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Automatic balancing devices comprising several balls or other moving elements in circular tracks can efficiently 
compensate rigid rotor unbalance in certain ranges of rotational speed. However, near critical speeds the 
vibration level can be comparatively high as a result of non-synchronous ball motions. The paper considers 
such non-synchronous motions of balancing elements. The characteristics of ball motions and the main factors 
influencing the investigated phenomenon are analyzed. The paper includes an analytical study of non-
synchronous motions, results of computer simulations and comparison with experimental data. 
Recommendations are given for the optimal choice of auto-balancing device parameters and other measures for 
decreasing vibrations near critical speeds. 
 
1  Introduction 
 
Rigid rotor auto-balancing devices comprising balls or rollers in circular tracks for compensating unbalanced 
inertia forces are the subject of investigation for many researchers. Thearle (1932) was the first to introduce such 
device with one track and two balls. Later, the device was generalized by Hedaya and  Sharp, who proposed a 
two-plane device with four balls for compensating both unbalanced force and unbalanced moment of rigid rotor 
(Hedaya and Sharp, 1977). The interest in auto-balancing and the number of publications on this subject have 
been noticeably increasing in recent times (Bövik and Högfors, 1986; Chung and Ro, 1999; Kang et al., 2001; 
Huang and Chao, 2002; Olsson, 2002). Some principal aspects of automatic balancing were investigated in 
publications by Sperling et al. (Sperling and Duckstein, 2001a; Sperling et al., 2002; Sperling et al., 2001b; 
Ryzhik et al., 2002a). Auto-balancing is particularly advantageous for rotors with variable unbalance, such as 
washing machines, centrifuges, grinding machines, and CD-ROM drives. 
The main attention of researchers is focused on the possibility and stability of unbalance compensation by means 
of auto-balancing devices. Therefore, investigations usually concentrate on synchronous motions, where the 
balls and the rotor have equal speeds. Meanwhile, experimental data confirmed by simulation results revealed 
that a different type of motion may occur in the regions near the critical speeds of the rotor system. Under 
specific conditions during rotor run-up, the balls exhibit non-synchronous motions, continuing to move with 
speeds close to the rotor eigenfrequency, whereas the rotor gains in speed and passes the critical speed area. This 
phenomenon is similar (but not completely identical) to the well-known Sommerfeld-effect in unbalanced rotor 
systems with a limited driving moment.  
The non-synchronous motion of the balls is an undesirable phenomenon in automatic balancing as it may cause 
high vibrations near critical speeds. If parameters are not properly chosen, such vibrations may significantly 
exceed the magnitude of vibrations of a rotor system without auto-balancing device. 
The display of non-synchronous motions in  automatic balancing was first revealed in (Sperling et al., 2002; 
Sperling et al., 2001b; Ryzhik et al., 2002a; Duckstein et al., 1999). The systematic analysis of the important 
particular case, when the rotor with a single-plane auto-balancing device is symmetrically supported and has 
only static unbalance, was performed in Ryzhik et al. (Ryzhik et al., 2001; Ryzhik et al., 2002b). In the present 
publication we consider a general case of a statically and dynamically unbalanced rigid rotor with a single-plane 
auto-balancing device, presenting analytical study, detailed simulation results and experimental data. 
 
2  Model and Equations of Motion 
 
Figure 1 demonstrates a rigid rotor with auto-balancing device. The axial-symmetric rotor has a mass mR and 
moments of inertia JxxR = JyyR = JaR , JzzR = JzR , JxyR = JyzR = JzxR = 0  with respect to the center of mass in the 
non-rotating vector frame zyx eee

rrr
,, ;  [ ]T

xyyxV ψrψrq =  are the co-ordinates of the vibrational motion 

(see Figure 2). The rotor has m unbalances in the planes zk, (k = n+1,…,n+m), hereinafter referred to as primary 

 25 



unbalances, idealized as mass points with masses mk and eccentricities ε k. The rotor angular velocity is Rϕ& ; the 
angular positions of primary unbalances are ϕ k = ϕR + α k, k = n+1,…, n+m. 
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Figure 1. Rotor model 
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Figure 2. Main system variables 
 
The angular co-ordinate ϕ i, i = 1,…, n, describes the motion of a compensation element of the auto-balancing 
device (see Figure 1), characterized by the mass, the eccentricity of the mass center, the radius, the position of 
plane (mi, εi, ri, zi, i = 1,…,n respectively), and the moments of inertia Jxxi = Jyyi = Jqi, Jzzi = Jpi, Jxyi = Jyzi = Jzxi = 0 
with respect to the center of mass. It is assumed that the elements roll along the tracks without slipping and 
viscous medium exerts damping moment on them. Considering also external damping, the overall damping 
moment acting upon the rotor is (Sperling et al., 2002) 
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The isotropic elastic damping supports are characterized by the stiffness parameters k11, k12, k22 and the damping 
parameters c11, c12, c22 with respect to the vibrational co-ordinates ; Vq ( )RRR LL ϕ&=  is the rotor driving torque. 
Using the abbreviations 
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we obtain the following Lagrange´s equations for the system under investigation, linearized in the vibrational 
co-ordinates  (Sperling et al., 2002; Sperling et al., 2001b) Vq
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with 

 , xkykyykxkx ψzrr,ψzrr −=+= m,...,nk += 1 . (9) 

The equations (3)-(8) represent a general system of equations of motion for the rotor with several primary 
unbalances and several tracks with auto-balancing balls. To simplify description of the considered effect, we 
investigate below the simpler case in which the rotor has only one primary unbalance and a single auto-
balancing track with n elements. We assume that the primary unbalance plane does not coincide with the plane 
of the auto-balancing device and neither are placed in the plane of rotor center of mass, so the rotor is statically 
and dynamically unbalanced.  
 
3  Analytical Study 
 
In the analytical investigation we consider a quasi-stationary process: we assume that driving moment LR and 
rotor speed ωR change slowly, at every moment they can be considered as constant. For convenience, we 

characterize the driving moment by the “nominal speed” 
R

R

β
LΩ = . 

Simulations confirmed by experimental data reveal that near critical speeds balls move “together” in each plane 
with the same speed, not equal to the rotor speed; moreover, they exhibit the same phase. Using the method of 
direct separation of motion (Blekhman, 2000), we present the motion of the system for the case when all balls 
are situated in one plane (single-plane device) in the form 
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 ( )qtξtω RRR +=ϕ , , const.ωR = bR ωωq −= , 

 ( )qtξαtω kkbk ++=ϕ , , const.ωe = const.αα bk == , ,...,nk 1= , (10) 

where ,  are harmonical functions with frequency . ( )qtξR ( )qtξk q
Neglecting phase oscillations and small terms on the left hand side, we can rewrite equations (3)-(6) as  
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The equations (11)-(14) can also be presented in the complex form. Introducing 
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Presenting the solution in the form 
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and taking into account that vibrations in the plane with axial co-ordinate  are kz
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where 
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Vibrations in the planes of the primary unbalance and auto-balancing device include two components with 
frequencies  and  Rω bω
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Projections of these vibrations on axes x,y  are 
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where  are the amplitudes of vibrations in the corresponding planes, caused by the primary 

unbalances and auto-balancing balls;  are the phases of these vibrations 
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The vibrational terms in equations (7), (8) can be calculated as 
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Following the method of direct separation of motion, we replace these terms by the averaged “vibrational 
moments” 
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The substitution in equations (7), (8) gives 
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Using (20)-(24) we can rewrite equations (27) as  

   (28) ( )( ) Ω,β,z,z,ωωωεmωβnωβ RppRRRppbbRR =−− AIm422

   (29) ( )( ) .ωβ,z,z,ωωωεnmωβ RbbbRbbbbbb =− AIm422

Relations (28)-(29) with (21) represent a system of equations for determination of the parameters of non-
synchronous motions. 
Equations (28)-(29) contain only variables of the “real” type. From (21) 
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and we obtain a system of equations (28)-(30) of the “real” type.  
Below we consider some important particular cases. For the unbalanced rotor without auto-balancing device, 
only equation (28) without the term and equation (30) should be analyzed. From (28) we obtain bbωnβ

 .  (31) ( )( ) Ωβ,z,z,ωωωεmωβ RppRRRppRR =− AIm422

Equation (31) determines the dependence )(Ωωω RR = . The simplest way to construct this dependence is to 
build a function   
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R
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and inverse it. 
The same way we can treat the full system of equations (28)-(29). Equation (29) determines the dependence 

. This equation is more complicated than (31), because the function ( Rbb ωωω = ( )( )bbbR ,z,z,ωωAIm  depends 
both on the and Rω bω . As above, it is easier to construct the dependence ( )bRR ωωω = , than ( )Rbb ωωω = . 
The inversion of  ( )bRR ωωω =  yields ( )Rbb ωωω = . 
From equation (28) 
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The inversion of (33) gives the dependence ( )Ωωω bb = . Combining the dependencies  and ( )bR ωω ( )Ωωb  we 
can construct . ( )Ωωω RR =
If damping in the track is low, , we can neglect the term  in equation (28). In such cases 

 and  are independent; the ball motions do not influence the rotor rotation. 
Rb βnβ << bbωnβ

( bR ωω ) ( )ΩωR

 
4  Numerical and Simulation Results, Estimation of the Border Values 
 
The numerical and simulation results presented below correspond to the rotor system with parameters of the 
centrifuge rotor. The rotor mass is about 12.5 kg. Its polar moment of inertia is greater than the transverse 
moment, so the rotor exhibits only one critical speed, approximately 60 rad/s. In simulations, which were 
performed employing the Advanced Continuous Simulation Language (ACSL), we investigated the transient 
process of rotor run-up with a slowly increasing driving moment (the nominal speed changes from 0 to 

, as in Figure 3). maxΩΩ =
 
4.1  Only Primary Unbalance 
 
When the rotor has only primary unbalance, the dependence ( )Ωωω RR =  is determined by equation (31).  
Fig. 4 demonstrates the “analytical” dependence ( )Ωωω RR =  and the results of simulation of the transient 
processes of the rotor run-up.  
An analytical study predicts that in the pre-critical region the rotor velocity should be close to the nominal 
speed. In simulations the picture is slightly different because, due to the acceleration, after the start the rotor 
speed falls behind the nominal speed. Near the critical speed the analytical and simulation curves merge. In this 
region one can observe a non-synchronous motion with a noticeable difference between the rotor and the 
nominal speeds: the rotor speed remains close to the critical speed, while the nominal speed increases. After 
reaching the border value, the rotor accelerates. In the post-critical area the difference between the rotor and the 
nominal speeds becomes fairly small. 
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Figure 3. Variation of the nominal speed during the 
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Figure 4. Only primary unbalance.  
Dependence ( )Ωωω RR =

 
The border value can be approximately estimated assuming that in the border point brΩ ( ) crbrR ωΩω ≈ .  
From (31) 
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Calculations show that near the critical speed ( )( ) 0AIm <ppcrcr ,z,z,ωω , so . Taking into account that crbr ωΩ >

( )ppcrcr ,z,z,ωωA  depends only on the properties of rotor and supports and does not depend on parameters of 

the primary unbalance, we can rewrite (34) in the form 
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To diminish the area of effect it is necessary to decrease the mass and/or eccentricity of the primary unbalance 
and to increase the damping parameter . Rβ
 
4.2  Auto-Balancing Device. Dependence ( )Rbb ωωω =  
 
In Fig. 5 the dependence  numerically calculated from equation (29) is compared with the 
simulation results. One can see that, for the considered rotor system during the run-up, balls from the start 
follow the analytical curve. In the critical speed area we can observe noticeable non-synchronous motions. It is 
interesting that the ball speeds are close to the rotor system eigenvalue, whereas for the classical Sommerfeld-
effect in an unbalanced rotor system without auto-balancing device (Fig. 4), the speed of the rotor motion is 
close to the critical speed of the rotor system. 

( Rbb ωωω = )

The border value of non-synchronous motion can be estimated as a point, where the curve  ( )Rbb ωωω =  
crosses the line of eigenvalues, as shown in Fig. 5,6. 
The eigenvalue curve )( Ree ωωω =  corresponds to the condition ( ) 0∆ =Re,ωω  with damping neglected.  
From (30)  
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As above, we can consider (36) as an equation determining the dependence )( eRR ωωω = . This yields 
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The dependence ( )eRR ωωω = has four branches. Selecting the branch, which corresponds to the forward 
motion in the area of considered critical speed and inverting it, we obtain ( )Ree ωωω = .  
To determine the border value of non-synchronous motion we should find  for which 

. In the border point rotor and ball speeds  satisfy a system of equations 
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The position of border point depends on the rotor system parameters  and on the 

parameter 
21,i,k,,c,k,z,JM,J ikikpza =
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characterizing the auto-balancing device and not depending on the primary unbalance. To diminish the area of 
non-synchronous motion it is necessary to decrease σ , i.e. decrease the mass and/or the eccentricity of the balls 
and increase the damping parameter . bβ
 
4.3  Influence of Ball Motions on the Rotor Velocity 
 
For the rotor system serving as the prototype for simulations, damping parameters satisfy the condition 

bR ββ >>  and the influence of the ball motions on the rotor velocity is negligible. In general, when damping 
parameters are of the same order, the influence of ball motions consists in the appearance of the term  in 
equation (28). To simplify the construction of dependence 

bbωnβ
( )Ωωω RR = , we can take into account the results of 

simulations, which revealed that in the region of non-synchronous motions ( )Reb ωωω ≈  and in the post-critical 
area . Rb ωω =

 32 



From (28) we obtain for the first region 

 ( ) ( )( ) Ωβ,z,z,ωωωεmωωβnωβ RppRRRppRebRR =−− AIm422  (40) 

and for the second  one 

 . (41) ( ) ( )( ) Ωβ,z,z,ωωωεmωβnβ RppRRRppRbR =−− AIm422

 
4.4  Ball Angular Positions 
 
Figs. 7-9 demonstrate ball angular positions during the rotor run-up. In the critical speed area the difference 
between the rotor and ball speeds is comparatively high due to the non-synchronous motions; the balls lag 
behind the rotor and move along the track in the direction opposite to rotation. When the area of non-
synchronous motions is comparatively wide, the balls accomplish some rounds of the track (Figs. 7,8). When 
this area is narrow, the balls just make a 180o turn (Fig. 9). 
In the critical speed region, balls move together exhibiting the same phase. Analytical investigations predict that 
in the post-critical range the balls should separate and occupy stable positions which provide zero vibrations in 
the plane of the device (Ryzhik et al., 2002). But simulations, confirmed by experimental data, revealed that in 
practice the balls do not separate immediately after leaving the non-synchronous motions area. At first they 
place themselves in the theoretically unstable position, opposite to the primary unbalance (Figs. 7-9). Only after 
a certain time, which depends mostly on the level of damping, the balls start moving to the compensation 
positions. When damping is high as in Fig. 9, the balls may stay in unstable positions for quite a long time. 
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Figure 7. Ball angular positions  
(wide area of non-synchronous motions). 

 

time, s

ba
ll 

an
gu

la
r 

po
si

tio
ns

, d
eg

 
 

Figure 8. Ball angular positions  
(medium-wide area of non-synchronous motions). 
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Figure 9. Ball angular positions  
(narrow area of non-synchronous motions). 
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4.5  Rotor Vibrations 
 
Figs. 10-12 show rotor vibrations in the plane of the device, when passing the critical speed region. If the area of 
non-synchronous motions is wide, we observe two maxima of vibrations (Figs. 10,11), which take place, when 
the rotor and the ball speeds reach resonance points. As demonstrated above, in such cases the balls make 
several rounds of the track; at certain moments, centrifugal forces from the balls and primary unbalance add to 
each other, so the maximal vibrations exceed the vibrations engendered by primary unbalance.  
When the region of non-synchronous motions becomes narrow, vibrations connected with the primary 
unbalance and the auto-balancing balls merge with each other more clearly. Here, the initial angular positions of 
the balls relatively to the primary unbalance play an important role (Fig. 12). For advantageous phasing, the 
centrifugal forces from the primary unbalance and the auto-balancing balls near the resonance deduct from each 
other and the vibration level becomes fairly low; for inauspicious phasing these forces add engendering high 
vibrations. 
To provide smooth passing through the critical speed for such type of non-synchronous motions, as in Fig. 12, it 
is necessary to control the initial phasing. The authors are working in this direction and some first results are 
presented in the paper (Ryzhik et al., 2003a), submitted to the ASME Conference, but at the moment it is not 
completely clear whether it is really possible to obtain advantageous phasing in all cases and how complicated 
the algorithm of control would be. 
If the control of initial phasing is not performed, the optimal area of non-synchronous motions looks like in  
Figs. 8,11. To obtain such area, it is necessary to select carefully the parameters of the device. It is clear that the 
ball masses and eccentricities should be kept on the lowest possible level, based on the estimation of primary 
unbalance, because it allows to minimize unbalanced centrifugal forces. The main parameter, which can be used 
for the “regulation” of non-synchronous motions, as well as for the influence on the process of synchronization 
with unbalance compensation in the post-critical region, is the damping parameter, . Our investigations have 
proved that by careful selection of damping it is possible to improve sufficiently the vibration performance of 
rotor systems with an auto-balancing device in comparison with “not-optimized” cases. More details on the 
optimization of damping and selection of device parameters can be found in the paper (Ryzhik et al., 2003b). 

bβ

 
 

 
 

 
Figure 10. Rotor vibrations in the plane of the device  

(wide area of non-synchronous motions). 
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Figure 11. Rotor vibrations in the plane of the 

device (medium-wide area of non-synchronous 
motions). 
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Figure 12. Rotor vibrations in the plane of the device  
(narrow area of non-synchronous motions). 

 
 
5  Experimental Verification 
 
The presented results were verified and complemented by experimental data obtained from test runs of the 
centrifuge rotor system with the auto-balancing device. At the moment, the authors are preparing a paper with a 
detailed description of these results. It is necessary to emphasize that the agreement between the simulation and 
experimental data is fairly good. 
Many interesting results were also obtained at the experimental set-up in the Otto-von-Guericke-Universität 
Magdeburg. A description of the set-up equipment and the first results were published in (Gröbel et al., 2003). 
 
6  Conclusion 
 
The presented investigations demonstrate that the non-synchronous motions can sufficiently influence the 
vibration performance of rotor systems with auto-balancing devices. To provide smooth passing through the 
critical speed areas, it is necessary to carefully select the device parameters. The authors intend to continue their 
studies, focusing on the effects of partial unbalance compensation, non-synchronous motions of the balls, as 
well as on the problems of parameter optimization and phase control. 
The most important practical applications of auto-balancing devices are centrifuges, hand power tools, washing 
machines, and optical disk drives. 
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