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Auto-Balancing of Anisotropically Supported Rigid Rotors 
 

 
 

B. Ryzhik, L. Sperling, H. Duckstein 
 
This paper presents a generalisation of investigations into single-plane auto-balancing of statically and 
dynamically unbalanced rigid rotors considering the influence of support anisotropy. In the analytical part 
conditions for existence and stability of forward whirl are derived. The question of simultaneous backward whirl 
compensation is answered, and two special cases of supporting are considered. The results are confirmed by 
numerical simulations. Further simulation results for the two-plane device are included. 
 
1  Introduction 
 
In Sperling et al. (2004) the authors have investigated in detail single-plane auto-balancing of isotropically 
supported rigid rotors. However, in practice the isotropy of supporting is not always ensured, for example 
because of the properties of journal bearings or foundations. 
Anisotropy of supports leads to an elliptical shape of the rotor vibration trajectory and to an increase in the 
number of critical speeds. Nevertheless, the averaged motions are similar to the case of isotropic supports, so the 
same approach to the analytical study is applicable.  
The present paper is based on the aforementioned investigations. The authors waive the replication of identical 
parts and concentrate only on the specific details and results.  
Again, conditions for the existence and stability of compensatory ball motions are derived and interpreted. 
Primarily, the existence conditions are valid for the forward whirl. However, in practically important cases the 
simultaneous backward whirl compensation is possible. Instead of a general analysis of the stability condition as 
in the case of isotropic supports, the investigation of stability is restricted on two specific simpler cases. 
The results are confirmed and completed by numerical simulations, including also the case of the long rotor with 
a two-plane device. In compact form, some results of the present paper have already been published in 
Duckstein et al. (2003 a) and Duckstein et al. (2003 b). 
 
2  Model and Equations of Motion 
 
Assuming the rotor to be mounted on two orthotropic elastic damped supports with the same directions of the 
principal axes and the resultant stiffnesses  and damping factors  
with respect to the vibrational co-ordinates , based on the model definition and the explanation of the 
symbols in Sperling et al. (2004) we obtain the following Lagrange’s equations for the system under 
investigation, linearized in the vibrational co-ordinates : 
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where 

 , xiyiyyixix ψzrr,ψzrr −=+= m,...,ni +=1  (7) 

are the co-ordinates of the path centres in the planes of the inherent unbalances and the balls. These equations 
are the basis of numerical simulations. 
 
3  General Conditions for Existence and Stability of Ball Motions Synchronous with the Rotor 
 
Following the approach of Sperling et al. (2004) , section 4, we obtain the vibrational moments 
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To reach an approximation for steady state vibrations, we simplify Eqs (1) – (4) as follows: 

 ,  (9) ( k

mn

k
kyxx αΩtfψkrkrM +=++ ∑

+

=

cos
1

1211&&

 , (10) ( k

mn

k
kkyxxzya αΩtfzψkrkψΩJψJ +=++− ∑

+

=

cos
1

2212&&&

 ,  (11) ( k

mn

k
kxyy αΩtfψkrkrM +=−+ ∑

+

=

sin
1

3433&&

  (12) ( k

mn

k
kkxyyzxa αΩtfzψkrkψΩJψJ +−=+−+ ∑

+

=

sin
1

4434&&&

with the centrifugal forces 
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Determining the steady-state solution of the Eqs. (9) – (12) for only the k-th member on each RHS in the form 
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we obtain the amplitudes 
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and  are more complicated expressions. ,...∆an
rxk

Thus, the stationary orbital motion of the centres of the circular ball paths is described by the expressions 
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are the corresponding harmonical influence coefficients. 
In the isotropic case k33=k11, k34=k12, k44=k22, we find instead of the expressions (15) and (16) in accordance with 
the results in Sperling et al. (2004): 
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In the anisotropic case, Eqs. (8) and (15) yield 
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In contrast to the isotropic case, these moments Bi, acting between the rotor and the balls, are not constant and 
include 2Ω - frequency components. 
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Averaging yields the vibrational moments 
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Thus, the existence conditions for synchronous motions, i.e. motions with constant ball phases ,  
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existence conditions from Sperling et al. (2004). 
The components of  and  (see Eq. (17)) in a frame  rotating with the rotor are ixr iyr ηξ,
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This yields the alternative form of the existence conditions 
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Obviously, the „forward whirl compensation“ condition 
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means that the forward whirl of the i-th ball path centre is equal to zero. 
If we define the rate of the forward whirl component due to the inherent unbalances 
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we obtain as another form of the existence conditions 
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If the forward whirl vanishes in at least two planes, the forward whirl is compensated for the whole rotor. This 
can be the case for a long rotor with a two plane device in the post-critical frequency range and for a rotor with a 
rigid bearing and a single-plane device in certain frequency ranges. In these cases according to Eq. (7) the 
forward whirl components of  vanish. xyyx ψ,ψ,r,r
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We demonstrate that consequently the backward whirl components will be equal to zero: 
Eqs. (8) – (12) can be presented in the complex form. Introducing  
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The solution represents a combination of the forward and backward whirls 
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From the last equation (41) we obtain 

  (43) ( ) ,ffb-bb RLLR
1

−=

which means, that if the forward whirl is equal to zero, the backward whirl also becomes equal to zero. 
To evaluate the stability of the various solutions of the existence conditions, we have to analyze the equations in 
variations 
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If the “forward whirl compensation” conditions are fulfilled, they can be simplified  
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Assuming that , 0>iβ ,...,ni 1= , the positive definiteness of the „stiffness matrix“ of Eqs. (44) or (45) is a 
necessary and sufficient condition for the asymptotic stability of any solution of the existence conditions. 
 
4  Single-Plane Balancer with Two Identical Balls 
 
In the case of a single-plan device ( ) a solution of the type 
„forward whirl compensation” ensures only vanishing of the forward whirl in one plane, namely in the device 
plane, while as a rule tilting forward whirl motions of the rotor remain. 
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The backward whirl component in the device plane disappears simultaneously only for the exceptional condition 
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which means, when the proportions of the harmonical influence coefficients for x- and y-direction of all inherent 
and ball unbalances with respect to the path centre of the balls are identical. 
In the case of two identical balls ( f2 = f1 = f ) the „forward whirl compensation“ conditions are 
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From the equations in variations 
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we obtain the necessary and sufficient stability condition 
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These solutions correspond completely to the solutions, interpreted in Sperling et al. (2004), section 5.2 for the 
isotropic supporting. The only difference is that the interpretation here applies only on the forward whirl 
component of the motion. 
 
5  Special Cases of Rotor Support 
 
5.1  Purely Translational Vibrations 
 
We consider a symmetrically supported rotor system with only static primary unbalance with the centrifugal 
force  in the mid-plane, so the conditions prf

 ,   (55) 0≡yψ 0≡xψ

are valid. 
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For this case, repeatedly dealt with in the literature, the harmonical influence coefficients are 
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are the eigenfrequencies.  
Because all centrifugal forces act in the same plane, condition (46) is fulfilled, so, when the forward whirl is 
compensated, no backward whirl appears. Hence the auto-balancing device in this case can completely 
compensate vibrations. 
We rewrite parameter κ  from Eq. (49) in the form 
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and obtain the existence condition for the compensation motion 
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Eqs. (32), (51), (56) yield the stability condition for the complete unbalance compensation 
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5.2  Purely Tilting Vibrations 
 
We consider a rotor system with a fixed-point, for instance a rigid bearing in the plane z = 0 so that the 
conditions 

 ,   (61) 0=xr 0=yr

are valid. Hence, the forward and backward whirls vanish for the whole rotor, if the existence conditions for the 
forward whirl compensation in the device plane are fulfilled.  
The system of equations for the amplitudes 
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Thus, for the “long” rotor (Jz < Ja) two critical speeds exist, whereas the “disc-shaft” rotor (Jz > Ja) exhibits only 
one critical speed. 
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From the expressions for the amplitudes and the harmonical influence coefficients 
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we obtain the existence and stability parameter 
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Again, 1≥κ is the existence condition for the forward whirl compensation. 
The stability condition for the forward whirl compensation 0<κ  has, following from Eq. (67), the form 
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In the case Jz < Ja, the relation 
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In the contrary case of the “disk-shaft” rotor with Jz > Ja, we have 
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In this case the area of stable unbalance compensation is 
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This speed region is wide enough and has practical meaning only for the sufficiently anisotropic support, i.e. 
when the stiffness coefficients k22 and k44 are noticeably different. 
In the more general case, when the rigid bearing is located in the plane z = z0, so 

 , ,   (74) yx ψzr 0−= xy ψzr 0=
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the same results can be obtained by replacing Ja , zk , k22 , k44  with the parameters 
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6  Simulations 
 
To illustrate the influence of support anisotropy on the vibration performance of rotor systems with auto-
balancing devices, we present below simulation results obtained employing the Advanced Continuous 
Simulation Language (ACSL). We investigated transient processes of the rotor run-up to the “nominal” speed 
higher than critical speeds. 
 
 6.1  Purely Translational Vibrations 
 
As an example of a symmetrical system with only static primary unbalance we consider a rotor with a mass of  
1 kg mounted on two equal supports. We investigate two variants of supports, isotropic, with  
k11 = k33 = 10000 N/m and anisotropic, with k11 = 10000 N/m and k33 = 20000 N/m. In the first case the rotor 
exhibits only one critical speed, approximately 100 rad/s, in the second case there are two critical speeds,  
100 rad/s and 140 rad/s. 
Figs.1-6 demonstrate the results of simulations. Near critical speeds one can observe a noticeable Sommerfeld-
effect; for the anisotropic supports the area of Sommerfeld-type motion is clearly wider, because the rotor passes 
two critical speeds.  
In the case of anisotropic supports vibrations include a double-rotational-frequency component (Fig.6).  
In the post-critical region the balls synchronize with the rotor and move to the compensation positions. As 
predicted by the theory, in this region the vibrations become equal to zero. 
 
6.2  Purely Tilting Vibrations 
 
Two rotors are considered: a “long” one (Ja > Jz) and a “disk-shaft” (Ja < Jz). Both rotors has a mass of 3.15 kg; 
for the first rotor the moments of inertia are Ja = 0.075 kg m2 and Jz = 0.0089 kg m2, for the second one they are  
Ja = 0.075 kg m2 and Jz = 0.3 kg m2. To obtain purely tilting vibrations one of the supports is supposed to be 
rigid, while the second one is elastic. 
When the elastic support is isotropic, the selected “long” rotor exhibits one critical speed at 44 rad/s; when this 
support is anisotropic, there are two critical speeds, 44 rad/s and 88 rad/s. Figs.7-10 compare the vibration 
performance of a rotor with a single-plane auto-balancing device for isotropic and anisotropic supporting.  
As predicted by the analytical study for the rotor with one rigid bearing, the single-plane auto-balancing device 
provides complete elimination of vibrations in the post-critical area, both, when elastic support is isotropic and 
anisotropic. In the anisotropic case an area of compensation is expected also directly beyond the first critical 
speed, but, due to the transient character of the motion in this region, this effect was not observed in presented 
simulations. 
For the “disk-shaft” rotor the anisotropy of support radically changes the vibration “behavior” of the rotor 
system. The rotor on the isotropic support displays only forward whirl motion and exhibits no critical speeds due 
to the influence of the gyroscopic terms. When the elastic support is anisotropic, the back whirl appears and 
“brings in” the corresponding critical speed. The parameter κ  is always positive in the isotropic case, which 
means that the auto-balancing device may only increase rotor vibrations, whereas in the anisotropic case 
vibrations can be eliminated in a certain limited area beyond the critical speed. 
The influence of support anisotropy on the vibration performance of the “disk-shaft” rotor system with auto-
balancing device is illustrated in Figs.11-14. 
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Figure 1. Purely translating vibrations.  

Isotropic supports. Rotor and ball speeds. 
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Figure 3. Purely translating vibrations.  

Isotropic supports. Ball angular positions. 
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Figure 5. Purely translating vibrations.  

Isotropic supports. Amplitude of vibrations. 
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Figure 2. Purely translating vibrations.  

Anisotropic supports. Rotor and ball speeds. 
 

ba
ll 

an
gi

la
r 

po
si

tio
ns

 , 
ra

d

time, s  
Figure 4. Purely translating vibrations.  

Anisotropic supports. Ball angular positions. 
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Figure 6. Purely translating vibrations.  

Anisotropic supports. Amplitude of vibrations. 
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Figure 7. Purely tilting vibrations. Long rotor.  

Isotropic supports. Ball angular positions. 
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Fig.9. Purely tilting vibrations. Long rotor. Isotropic 

supports. Amplitude of vibrations. 
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Figure 11. Purely tilting vibrations. Disk-shaft rotor. 

Isotropic supports. Ball angular positions. 
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Figure 13. Purely tilting vibrations. Disk-shaft rotor. 

Isotropic supports. Amplitude of vibrations. 
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Figure 8. Purely tilting vibrations. Long rotor. 
Anisotropic supports. Ball angular positions. 
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Figure 10. Purely tilting vibrations. Long rotor. 
Anisotropic supports. Amplitude of vibrations. 
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Fig.12. Purely tilting vibrations. Disk-shaft rotor. 

Anisotropic supports. Ball angular positions. 
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Figure 14. Purely tilting vibrations. Disk-shaft rotor. 

Anisotropic supports. Amplitude of vibrations.
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Figure 15. General case. Long rotor.  

Isotropic supports. Ball angular positions. 
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Figure 17. General case. Long rotor. Isotropic 

supports. Amplitude of vibrations in the plane I. 
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Figure 19. General case. Long rotor. Isotropic 

supports. Amplitude of vibrations in the plane II. 
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Figure 16. General case. Long rotor.  

Anisotropic supports. Ball angular positions. 
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Figure 18. General case. Long rotor. Anisotropic 
supports. Amplitude of vibrations in the plane I.  
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Figure 20. General case. Long rotor. Anisotropic 
supports. Amplitude of vibrations in the plane II.
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Figure 21. General case. Disk-shaft rotor. Isotropic 

supports. Ball angular positions. 
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Figure 23. General case. Disk-shaft rotor.  
Isotropic supports.  

Amplitude of vibrations in the plane of device. 
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Figure 25. General case. Disk-shaft rotor.  
Isotropic supports. Amplitude of vibrations  

of the rotor edge. 
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Figure 22. General case. Disk-shaft rotor. 

Anisotropic supports. Ball angular positions. 
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Fig.24. General case. Disk-shaft rotor.  

Anisotropic supports.  
Amplitude of vibrations in the plane of device. 
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Figure 26. General case. Disk-shaft rotor. 

Anisotropic supports. Amplitude of vibrations  
of the rotor edge. 

 

 49 



6.3  General Rigid Rotor 
 
Figs.15-26 illustrate the performance of auto-balancing device for statically and dynamically unbalanced rigid 
rotors on elastic supports. We consider two rotors with the same parameters, as in part 6.2, but this time both 
supports are elastic. As above, we compare the vibrations in the case of anisotropic and isotropic supporting. 
The “long rotor”, which exhibits two critical speeds in the case of isotropic supports (40 rad/s and 70 rad/s) and 
four critical speeds for anisotropic supporting (40 rad/s, 70 rad/s, 78 rad/s and 135 rad/s) was equipped with a 
two-plane auto-balancing device. Analyzing the simulation results (Figs.15-20), one can notice that the area of 
critical speeds in the case of anisotropic supports is wider and vibrations there contain noticeable double-
frequency component, but in the post-critical range the vibration performance for both types of supports is 
similar and advantageous: auto-balancing device provides complete compensation of vibrations.  
An analogous picture was observed for the disk-shaft rotor. This rotor exhibits one critical speed, 53 rad/s, when 
supports are isotropic, and three critical speeds, 34 rad/s, 60 rad/s and 101 rad/s, in the case of anisotropic 
supports. We select a single-plane auto-balancing device, because for rotors of the disk-shaft type a single-plane 
device often looks preferable. In the post-critical area such a device provides a partial compensation of 
vibrations, making vibrations in the plane of the device equal to zero. 
The results of simulations are presented in Figs. 21-26. As predicted by the analytical study, in the case of 
anisotropic supporting the auto-balancing device “compensates” only forward whirl, leaving some residual 
backward whirl vibrations. Nevertheless, the positive effect from the auto-balancing device is noticeable and 
similar both in the case of isotropic and anisotropic supports. 
 
7  Conclusions 
 
The presented study demonstrates that an auto-balancing device can efficiently perform both in the case of 
isotropic and anisotropic supports. The anisotropy of supporting leads to an increase in the number of critical 
speeds. Therefore, the rotor system may have a wider area of elevated vibrations when passing critical speeds 
region than in the case of isotropic supports. But in the post-critical ranges, where the corresponding influence 
coefficients are negative, the auto-balancing balls seek compensation positions providing a decrease of 
vibrations, not depending on the type of supports.  
In case of anisotropic supporting the rotor vibrations include forward and backward whirl. When the auto-
balancing  balls synchronize with the rotor, they compensate only forward whirl. In certain cases, which are 
considered in the presented paper, the auto-balancing device eliminates the forward whirl in the whole rotor. In 
such cases the backward whirl also disappears, so we obtain the complete compensation of vibrations. In other 
cases the forward whirl becomes equal to zero only in the plane of device (partial compensation of unbalance). 
That leaves some residual vibrations, both in the plane of device, where backward whirl remains, and in the 
whole rotor. But, when the device plane is selected correctly, these residual vibrations can be made satisfactorily 
low. 
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