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A computer algebraic method for linearizing the equations of multibody system dynamics is discussed in this 
paper. Based on Cartesian coordinates, a symbolic linearization technique for differential/algebraic equations 
(DAE) of multibody system dynamics is obtained in a simple and effective way. The technique avoids some 
drawbacks of the numerical perturbation method. Two examples are performed to demonstrate the proposed 
method. 
 
 
1 Introduction 
 
Since the 1980’s, two different modeling strategies have been presented in studying multibody system dynamics. 
The two strategies differ mainly by the description of the configuration of the rigid body. There are two 
representative modeling methods. One of them, the Roberson-Wittenburg’s method (1977), uses relative 
coordinates to form the dynamical system, in which the displacement and rotational angles between the adjacent 
bodies are taken as generalized coordinates. The other method, represented by Haug (1989), uses absolute 
coordinates which contain the Cartesian coordinates of each body’s mass center and the Euler parameters as 
generalized coordinates. The resulting dynamic equations usually form a system of differential/algebraic 
equations. The Cartesian coordinates, used by Garcia and Bayo (1986, 1991) to describe multibody systems, is 
another kind of absolute coordinates. The above dynamic equations, mostly for systems with large displacements, 
are highly non-linear and can be solved only by special numerical integration methods. For a vibration system 
with small displacements, however, these numerical integrations are not efficient. The successive linearization 
method, proposed by Wallrapp (1990), is effective for such problems, but it can not be used for those with large 
displacements. In the works of Liang (1986) and Sohoni (1986), a numerical perturbation method is used to set 
up a linear model for the system. The method requires computing of the Jacobian matrix, which causes iterative 
errors, requires an additional convergence condition and is inefficient. There are many other approaches which 
deal with the problem. For example, Lin and Yae (1994) set up another successive linearization method by using 
relative coordinates. Trom and Vanderploeg (1994) suggested an analytical/numerical method to overcome the 
disadvantages of successive linearization. Both of them require a large amount of manual work in deducing 
linearized constraints. Ni et al. (1997) set up a differential/algebraic equation system for the multibody system by 
using Lagrange equations of the first kind, and a Taylor expansion of the generalized mass matrix, the constraints 
and the generalized forces in the neighborhood of the equilibrium position to linearize the equations. 
Based on multibody dynamic models described by Cartesian coordinates, a computer algebraic method designed 
to present symbolic linearization of the differential/algebraic equations of multibody system dynamics, is 
presented in this paper. In the linearization process, a successive linearization technique is introduced to obtain 
linearized equations by using a Taylor expansion of a the generalized mass matrix, the constraints and the 
generalized force vector in the neighborhood of the equilibrium position. The technique avoids some drawbacks 
of numerical perturbation methods and does not require setting up the linearized constraints library. The resulting 
linearized equations are explicit analytical expressions generated by symbolic computation, which are convenient 
in dealing with problems such as the computation of frequency responses, eigenvalue analysis and control design 
etc. 
 
 



 231

2  The Dynamic Model Described by Cartesian Coordinates  
 
In a Cartesian coordinates system, a new dependent coordinate system is defined so that the position of a body is 
determined by the Cartesian coordinates of at least two of its points and the Cartesian components of at least one 
unit vector rigidly attached to the body. An interesting feature of the Cartesian coordinates is that the points and 
the unit vectors can be shared by two adjacent elements, which contributes to the definition of the position of 
both and therefore leads to a model of fewer total coordinates. Neither Euler’s angles nor Euler’s parameters are 
introduced to describe the configuration of the body, so the constraint equations in the Cartesian coordinates 
system are always quadratic. As a consequence, the elements of the Jacobian matrix are linear functions of the 
Cartesian coordinates, which is one of the reasons for the simplicity and efficiency of this formulation. 
The constraint equations, usually obtained by using the constraints of rigid bodies or using constraints of the 
hinges connecting the adjoining bodies (Garcia de Jalón et al. 1993), form a set of nonlinear (quadratic) 
equations which can be described in vector form  
 
               0)( =t,qΦ                                                                                                                                 (1) 
 
where Φ  represents the constraint vector function, q are the Cartesian coordinates and t is the time. 
Differentiating equation (1) with respect to t leads to 
 

           bqq tq =−= ΦΦ &)( t,                                                                                                                   (2) 

cqqq qtq =−−= &&&&& ΦΦΦ )( t,                                                                                                         (3) 
 
where qΦ  is the Jacobian matrix of Φ . The right-hand sides of equation (2) and (3) are known functions of 
q and t, qq &  , and t, respectively. 
 

 
Figure 1.   A rigid body described by Cartesian coordinates 

 
In a Cartesian coordinate system, dynamic equations are established based on Lagrange’s equations or on the 
principle of virtual power. Let O-XYZ be an inertial reference frame and A-xyz be a frame fixed on a rigid body 
(Figure 1). By choosing two points A and B as reference points and u and v as two base unit base vectors, the 
virtual power can be expressed in the form 
 

mrrW pv p d)( T &&&∫= δ                                                                                                                 (4) 

 
where pr&δ and pr&& are the vectors of virtual velocity and actual acceleration of a point P on the rigid body, 
respectively. The position vector of point P in an inertial frame can be expressed as 

 
pAp Aρrr +=                                                                                                                             (5) 

 
where A  is the coordinate transformation matrix and ρp is the position vector of point P in a moving frame fixed 
to the rigid-body with its origin at point A. In the inertial reference frame, the base vectors of the Cartesian 
coordinates form an order 3 matrix ] , ,-[ AB vurrS =  which satisfies 
 

0ASS =                                                                                                                                     (6) 
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The matrix S0 in equation (6) is the value of matrix S at the initial position of the rigid body. Differentiating 
equation (5) and equation (6) yields 
  

pAppAp ρArrρArr &&&&&&&&& +=+=                                                                                                      (7) 
1

0
1

0                 −− == SSASSA &&&&&&                                                                                                      (8) 
 

Substituting equations (7) and (8) into equation (4) leads to the following result (Garcia de Jalón et al. 1993) 
 

TTTTT ][]      [ vurrMvurrW BA
e

BA &&&&&&&&&&&& δδδδ=                                                                       (9) 
 

where eM is the inertia matrix of the rigid body 
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I is the (3×3) unit matrix, m is the mass of the rigid body. The parameters iji ba   ,  (i, j =1, 2, 3) in (10) are 
defined as 
  

1
0

T −= ici Sra m ,    1
0

T1
0 )( −−= jiij JSSb ,    ∫=

v
ppρρJ mdT  

 
where cr  contains the coordinates of the center of mass in the body fixed frame, and 1

0
−

iS is the ith row of 1
0
−S . 

There are 10 parameters in the matrix (10). They denote the mass of the rigid body, the coordinates of the mass 
center and the inertia tensor. The inertial force is described in the inertial frame, so the inertia matrix is constant. 
There are no velocity parts in the inertial forces. Therefore, neither Coriolis effects nor centrifugal ones appear in 
the matrix. If the rigid-body does not have the considered configuration of two points and two unitary vectors, it 
is possible to find equivalent expressions for the inertia matrix eM , or to modify the formulation so as to be able 
to form matrix (10). 
After finding the expression for the inertia matrix, applying the principle of virtual power to the whole system 
leads to 
 

0)( TT =+− λδ qQqMq Φ&&&                                                                                                  (11) 
 

where M is the inertia matrix of the system assembled from the element inertia matrices eM by a process similar 
to the finite element method. The vector Q  denotes the generalized forces vector varying with position, velocity, 
and time. By applying vector Q , it is possible to introduce the formulation of springs and dampers with very 
general characteristics. Since the virtual natural velocities are not independent, it is necessary to introduce the 
constraints (1) by means of a Lagrange multiplier λ . From equation (11), it is always possible to choose the 
independent components of q and λ  that satisfy 
 

QqM q =+ λΦ&&                                                                                                                    (12) 
 

Combining equation (12) with equation (3) forms the following DAE of multibody system dynamics 
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Many algorithms for the solution of equation (13) can be found in the literature. However, most of them require 
some numerical treatments which are not suitable for symbolic computations. Generalized coordinates separation 
method (Wehage and Haug 1982) requires only computing the inverse of the matrixes, which shows some 
advantages in symbolic operation. 
 
 
3 Symbolic Linearization Method for Differential/Algebraic Equation of Dynamics 
 
Consider a multibody system the configuration which is characterized by n Cartesian coordinates 

 
                               T

21 ][ nq q,,q,q L=                                                                                                               (14) 
 

which is interrelated through the m holonomic constraint conditions (1). Let x be the n-m independent 
generalized coordinates of the system, and y be the non-independent ones. With 

 
TTT ][ xyq ,=                                                                                                                        (15) 

 
the constraint equation (2) is 

 
                        byx yx =+ && ΦΦ                                                                                                                     (16) 
 

Since yΦ  is of full rank, one has  
 

bxy yxy
11 −− +−= ΦΦΦ &&                                                                                                          (17) 

 
Similarly, the acceleration constraint equation (3) can be reduced to 

 
cxy yxy
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We denote 
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With respect to (15) follows 
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By left multiplying equations (12) by T

xH , and regarding equations (20) and (21), one obtains 
 

QHHHxHMH xqxttxx
TTTT )( =++ λΦ&&                                                                                 (22) 

 
Notice that 

 

                       0
I

HH xy
xyxqqx =











 −
==

− T1
TTT ][][][ ΦΦ

ΦΦΦΦ                                                           (23) 

 
 



 234

One has 
 
                     ttxxxx MHHQHxMHH TTT −=&&                                                                                                 (24) 
 

Both sides of equation (24) are quadratic functions of the generalized coordinates, which means that a direct 
linearization of the equation is time consuming and the physical significance is not evident. Since the analytical 
solution of equation (24) can hardly be obtained, a successive linearization strategy is adopted in this paper. 
Consider a stationary system. Suppose q~  denotes an equilibrium position, and qδ  is a small disturbance. Then 
the disturbed motion is 

 
qqq δ+= ~                                                                                                                                 (25) 

 
The following equations are obtained from equation (20) 

 
xHqxHq xx && δδδδ ==                                                                                                                 (26) 

 
Using Taylor’s expansion formula, the generalized mass matrix M and the generalized force vector Q are 
expanded as 

 
)(1 qMM δO~

+=                                                                                                                         (27) 

)(2 qqqQqQQQ qq &&& δδδδ ,O~~~
+++=                                                                                           (28) 

 
where qq QQQM &

~,~,~,~  are the values of qq QQQM &,,,  in steady state movement at the equilibrium position, 
respectively, and )( qj δO denotes the order j or higher terms. Substituting equation (26) into (28) yields 

 
              )(2 qqxHQxHQQQ xqxq &&& δδδδ ,O~~~

+++=                                                                                   (29) 
 

xH can be expanded as 
 

)(21 qHHH xxx δO~
++=                                                                                                           (30) 

 
where 1

xH  is the first order term of the expansion. The following equations are obtained by (27), (29) and (30) 
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We denote 

 

QHT x
~T1=                                                                                                                                   (33) 

 
Substituting formula (25) and (26) into equation (33) and using a Taylor expansion yields 

 
)()( 22 qxHTqqTT xqq δδδδ δδ O~~O~

+=+=                                                                                  (34) 
 

Substituting equation (34) into equation (32) yields 
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We set 
 

xx δ=ˆ                                                                                                                                         (36) 
 

Substituting equations (31), (35) and (36) into equation (24) and dropping quadratic and higher order terms, the 
linearized equation system of multibody system dynamics is obtained as follows 

 
QxKxCxM ˆˆˆˆˆˆˆ =++ &&&                                                                                                                    (37) 

 
where 
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and mI  in formula (39) denotes an ( mm× ) identity matrix. The vector T  in equation (34) is a function of xH . 

xq HT ~
δ , a term appearing in K̂ , is the coupling stiffness effect of constraints and generalized forces. Equation 

(19) shows that the inverse matrix of yΦ  and its Jacobian matrix have to be computed to obtain the term xH . In 
this paper, computer algebra operations and the symbolic linearization technique are used to obtain this term. 
Since yΦ is usually a nonlinear matrix function, a symbolic inverse operation for it is very time consuming and 
the analytical solution is often too complicated to be of real use. To solve the problem, the following linear 
transformations of the generalized mass matrix are introduced  
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Substituting equations (19), (42), (43) and (44) into equation (39) yields 
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Equation (45) means that the symbolic operation of 1−

yΦ can be changed to that of 1−
yΦ~ , and the latter is much 

easier handle because it is independent of q. 
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4     Simulation Examples 
 
In this section, two examples are given to test the symbolic simulation procedure discussed above. All the 
calculations were performed by using the software for symbolic dynamic modeling and analysis of multibody 
systems, so the symbolic linearized equations can be translated automatically.  
Example 1:  Double Pendulum 
 

 
Figure 2.   Double pendulum 

 
The model of the double pendulum is shown in Figure 2. The lengths and masses of link rod I and II are L1, L2 
and m1, m2, respectively. The double pendulum sways slightly around Z-axis in the plane XOY. We take point 1 
as the origin of XOY frame, and choose point 1 ),( 11 yx , point 2 ),( 22 yx  and point 3 ),( 33 yx  as the base points 
of the system, and T

332211 ][ yxyxyx=q  as the vector of generalized coordinates. The system has 
two degrees of freedom. We choose T

32 ][ xx=x  as the independent generalized coordinates and 
T

3211 ][ yyyx=y  as the dependent ones. The constraints of the system are 
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The generalized mass matrix M, the generalized force vector Q and the Jacobian matrix of the constraint function 
vector are 
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Substituting equations (46)~(49) into (13), a differential/algebraic equation system is obtained to describe the 
dynamic model of the system. Through simple deduction and computation, the Jacobian matrices xΦ , yΦ and 

their values at the equilibrium position xΦ~ , yΦ~ , the generalized force vector Q~  and the matrix functions 1−
yΦ~  

and xH~ are obtained as follows 
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where mI  in xH~ is an )22( × identity matrix. Its position in the generalized coordinate system is in 
correspondence with the position of the independent generalized coordinate system. We took the vertical position 
of the system as the equilibrium position and denote x̂  as xxx ~ˆ −= . The following linearized matrices 
M̂ , K̂ and Q̂  are derived by equations (38), (39) and (41) 
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[ ]T00=Q̂                                                                                                              (57) 
 

Thus the following linearized dynamical equations of the system in the vicinity of the stabilized movement is 
obtained by equation (37) 
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Example 2:  Spring pendulum system 
 

 
Figure 3  Spring pendulum system 

 
The model of a spring pendulum is shown in Figure 3. The spring, with stiffness coefficient k, connects to the wall 
with its left end. At its right end it attaches a vehicle of mass m1. A pendulum with mass m2 is attached to the 
mass center of the vehicle by a string of length L. Neglecting the masses of the spring and of the string, with some 
other simplifications, the system can be treated as a spring pendulum model. We took the mass center of the 
vehicle )( 11 y,xA and the mass center of the weight )( 22 y,xB  as the base points of the system. We chose 

=q T
2211 ][ yxyx as the generalized coordinates, T

21 ][ xx=x  as the independent generalized 

coordinates and T
21 ][ yy=y  as the non-independent ones. With two degrees of freedom, the system contains 

two constraint equations. After deriving the differential/algebraic equations of the dynamical system is a 
symbolic linearization is made to obtain M̂ , K̂ and Q̂ . The symbolic linearization of the dynamical equation in 
the vicinity of the equilibrium position is then derived as 
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To verify the correctness of the symbolic linearization method and the efficiency of the software developed from 
the method, the Lagrangian equations are used to deduce the linearized dynamic equations. The kinetic energy T 
and the potential energy V of the system are 
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The corresponding Lagrange approach leads to the equation of dynamics 
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We denote 1x  and 2x  as 1101 Δ xxx += , 2202 Δ xxx += , where 0201 x,x are the values of 21 x,x  at equilibrium 
position and 21 Δ  Δ x,x  denote small disturbances. Substituting them into (62) and (63), expanding the resulting 
functions and neglecting the order 2 and higher terms, the linearized dynamical equation system is obtained as 
follows 
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By making a comparison between equation (59) and (64), it is clear that the linearized dynamical equations 
derived by the Lagrange approach is identical to that derived by the proposed symbolic linearization method. 
 
 
5 Conclusion 
 
Based on complete Cartesian coordinates, a symbolic method for deducing the linearized equation system of 
multibody system dynamics is presented in this paper, which overcomes some deficiency in traditional numerical 
modeling methods. The method can be taken as a linearization module of nonlinear systems which does not rely 
on a large special library of linearized constraints. It is an algorithm of general-purpose, of clear mechanical 
meaning and the facility of obtaining symbolic explicit expression. The examples show that the method can be 
applied to symbolic linearization analysis and optimum design of complicated mechanical systems. 
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