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Non-Synchronous Motions Near Critical Speeds in a Single-Plane
Auto-Balancing Device

B. Ryzhik, L. Sperling, H. Duckstein

Automatic balancing devices comprising several balls or other moving elements in circular tracks can efficiently
compensate rigid rotor unbalance in certain ranges of rotational speed. However, near critical speeds the
vibration level can be comparatively high as a result of non-synchronous ball motions. The paper considers
such non-synchronous motions of balancing elements. The characteristics of ball motions and the main factors
influencing the investigated phenomenon are analyzed. The paper includes an analytical study of non-
synchronous motions, results of computer simulations and comparison with experimental data.
Recommendations are given for the optimal choice of auto-balancing device parameters and other measures for
decreasing vibrations near critical speeds.

1 Introduction

Rigid rotor auto-balancing devices comprising balls or rollers in circular tracks for compensating unbalanced
inertia forces are the subject of investigation for many researchers. Thearle (1932) was the first to introduce such
device with one track and two balls. Later, the device was generalized by Hedaya and Sharp, who proposed a
two-plane device with four balls for compensating both unbalanced force and unbalanced moment of rigid rotor
(Hedaya and Sharp, 1977). The interest in auto-balancing and the number of publications on this subject have
been noticeably increasing in recent times (Bovik and Hogfors, 1986; Chung and Ro, 1999; Kang et al., 2001;
Huang and Chao, 2002; Olsson, 2002). Some principal aspects of automatic balancing were investigated in
publications by Sperling et al. (Sperling and Duckstein, 2001a; Sperling et al., 2002; Sperling et al., 2001b;
Ryzhik et al., 2002a). Auto-balancing is particularly advantageous for rotors with variable unbalance, such as
washing machines, centrifuges, grinding machines, and CD-ROM drives.

The main attention of researchers is focused on the possibility and stability of unbalance compensation by means
of auto-balancing devices. Therefore, investigations usually concentrate on synchronous motions, where the
balls and the rotor have equal speeds. Meanwhile, experimental data confirmed by simulation results revealed
that a different type of motion may occur in the regions near the critical speeds of the rotor system. Under
specific conditions during rotor run-up, the balls exhibit non-synchronous motions, continuing to move with
speeds close to the rotor eigenfrequency, whereas the rotor gains in speed and passes the critical speed area. This
phenomenon is similar (but not completely identical) to the well-known Sommerfeld-effect in unbalanced rotor
systems with a limited driving moment.

The non-synchronous motion of the balls is an undesirable phenomenon in automatic balancing as it may cause
high vibrations near critical speeds. If parameters are not properly chosen, such vibrations may significantly
exceed the magnitude of vibrations of a rotor system without auto-balancing device.

The display of non-synchronous motions in automatic balancing was first revealed in (Sperling et al., 2002;
Sperling et al., 2001b; Ryzhik et al., 2002a; Duckstein et al., 1999). The systematic analysis of the important
particular case, when the rotor with a single-plane auto-balancing device is symmetrically supported and has
only static unbalance, was performed in Ryzhik et al. (Ryzhik et al., 2001; Ryzhik et al., 2002b). In the present
publication we consider a general case of a statically and dynamically unbalanced rigid rotor with a single-plane
auto-balancing device, presenting analytical study, detailed simulation results and experimental data.

2 Model and Equations of Motion

Figure 1 demonstrates a rigid rotor with auto-balancing device. The axial-symmetric rotor has a mass my and
moments of inertia Jug = Sy = Jar » Sk = Jor s Syr = Jyzr = Jor = 0 with respect to the center of mass in the

non-rotating vector frame ¢,,¢é,,¢,; g, = [rx Y, Ty I//X]T are the co-ordinates of the vibrational motion

(see Figure 2). The rotor has m unbalances in the planes z;, (k = n+1,...,n+m), hereinafter referred to as primary
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unbalances, idealized as mass points with masses m, and eccentricities &;. The rotor angular velocity is ¢ ; the

angular positions of primary unbalances are @, = gz + @y, k =n+1,..., ntm.
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Figure 1. Rotor model Figure 2. Main system variables

The angular co-ordinate ¢, i = 1,..., n, describes the motion of a compensation element of the auto-balancing
device (see Figure 1), characterized by the mass, the eccentricity of the mass center, the radius, the position of
plane (m;, &, 1y, z;, i = 1,...,n respectively), and the moments of inertia Jy,; = Jyi = Jyi, Jozi = Jpin Jyyi = Jpzi = Joi = 0
with respect to the center of mass. It is assumed that the elements roll along the tracks without slipping and
viscous medium exerts damping moment on them. Considering also external damping, the overall damping
moment acting upon the rotor is (Sperling et al., 2002)

My = Brpr+ Y Bior—0,)|=~Bror+ Y B Br=Be+ D b - e)

i=1 i=1 i=1
The isotropic elastic damping supports are characterized by the stiffness parameters ky, k1», k2, and the damping
parameters ¢y, ¢z, ¢z With respect to the vibrational co-ordinates qy ; Lz = Ly (go R) is the rotor driving torque.

Using the abbreviations

n+m 2
2 .

Msz+Zml-, Jbizgmiri , i=1..n,

i=1

n+m n n R 2 n+m

_ 2 _ ; 2

Jo=dw+ Y mzl+ Dy Jo=dp Y L it > ome

i=1 i=1 i=1 \ i i=n+1

2 .

~ - R, ~  |me e —=r |, i=1,...n,
Jz:JzR+zr_‘]bi’ Ji= 5 @)

i=1 "1 ml.gl.z, i=m+1,..n+m,

T 2 Re

Jl.:—ml.gl s JIR_ l2 Jbi’ i=1..n,
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we obtain the following Lagrange’s equations for the system under investigation, linearized in the vibrational
co-ordinates (;, (Sperling et al., 2002; Sperling et al., 2001b)

n+m n+m

Mr + kazk‘//y tonlytopy, kg oy, = kagk (¢7k S @y + @y COS(/’k): 3)
k=1 k=1

n+m n+m

kazkfx +J 0, +%kae,§ [— W, sin 2¢, +1})y(l+0052¢)k )]
=1 k=1

n+m n+m
+eply +eny, —{]z(/"ze + Z-]k(bk 1‘/'/); - kaglfﬂi’k (Wx oS 29+, sin 2€0k) “4)
k=1 k=1
- n+m - n+m
+hyor +hpy, —% J.Pp + ZJk¢k V= kagkzk (¢k sin ¢y +¢’1§ COsS @y )
k=1 k=1
n+m n+m
Mr, - kaZkV’x tonry =Wy Hkary, —kpy, = —kaf?k ((Pk COS @ — @y sIn ¢k) (%)
k=1 k=1
n+m ntm
- kazkry +J W, +%ka8k [Wx(l—COSZ(/)k )—l//y sin Zgz)k]
k=1 k=1
- n+m _ n+m
—Cpfy oy +| J . @p + ZJk¢k w,+ kangcbk (‘//x sin2¢; —yr,, €08 2%) (6)
k=1 k=1

n+m n+m
—kipry ko, +%{JZ¢R + ij(bk}//y = ka‘?kzk (¢k COsS @y —¢1§ sin @y )

k=1 k=1
n n n+m
J. or _ZJkR¢k +PrPr _Zﬁk(bk - kagk [ka sin gy — 7, COS(”k]: Le(¢z), (7)
k=1 k=1 k=n+1
~Jialoy + b= By + B e[ sing, —y cosp ] =0 k=1 ®)
with
T =T FZRW 0 Ty =Ty =23 k=1..n+m. ©)

The equations (3)-(8) represent a general system of equations of motion for the rotor with several primary
unbalances and several tracks with auto-balancing balls. To simplify description of the considered effect, we
investigate below the simpler case in which the rotor has only one primary unbalance and a single auto-
balancing track with n elements. We assume that the primary unbalance plane does not coincide with the plane
of the auto-balancing device and neither are placed in the plane of rotor center of mass, so the rotor is statically
and dynamically unbalanced.

3 Analytical Study

In the analytical investigation we consider a quasi-stationary process: we assume that driving moment Lz and
rotor speed @y change slowly, at every moment they can be considered as constant. For convenience, we

. . . L
characterize the driving moment by the “nominal speed” Q = =X
R
Simulations confirmed by experimental data reveal that near critical speeds balls move “together” in each plane
with the same speed, not equal to the rotor speed; moreover, they exhibit the same phase. Using the method of
direct separation of motion (Blekhman, 2000), we present the motion of the system for the case when all balls

are situated in one plane (single-plane device) in the form
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PR =a)Rt+§R(qt), wp = const. q=wp—w,,

@ = wpt + oy +§k(qt), w, =const., oy =0, =const., k=1..n,

where &,(gt), &, (q¢) are harmonical functions with frequency ¢ .
Neglecting phase oscillations and small terms on the left hand side, we can rewrite equations (3)-(6) as

.. . . 3 2 )
Mr, +oy 1+ ey, ke Hkpy, =mpe o coswgt +nmye,w;, cos(a)bt+ab) ,
SV =J W0 + CipFy + ey, + kit F oy, =

= mpapzpa)f? COSwpl + nmbabzbwg cos(a)bt +a, )

Mry, +cy 7y —cppy +kyry, —kpy, = mpepw,% sinwpyt + nmbebw,% sin(wbt+ ay, )
JW o+ 0p —Cppfy + O —kppry, +hpp, =

—mpapzpw,ze sin pt — nmye, zy 7 sin(wyt +ay ).

The equations (11)-(14) can also be presented in the complex form. Introducing
r=r.+ir, Y=y, =iy,
we obtain

2

.. . . _ iwgt 2 Ji(wpttay)
MT+et+epy+hr+k,y=mye,ope™ +nmye e ™

J W= Jiog + ot + e+t +kpy =

_ 2 iwpt 2 i(wyt+ay)
=myé,z,0pe +nmyELzZyp e .

Presenting the solution in the form

iwpt i(wyt+ay)
,

r=r,e"" +rye

iwpt

y=y,e" ty e

i(wyt+ay)

and taking into account that vibrations in the plane with axial co-ordinate z, are

Iy =1 + vy,
we get

_ ( ) iwpt ( ) i(a)bHab) _ iwpt i(wbHab)

L=\t +z,9, Je™ +, + 2y, ) e =re " +1,e ,

Ty = msgswa(ws,wR,zp,zp), s=pb,
where

Alw,op.2,.2) = Nloy, 05,22 ) Moy.op),

2
N(ws’wR’Zier ) = _(Jaws —J. ooy )+ K (a)s )_ K2 (a)s ) Zp t
2
+2z; [(— Mo + Kll(a)s )) Zx — Klz(ws )] )
2 2 2 2
A(ws’wR ) = Mws Jaws - szRws )_ Mo K2 (ws )+ Jaws - szRws )Kl 1 (ws )]+

+ Kll(ws ) Ko (ws )— [KIZ(CUS )]2

K,«k(a)):kik tiogey, k=12, s=pb w,=w i=v-1
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Vibrations in the planes of the primary unbalance and auto-balancing device include two components with

frequencies wz and w,

iwpt

_ _ i(wbt+ab)
T —I’+Zp\|l— rppe +rpbe ,

p

_ _ iwpt i(wbHab)
1, —1'+Zb\y— rbpe +I'bb€ .

Projections of these vibrations on axes x,y are

Fpx = Tpp COS (a)Rt—gopp )+ Tpp COS (a)bt-irab ~Ppb )
Ty = Fpp SIN (a)Rt ~Ppp )+ Tpp SIN (a),,t+ O, =P pp )
Thx = Tpp COS (a)Rt ~ Py )+ 7, COS (a)bt +oy, — @ )

Tiy = Ty S0 (@1 = P9 )+ 13, S0 (@01 + 0t = ).

(22)

(23)

where r,,, 7,1, 1, are the amplitudes of vibrations in the corresponding planes, caused by the primary

Pp’
unbalances and auto-balancing balls; @,,,, @, @,. ¢y, are the phases of these vibrations

Kvp = s ¢S = _arg(rsp )’

o =lrsl. 4o =-arelry ), s =pb.

rsp

The vibrational terms in equations (7), (8) can be calculated as

_ L . _ .. ,,-a,k,)
B, = mpep<rpx SINWgt =7, coszt) mye, Im(rpe
oy ol o e |
=-mye, [a)R Imlr,, ]+ @, Imlr,,e ,
B, = —mye, |F, sin(wyt +ay )~ 7, cos(wyt +ay )| = mye, Imlt,e (@ +e)
i b€ ox bl +0p )= Ty bl + b%b b

=—mpe), [a’zze Im (rboei(qt_ab ) )+ @; Iz, ) ] '

(24)

(25)

Following the method of direct separation of motion, we replace these terms by the averaged “vibrational

moments”

2z
V,= J.de(qt) = —mpapco}ze Im(rp )
0

2r

V= J-Bid(q f) = —my&,0; Im(rbb )
0

The substitution in equations (7), (8) gives
Prog —n frop — mpepculz? Im(rpp ): L8,
Browy, — mbgba’g Im(rbh ) = Bprog.

Using (20)-(24) we can rewrite equations (27) as

2.2 4
Prog —n fyo, —myE,mp Im(A (cuR,a)R,zp,zp)) =[R2,

Broy —nmfeﬁwg Im ( A (wawR’Zerb) ): Brog .

(26)

@7

(28)

29

Relations (28)-(29) with (21) represent a system of equations for determination of the parameters of non-

synchronous motions.
Equations (28)-(29) contain only variables of the “real” type. From (21)

Im (A (0, 0p.2,2;) )= [Re(A(w,0p))])* +[Im (A w,,0z))]
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Re (N(ws’wR’Zi’Zk )): _(Jawsz —J. oo )+ kyy —kypzy + 2 [(— Ma’sz + kll)Zk —klz] )
Im(N(ws’lezi’Zk )): [‘322 —C12Zk +Zi(011 Zk —012)] @y,
Re (A(CUS,OOR )) = Mwsz (Jawsz - szRws )_ [Alwszk22 + (Jaws2 - szRws ) kl 1 ]+ (30)

2 2) 2
+hyky —k _(011022 —C, )ws ,

Im(A(ws’wR )): _[Mwszczz + (Jawf —J. w0y )Cll] oF +(511k22 + ek _chzklz)ws >

and we obtain a system of equations (28)-(30) of the “real” type.
Below we consider some important particular cases. For the unbalanced rotor without auto-balancing device,
only equation (28) without the term nf,w, and equation (30) should be analyzed. From (28) we obtain

Prog—mieiobm (Aopogz,.z, )= 2. (1)

Equation (31) determines the dependence wy = wgx(22). The simplest way to construct this dependence is to
build a function

Q=0Q(wy)=wp —émﬁaéwé Im(A(a)R,a)R,zp,zp)) (32)

and inverse it.
The same way we can treat the full system of equations (28)-(29). Equation (29) determines the dependence
W, =) (w R ) This equation is more complicated than (31), because the function Im( A(w ROy Zp,Zp )) depends

both on the wy and w,. As above, it is easier to construct the dependence w; = wy (a),,), than w, = w, (wR).
The inversion of wjp = wp (a)b) yields o, = w, (a)R).
From equation (28)

Q= Q(a)b): Wp (wb)—’;ﬁwb —ﬁLmiei[wR (wb )]4 Im(A(a)R (a),,),zp,zp )) . (33)
R R

The inversion of (33) gives the dependence w, = w,(2). Combining the dependencies wy(w, ) and w,(2) we
can construct @y, = wp (Q)
If damping in the track is low, nf, << fz, we can neglect the term nf,w, in equation (28). In such cases

Wp (a)b) and wp (Q) are independent; the ball motions do not influence the rotor rotation.

4 Numerical and Simulation Results, Estimation of the Border Values

The numerical and simulation results presented below correspond to the rotor system with parameters of the
centrifuge rotor. The rotor mass is about 12.5 kg. Its polar moment of inertia is greater than the transverse
moment, so the rotor exhibits only one critical speed, approximately 60 rad/s. In simulations, which were
performed employing the Advanced Continuous Simulation Language (ACSL), we investigated the transient
process of rotor run-up with a slowly increasing driving moment (the nominal speed changes from 0 to
Q=0 .« asin Figure 3).

4.1 Only Primary Unbalance

When the rotor has only primary unbalance, the dependence wj; =wy (Q) is determined by equation (31).
Fig. 4 demonstrates the “analytical” dependence wz = wg(2) and the results of simulation of the transient

processes of the rotor run-up.

An analytical study predicts that in the pre-critical region the rotor velocity should be close to the nominal
speed. In simulations the picture is slightly different because, due to the acceleration, after the start the rotor
speed falls behind the nominal speed. Near the critical speed the analytical and simulation curves merge. In this
region one can observe a non-synchronous motion with a noticeable difference between the rotor and the
nominal speeds: the rotor speed remains close to the critical speed, while the nominal speed increases. After
reaching the border value, the rotor accelerates. In the post-critical area the difference between the rotor and the
nominal speeds becomes fairly small.
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Figure 3. Variation of the nominal speed during the Figure 4. Only primary unbalance.
rotor run-up Dependence wp = wp (Q)

The border value £, can be approximately estimated assuming that in the border point wy (Q,,,)zw
From (31)

cr ¢

Q. = Q(a)cr ) =w,, (1 —émisiw; Im (A(wcr,wcr,zp,zp ))] . 34)

B2 2 ) ))< 0,s0 9, >, . Taking into account that

Calculations show that near the critical speed Im(A(wC,., orsZ ps

A(a)

the primary unbalance, we can rewrite (34) in the form

err @ Z piZ p) depends only on the properties of rotor and supports and does not depend on parameters of

1 523

Q. = Q(a)cr ) =w,, [1 + ﬁ—mpspwcrcb(MJa,Jz,zp,kik,cik ) . (35)
R

To diminish the area of effect it is necessary to decrease the mass and/or eccentricity of the primary unbalance

and to increase the damping parameter S .

4.2 Auto-Balancing Device. Dependence w, = w,(wg )

In Fig. 5 the dependence w, :a)b(a)R) numerically calculated from equation (29) is compared with the
simulation results. One can see that, for the considered rotor system during the run-up, balls from the start
follow the analytical curve. In the critical speed area we can observe noticeable non-synchronous motions. It is
interesting that the ball speeds are close to the rotor system eigenvalue, whereas for the classical Sommerfeld-
effect in an unbalanced rotor system without auto-balancing device (Fig. 4), the speed of the rotor motion is
close to the critical speed of the rotor system.

The border value of non-synchronous motion can be estimated as a point, where the curve o, =, (cuR)
crosses the line of eigenvalues, as shown in Fig. 5,6.

The eigenvalue curve w, =w,(wy) corresponds to the condition A(a)e,a)R):O with damping neglected.

From (30)

Ma)ez(Jawe,2 —JZwRa)g)— [Ma)ezkzz +(Jaw§ _szRwe)kll] +ky 1k, —klz2 =0. (36)
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As above, we can consider (36) as an equation determining the dependence w; = @, (w,) . This yields

B MJ 0, = Mo, kyy = J o3k +k ko —klzz

w =
5 Msze3 _Jza)e kll

(37

The dependence wj =wy (a)e)has four branches. Selecting the branch, which corresponds to the forward
motion in the area of considered critical speed and inverting it, we obtain ®, = w, (a) z)-
To determine the border value of non-synchronous motion we should find wp =wyg, for which

@, (a) Rbr ) =w, (g ) In the border point rotor and ball speeds wpg;,., @, satisfy a system of equations

22 4
wlm(A(wbbwwawa’Zb )): WRby >

By (3%)

2 2 2
Muawy, (‘]awbbr —J O gy Oppyy )_ [Mwbbr kayy + (Jaa)lfbr —J L0 gy Oppyy )k1 1 ]+ kiyky, — ki =0.

WOppr —

The position of border point depends on the rotor system parameters M,J,.J ..z, ky,cy, i,k =12 and on the

parameter
nmje;
o= MM Ep
By

characterizing the auto-balancing device and not depending on the primary unbalance. To diminish the area of
non-synchronous motion it is necessary to decrease o, i.e. decrease the mass and/or the eccentricity of the balls
and increase the damping parameter f,.

(39

4.3 Influence of Ball Motions on the Rotor Velocity

For the rotor system serving as the prototype for simulations, damping parameters satisfy the condition
,E r >> P, and the influence of the ball motions on the rotor velocity is negligible. In general, when damping
parameters are of the same order, the influence of ball motions consists in the appearance of the term nf,w, in
equation (28). To simplify the construction of dependence wj, = w, (.Q), we can take into account the results of
simulations, which revealed that in the region of non-synchronous motions w;, = w, (a) R) and in the post-critical

area w, = wp.
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From (28) we obtain for the first region
Prowogp —n ﬁbwe(a)R )— miefywé Im(A(a)R,wR,zp,zp )) = fr0 (40)
and for the second one

(Bx —n/)’b)cuR —mf,e;wfg Im(A(wR,a)R,zp,zp)): Lre2. (41)

4.4 Ball Angular Positions

Figs. 7-9 demonstrate ball angular positions during the rotor run-up. In the critical speed area the difference
between the rotor and ball speeds is comparatively high due to the non-synchronous motions; the balls lag
behind the rotor and move along the track in the direction opposite to rotation. When the area of non-
synchronous motions is comparatively wide, the balls accomplish some rounds of the track (Figs. 7,8). When
this area is narrow, the balls just make a 180° turn (Fig. 9).

In the critical speed region, balls move together exhibiting the same phase. Analytical investigations predict that
in the post-critical range the balls should separate and occupy stable positions which provide zero vibrations in
the plane of the device (Ryzhik et al., 2002). But simulations, confirmed by experimental data, revealed that in
practice the balls do not separate immediately after leaving the non-synchronous motions area. At first they
place themselves in the theoretically unstable position, opposite to the primary unbalance (Figs. 7-9). Only after
a certain time, which depends mostly on the level of damping, the balls start moving to the compensation
positions. When damping is high as in Fig. 9, the balls may stay in unstable positions for quite a long time.
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4.5 Rotor Vibrations

Figs. 10-12 show rotor vibrations in the plane of the device, when passing the critical speed region. If the area of
non-synchronous motions is wide, we observe two maxima of vibrations (Figs. 10,11), which take place, when
the rotor and the ball speeds reach resonance points. As demonstrated above, in such cases the balls make
several rounds of the track; at certain moments, centrifugal forces from the balls and primary unbalance add to
each other, so the maximal vibrations exceed the vibrations engendered by primary unbalance.

When the region of non-synchronous motions becomes narrow, vibrations connected with the primary
unbalance and the auto-balancing balls merge with each other more clearly. Here, the initial angular positions of
the balls relatively to the primary unbalance play an important role (Fig. 12). For advantageous phasing, the
centrifugal forces from the primary unbalance and the auto-balancing balls near the resonance deduct from each
other and the vibration level becomes fairly low; for inauspicious phasing these forces add engendering high
vibrations.

To provide smooth passing through the critical speed for such type of non-synchronous motions, as in Fig. 12, it
is necessary to control the initial phasing. The authors are working in this direction and some first results are
presented in the paper (Ryzhik et al., 2003a), submitted to the ASME Conference, but at the moment it is not
completely clear whether it is really possible to obtain advantageous phasing in all cases and how complicated
the algorithm of control would be.

If the control of initial phasing is not performed, the optimal area of non-synchronous motions looks like in
Figs. 8,11. To obtain such area, it is necessary to select carefully the parameters of the device. It is clear that the
ball masses and eccentricities should be kept on the lowest possible level, based on the estimation of primary
unbalance, because it allows to minimize unbalanced centrifugal forces. The main parameter, which can be used
for the “regulation” of non-synchronous motions, as well as for the influence on the process of synchronization
with unbalance compensation in the post-critical region, is the damping parameter, f,. Our investigations have
proved that by careful selection of damping it is possible to improve sufficiently the vibration performance of

rotor systems with an auto-balancing device in comparison with “not-optimized” cases. More details on the
optimization of damping and selection of device parameters can be found in the paper (Ryzhik et al., 2003b).
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5 Experimental Verification

The presented results were verified and complemented by experimental data obtained from test runs of the
centrifuge rotor system with the auto-balancing device. At the moment, the authors are preparing a paper with a
detailed description of these results. It is necessary to emphasize that the agreement between the simulation and
experimental data is fairly good.

Many interesting results were also obtained at the experimental set-up in the Otto-von-Guericke-Universitét
Magdeburg. A description of the set-up equipment and the first results were published in (Grobel et al., 2003).

6 Conclusion

The presented investigations demonstrate that the non-synchronous motions can sufficiently influence the
vibration performance of rotor systems with auto-balancing devices. To provide smooth passing through the
critical speed areas, it is necessary to carefully select the device parameters. The authors intend to continue their
studies, focusing on the effects of partial unbalance compensation, non-synchronous motions of the balls, as
well as on the problems of parameter optimization and phase control.

The most important practical applications of auto-balancing devices are centrifuges, hand power tools, washing
machines, and optical disk drives.
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