogert
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and de Borst (1994), successfully applied by Hartmann ¢2@03) and Lion (1996) for rubber like materials, was
also used here.
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Figure 3: MULLINS effect of a test specimen

Cyclic preprocess. To eliminate the Mullins (1969) effect (Chagnon et al., 20@&2e Figure 3) a procedure con-
sisting of a strain-controlled cyclic deformation of 70%hva strain rate of 0.23 followed by a load discharge
was applied. This cycle was redone 16 times (see Figure 4).
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Figure 4: Cyclic preprocess with constant displacementitunde and force relaxation

Experimentswith holding times: After a recovery phase of 16 hours a step-by-step deformatith a constant
strain rate of 0.2 5! was applied to each test specimen. After each deformategmasholding time of 180 min
was applied to the specimen (see Figure 5). During this hgltime the material responded with a relaxation.
This procedure ought to ensure that the responding forcedaafied an equilibrium state so that the termination
points of relaxation represent the equilibrium state ofritegerial (Ehlers and Markert, 2001). The holding time
ensures that the time derivative of the stress was closa®o Respite the fact that the stress rate was almost zero,
the relaxation process was still ongoing (see e.g. Figur&ad) the sake of performing a managable experiment,
a termination of three hours for each step was taken. All ¢éhmination points of the holding time generated
an equilibrium stress-strain curve. The difference betwtbe termination of the deformation steps and its corre-
sponding equilibrium point is called overstress. Afterfpening the final deformation step an unloading phase
was applied. This process was exactly the reverse of thénigadocess (Figure 5). For getting an appropriate data
set for the parameter optimisation, different intervalstf@ holding points over the deformation course have been
chosen. Figure 3 shows that the slope of the deformatiorsedsarup to a value of displacement of 4 mm much
steeper than in the following sections. Thus holding paants, 2 and 4 mm were chosen. For larger displacement
values a constant interval of 4 mm was taken.

Two different types of tests were carried out. A uniaxial poassion test and a test with an indenter (a cylinder
with a spherical calotte of 50 mm diameter at its end (FigQye 6
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Figure 5: Experiment with holding times, loading and uniogdpath for holding time experiments and force
response with relaxation

Figure 6: Test Configurations

To establish a homogeneous deformation field, the sheasssdetween the two plates on top and bottom side
and the test specimen at the uniaxial compression test hesatminated. This turned out to be rather difficult to
achieve. For having defined boundary conditions, the testisgen were fixed at the two plates (Figure 6). The
boundary condition causes a reversible bulge at the edgas tdst specimen while being tested.

To generate a spatially defined deformation field, an inddyfee test was carried out. In this test a spherical
calotte (diameter of 50 mm) is pushed down into the test spatj where the penetration depth and the associated
normal force was measured during the penetration process.

3 Constitutive Equation
3.1 General Constitutive Equation for Hyperelastic Materials

According to the results of the empirical analysis, the abered soft foams show a compressible viscoelastic
material behaviour. To describe this phenomenon, a viastelconstitutive equation is usually adopted. In
general, viscoelastic models decompose the total stresert8 into an (elastic) equilibrium stress paft; and

an overstress palSoy representing the memory property of the material. Thus tiless tensor can be written
asS = S¢ + Sov (see Hartmann et al. (2001)). This study will exclusivelyaldeith the elastic properties
of soft foams according to the empirically attained str&tsain curves of the termination points after a distinct
holding time (see the last section). For such a descriptionstitutive equations for hyperelasticity are permigsib
(Hartmann et al., 2003). For the sake of simplicity, the indgin the above formula will be left out for further
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discussion.

Hyperelastic materials represent a subset of (CAUCHY-telanaterials characterised by an elastic potential
(strain energy function). The stress tensor can be gemkebgtéhe derivation of the strain energy function with
regard to the strain tensor. The basis therefore is the iequattmechanical energy

w=JS--D with J=detF 1)

wherew is the strain energy functiotf; the deformation gradien§ the CAUCHY stress tensor arfd the strain
rate tensor

D= %F‘T .C-F! 2)

with the right CAUCHY-GREEN tenso€' (a dot above the symbol means the material time derivatdep to
the principle of objectivityw has to be a scalar-valued non-negative tensor functioneofigint stretch tensa/
or the right CAUCHY-GREEN tensor

w=wlU)=w(C)=

{>0 for C#1I -

=0 for C=1

According to (3) in the undeformed state (reference condiiom (C = I) the strain energw is always zero and
for the deformed state (current configuratidti ¢4 I) the strain energy always has to be non-negative( 0).
Inserting (3) into (1) by regarding (2) results in the mostgral structure of the constitutive equation for non-linea
hyperelastic, anisotropic material behaviour (Green adkins, 1970):

_ ow (C)
_ 1. . FT
S=2J'F 5 F 4)

3.2 Strain Energy Function for Highly Compressible Polymers

For describing the mechanical behaviour of highly compbésgolymers, the following strain energy function
has been proposed by Hill (1978) and Storakers (1986)

N
w=3" 2% ASE 4+ AZ* + ASE — 3+ f(J)] (5)
k=1 Kk

wherey,, anda,, are material parameters afi(l/) a volumetric function, which has to fulfil the restrictigitl) =
0. Using (5) one gets for the spectral representation of (4)

N
S=2J_1ZZ{Z]I: {)\?’“-F;Ja];fjj)] nini} (6)

with the eigenvalue; of the right stretch tensdy and the eigenvectors; of the left stretch tensdv’. A possible
form of the volumetric functiory (.J) is given by Storakers (1986)

1

B (JxPr —1) 7

f(J) =
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where 3, are additional material parameters. Thus one géfsn3aterial coefficientsy,, 5; and ux (K =
1,2, ..., N) which in general have to be determined by appropriate.testslitionally the initial shear modulus
and compression modulus are defined by (Hibbitt et al., 2000a

N

N
Mo = Z,ui and Z ( + Bz) i (8)

i=1

There is also a relation given between the Poisson’s ratiasd the parameter$

B respectively  3; =

Y 1—2u7

i=1,2,...N 9)

For the particular casg;, =: 3 = const, v is the classical Poisson’s ratio. For the parameters in 1fél) (&)
certain restrictions have to be fulfilled (extensively dissed in Reese (1994)). According to Hill (1978) and
Storakers (1986) the following unequalities shall alwagsvhlid (the second unequality holds for the particular
casel; =: 3 = const only)

ura >0 (k=1,2,....,N)(nosum)and g > —é (10)
3.3 Force-stretch-relation for the Uniaxial Compression Test
Considering a homogeneous deformation state the defammatadient is
F (t) = )\1 (t) e e + )\2 (t) eses + )\3 (t) €3€es (11)
with the stretches
2
t t h(t
M=do= Do RO ey o [2B]TR0) (12)
Qg hO Qg h()

wherea, anda(t) are the angle lengths arig andh(t) are the heights of a test specimen in the undeformed and
deformed state.

If the specimen is loaded only in the 3-direction accordmthe homogeneous deformation there is no stress in 1-
or 2-direction. Thus according to (6) by obeying{@nd (12) the stress state has the following form:

‘ =

N
033 (A1, A3) =2 (/\%)\3) Z

-2 o]

klak

: g — ()™ .

If a specimen is loaded by a single lo&din the 3-direction, the stress in the 3-direction by regagdhe equilib-

rium condition will beoss = —K/(ab) = — K /a?. Thus the final relation for the uniaxial loading is
-1 a H B
_ 2 HE | yay 2 Ak k
K (A1, As) = —2a2 (A2)s) ;71 o [A (A2xs)~ } (14)

and the following implicit relation holds for the stretchiesl- and 2-directior\; and\; due to (13)
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Mz

FOLA) =S HE [w - )\2/\3)_%[3’“] ~0 (15)

«Q
k=1 'k

For the particular cas® = 1 and usingy; := «, (51 := (3, u1 := i one can derive an explicit relation betweken
and\s

__B_ 1
M= f(A3) =X, 77 andfinally AA; = A7 (16)

Equation (16) allows a separation of the material paramefeym the rest and can be used for a separate analysis
of 3 (see Storakers (1986)). By using (16) can be eliminated from (9) in the callee1. Thus the final form of
the force-stretch-relation (8) reads € 1)

_qit38 a—1
h 1+23 h + ﬁ
K () = 22a3 Kho) - 1] () =2ta (x5 -1)ag (17)

On the basis of the expression (17) the importance of réismi¢10), is evident, because fgt = —1/3 the value
of K would be always zero for arbitrary stretches

4 Parameter Optimisation

The basic aim is to describe the elastic properties of themahby the constitutive equations (6) and accordingly
(14), (15) or (17), so that these functions reproduce theizapdata in an appropriate way. This is obtained by
using a quality functior® of the following form

1 2! .
b= — SO, s — fi (hy)]" =
. g [f (B a1, ooy an) = f; (i))” = min (18)
wheref(h; a1, ..., ay) is the model withh the independent variable, the, . . ., ay are arbitrary model param-

eters andf; andh; are the measured values. In this particular case, the mothed constitutive equation (17) with
the displacement coordinateand the axial forcg as independent and dependent variableo; and3; are the
model parameters. The values for theandh; were taken from the measured data of the uniaxial compessio
test described in Section 2.

Optimisation routines. As most of the parameters within the constitutive equati@appear in a non-linear way,
for minimising the quality function (18) a non-linear optsation routine has to be used for this purpose. The
authors chose a stochastic and a deterministic routine. sidahastic routine is a modified MONTE CARLO
routine called SIMULATED ANNEALING (Otten and van Ginneket®989). This routine was used to evaluate
the material parameters for the constitutive equation {d7the uniaxial compression test.

A stochastic routine rather ensures to find the global minincompared to deterministic routine at the expanse of
extensive usage of function evaluation. Thus for using teegfogram for the function evaluation, the determinis-
tic SIMPLEX STRATEGY (Nelder and Mead, 1969) was taken. Reseaof the particular boundary conditions of
the uniaxial compression test, the FE-program was usedetermining the parameters of (6). As starting values
for this parameter determination the results of the fit faragmpn (17) were taken.

Both routines were coded by the authors according to algostgiven by Schwefel (1995).

5 Finite Element Simulation

To verify the appropriateness of the constitutive modekdbmg the mechanical behaviour of soft foams, the
compression and the indenter type test as well have to bdaedby an FE-simulation.
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The indenter type and uniaxial compression test were soltkdB-node linear brick elements. The bottom surface
of the foam was constrained irt, - and z-directions, whereas the top surface was only restricted iand z-
directions. A constant displacement was imposed to reptdbe testing scenario. In the case of the indenter
test, the indenter itself was modelled as a rigid body. A tantdriction coefficient of 0.75 was used between the
indenter surface and the foam surface with the same comistifar the bottom surface as in the uniaxial load test.
For the sake of comparison between the experimental datthanésults of the FE-simulation in the case of the
uniaxial loading, the sum of the resulting forces in loadifigection at surface nodes was taken. For the case of
the indenter test, the resulting force of the rigid body iadimg direction was used.

6 Results

Figure 7 shows the experimental results of the uniaxial gesgion test. It can be seen, that even holding times
of 180 min are too short, since the overstresses are not etehptelaxed. Hence, there is a very small hysteresis
defined by the termination points of relaxation (the equiiliim points are only reached in an asymptotic sense).
To take this fact into account, two different sets of dataenteken for the optimisation process:

1. the interval of termination points

2. the mid-points of the relaxed stresses of the hysteresis
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Figure 7: Optimisation results of the uniaxial compressiest with different parameter setsl & 1, N = 2),
experimental data with holding times (dashed line), teatiom points of relaxation (open circles).

Parameter analysis. The first analysis concerns the parameter optimisatioordot to the force-stretch-relation
(17) in the cas&\=1 and (14) and (15) in the cabk=2 for the uniaxial compression test. The results are gigen i
Table 1 and Figure 7.

Table 1: Parameter sets for the uniaxial compression test

Mid-Point Interval

N=1 N=2 N=1 N=2

Quality Function 3.63 3.62 6.76 6.76
pu1 = p[MPa] | 0.85710~2 | 0.48110=2 | 0.83110~2 | 0.479102
ay =« 0.19810? 0.198107 0.198107 0.19810°
G =0 0.10510—T | 0.14510~' | 0.10910~ ' | 0.13910~ T
1o [MPa] 0.360102 0.35110?
Qo 0.19810? 0.19710?
B2 0.650102 0.65710?
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It can be seen from Table 1 that the quality function for thedudata set show almost no difference in the case
N =1 andN = 2. Furthermore the differences of the values of the pararador the different cases (Mid-Points
and Interval) are also negligible. This is also documeniedlimost congruent curvatures in Figure 7.

Table 2: Optimised parameter sets for the uniaxial compmegest by the analytical solution (Numerical Fit) and
FE-solver (FE Fit)

Numerical Fit FE Fit

1 [MPa] 0.83110°2 0.90710—2
o 0.198102 0.21310°
I6] 0.10910~ 1 0.84910—2

5, Mises
(kve. Crit.: 75%)
+1.593e-01

Max +1.593e-0
at elem JCHAL
Min +1.107e-0§
at elem SCHAT

2

1
La Step: Step-1

Increment 100: Step Time = 1.000
Primary Var: S5, Mises
Deformed Var: U Deformation Scale Factor: +1.000e+00

Figure 8: FE-simulation of the indenter test in a deformatestThe grey-scale indicates the reaction force between
the indenter and the foam

FE-Simulation. Table 2 shows a comparison of the parameter determinatdiothé uniaxial compression test
derived from eq. (17) and an FE-simulation of this test. Fegigives the results of this comparison between the
experimental data of the indenter test (termination ppemsl the FE-simulation based on the constitutive equation
(5) by using the parameter sets from the “FE Fit” of Table 2e §haph for the simulation apparently lies within
the termination points of the indenter tests. Figure 8 shinvs=E-simulation of the indenter test in a deformed
state.

7 Conclusion and Discussion

The objective of this study was to investigate the appré@niess of a strain energy function for finite hyperelas-
ticity proposed by Hill (1978), Storakers (1986) and OgdE®i/Q) to describe the elastic properties of soft foams.
This strain energy function is implemented in the FE-prag&BAQUS for highly compressible foams in a very
similar form. To accomplish this goal the following threegdartant steps were carried out:

1. Carrying out appropriate experiments

2. Performing a parameter identification of the constigigquation

3. Performing a complex test loading experiment, simugatins experiment with a FE-tool by using the opti-
mised parameter set and comparing the results with the iexpetal data
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Figure 9: a. Comparison of the optimisation processes (Migald=it and FE Fit) by the uniaxial compression
test (termination points), b. comparison of the experiraktita of the indenter test and the FE-Simulation with a
parameter set derived from the uniaxial compression tests.

The differing geometrical dimensions of the used test spenifrom the standard cubes guarantee that the empiri-
cal tests are not influenced by the boundary conditions dfetftespecimens (buckling). The purpose of this study
was to characterise the elastic properties of soft foambatatie elastic properties had to be separated from the
inelastic ones by appropriate experiments. This was obddy a cyclic preprocess to eliminate the MULLINS
effect and approximate experiments after a recovery phiasé bours with a stepwise loading and unloading of
the test specimen. At each load step a holding time of 180 ramkept. But even at this time period of constant
deformation the overstress is not completely relieveds Thindicated by the gap of the lower and upper termina-
tion point of each loading step. Thus there is a range of uaicty for the course of the elastic force displacement
relation of the foam. This uncertainty was investigated bingd the parameter optimisation using the termination
points for each step and the arithmetic mean of the holdingtpas well. The results of the two identification
procedures are almost equal regarding the numerical valug® parameters (see Table 1). Table 1 also shows
that there is almost no difference in the figures of the qudlinction for the different formulation of the strain
energy function used here foF= 1 andN = 2. Thus for the examined materials there is no differenassing the
mid-points or the lower and upper termination points forplaeameter identification or settimgy=1 orN =2 in

the strain energy function.

In spite of the inhomogeneity of the deformation field in theaxial compression test caused by the boundary
conditions (see Section 2) the FE-simulation does not gdeoaidifferent result for the fit compared to the numerical
one (see Figure 7 and Table 2). This probably indicates tmairthomogeneity of the deformation field is not a

significant one.
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Figure 10: Comparison between the parameter optimisatiothé constitutive equation (17) for = 0 (dashed
line) andg # 0 (solid line) being optimised using data from the uniaxiaihgwession test.
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The parametef is not negligible as done by Mills and Gilchrist (2000). Alameter optimisations, regardless
of whether the quality function was calculated using (17therFE-tool,5 was significantly different from zero.

Beside this fact, if an optimisation is done for a paramegemsth 5 = 0 the results as shown in Figure 10 indicate
that such a parameter set underestimates the reaction dotbe foam at large deformations. For the foams
examined in this study this effect is tolerable. Whetherithalso tolerable for different foams is arguable.

The appropriateness of the used strain energy functiondscribing the elastic properties of the examined soft
foams is given if a complex loading scenario can be simulatid the parameter set derived from a simple
load scenario. This complex scenario was generated by amtedtype test (see Figure 8). The result of the
comparisons is given in Figure 9. The FE-simulation redigts the corridor generated by the lower and upper
termination points of the indenter test.
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