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Symplectic and Regularization M ethods

I. Csillik

The Neri’s n-th order symplectic integrator and a regularization procedure is used in connection with the two-
body problemsin this paper. A comparison of the symplectic 4th order integrator with the 4th order Runge-Kutta
integrator in case of the two-body problemis made. The property of each schemasis given.

1 Introduction

The literature of the symplectic integration of Hamiltonian problems has rapidly growth in the last fifteen years.
Differential equations used in celestial mechanics are Hamiltonian systems, whose solutions can be obtain by
a symplectic (canonical) transformatiéa(0), p(0)) — (q(t), p(t)). Methods of symplectic integration have

been constructed for the study of the long term behavior of dynamical systems. Early references on symplectic
integration are Ruth (1983), Neri (1987), Channell and Scovel (1990), Yoshida (1990), Wisdom and Holman
(1991), Kinoshita et al. (1991), Saha and Tremaine (1992), Suzuki (1992), Sanz-Serna and Calvo (1994). Yoshida
(1993) has discussed the construction of high order symplectic integrators, while Mikkola and Wiegert (2002)
suggested the use of time transformation.

2 Neri’'s Symplectic I ntegrator

It was shown that the symplectic integrators have the following properties: area preserving, time reversibility and
constant step-size (this guarantees that there is no secular change in the error of the total energy) (Yoshida, 1990).
For this reason, we try to compare in this paper a symplectic integrator with a Runge-Kutta integrator, which is
used for regular equations of motion.

It is known that for Hamiltonian systems of the form
H=T(p)+V(a) 1)

explicit symplectic schemes exist, where tp@ariables are generalized coordinatpsjariables are conjugated
generalized momenta arfd corresponds to the total mechanical energy. Therefore, in this section we present
the Neri’s explicit symplectic integrator in terms of Lie algebraic language (Neri, 1987). To do this, we write the
Hamiltonian equations in the following form of Poisson bracket

B H@) = e - @
Introducing the differential operatd yz = {z, H} the equation (2) can be written as

% = Dpyz 3)
Therefore, the exact time evolution of the solution of equation4@3), fromt = 0 to ¢ = 7, is given by

z(t) = exp[rDn]z(0) 4)
For the Hamiltonian of the form (1), wheie y = Dt + Dy, we have the formal solution

z(7) = exp[r(A + B)]z(0) (5)
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whereA := Dy andB := Dy are two operators which do not commute. Further, we suppose that the set of the
real numbersc;,d;), i = 1,n satiesfies the equality

exp[T(A + B)] = H exp(c;TA) exp(d;TB) + O(7") (6)

wheren is the integrator’s order Trotter (1959). Let now a mapping feom z(0) toz’ = z(r) be given by

z' = lﬁ exp(c;TA) exp(d;7B) | z (7)

i=1

This application is symplectic because it is a product of elementary symplectic mappings. We can write the explicit
equation (7) in the following form

oT ov
qi = qi—1 + TC; <—> , Dpi = pi—1 + 7d; <—> ; t=1,n (8)
ap P=Di-1 aq q94=q:

wherez = (qo, po) andz’ = (¢,, pn). This system of equations is anth order symplectic integration scheme.

The numerical coefficient;, d;, ¢ = 1, n are not uniquely determined from the requirement that the local truncation
error is of orderr™. If one requires the time reversibility of the numerical solution, one can determine it uniquely.

We present now two examples, the Ist£ 1) and the 4th«{ = 4) order integrators. The 1st order integrator
schema is given by

oT
@1 = q+T1C1 <8_> 9
b P=Po

ov
p1 = po+Td 9
q q=q1

wherec; = d; = 1.

The 4th order integrator schema s rather long so that we present only the values of the codffigidpntsi = 1, 4.
They are

1 123
—— e =C3= ————
202—2%) ° T 7T g12—2%)

1 —23
=, ="

2—23 2—-23

Ci = C4 = (10)

di = ds , dy=0

We mention that Yoshida (1990) showed that the 4th order symplectic integrator is composed by 2nd order inte-
grators of the form

54 (T) = SQ (.7717')52 (1707’)52 (.7717') (11)
where
S2(T) = exp (%A) exp (7B) exp (%A) (12)

The solutionzy andz; are determined from the algebraic equation

The hight order integrators ¢ 4) have been generalized to arbitrary orders by Suzuki (1992).
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3 Regularization Procedure

We shall now present a regularization procedure to study the effect of collision in the Kepler’s problem, which
describes the motion in the configuration plane of a material point that is attracted towards the origin with a force
inversely proportional to the distance squared.

1 1
H=T+V, T=5@mi+p), V=-—F— (14)

2 Vi + ¢

The regularization procedure is utilised when the particle approaches very closely (collision) the central mass and
produces large gravitational forces, and sharp bends of the orbit. The regularization originates from the singularity
given by the Hamiltonian function fag = 0. In this respect, we introduce the coordinate transformation

Sz = p1f(Q1,Q2) + p29(Q1,Q2) (15)
wheref andg are conjugate harmonic functions, which satisfy the Cauchy-Riemann relations

of _ Oy of Oy
0Q1  0Q>’ 0Q, Q1 (16)

and(Q1, Q) are the new conjugate coordinates. Using this relations, we can write

0853 0853 .
i = ) Pz = ) = 17 2 17
%= O ag; =12 (17)

so that the transformed equations become

Qg = f(Ql,Qz)

q2 = g(Qth)
_ 9f 909

P = p 50, + po 50, (18)
_ 9f 909

P, = p18Q2 +p28Q1

where(P,, P,) are the new conjugate momentum. To study the regularization, we introduce the notation

of dg

po =M ag T .
Using this notation equations (18) become

P, = ayp +app: (20)

P, = —aiop1 +a11p2
which can be written as

P=A'p (21)
where

a=(n ) = (0) @)
and

2 2
D(Q1,Q3) = detA = <8%cl> + <a%71> (23)
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Equation (21) leads to the following property

1
p? = 5P2 (24)

Therefore, the new Hamiltonian becomes

— 1P24+ P2 1
Forbith i (25)
2 D (f2+g%):2

and the equations of motion are

@ _ P
dt D
i@, _ P
dt D
dp,  1P2+P;OD 1 1 fA+gq° (26)
dt 2 D2 0Q1 2(f2+42)%
P,  1P?+P}OD 1 1 fF+9°
dt 2 D> 0Q2 2(f2+g2)% @
Further, introducing the notatioh = f + ig, we get
112
D ___L2 @7)
(f2+g%2 |9
where
T
' == ) + == 28
<8Q1 o) (28)
Since the ternff? + g2)1/2 presents a singularity, we use the Levi-Civita transformation of the form
f+ig=(Q1+iQ2)" (29)
which corresponds to the following equations of motion
d@Q;
- - P
dr !
dQ»
Xz _ P
dr 2
dP —
—1 = §HQ, (30)
dr
dP: —
&2 _ SHQ,
dr

Solving these equations we obtain the new variables in the @ Q;(7). Substituting these variables into the
equation

dt = 4(Q? + Q3)dr (31)

we obtain a relation between the real tirend the fictive time. We can also determine the relations between the
physical (old) variables(, g2) and the parametric (new) variable3(, )2)

o =07 —Q3, g2 = 201Q2 (32)
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4 Numerical Examples

The above results will now be tested for the Kepler's problem, which Hamiltonian is

2
1
g=P P - (33)

2 2 @+

where @1, ¢2) are the conjugate coordinate and (p:) are the conjugate momentum of the two bodies in the
phase space. The equations of motion are

dg

E = D

dgz

E = P2

R — (34)
dt (67 +¢3)°

@ _ q2
dt (6} +¢3)°

First, we use the 4th(= 4) order symplectic schema (Sl4):

q{ = qg_l-i—rcjpf_l (35)
_ . J
poo= ¢t —I =12 =114
@+
1 a5

where(c;, d;) is given by the equations (10).

Figure 1: The numerical solution of the Kepler’s problem (S14)

In Figure 1 we present the numerical results of the Kepler's problem (35), using the Sl4 integrator. In this case, we
chose the following initial conditiong} = 0.3862, p! = —0.9048, ¢5 = 1.0315, pJ = 0.3317,t¢ = 0, t; = 250.

In Figure 2 we give the numerical results of the Kepler's problem (34), using the 4th order Runge-Kutta (RK4)
integrator with variable steps. The same initial conditions are used as in case of the Figure 1.

In Figure 3 we show the results of computations using the regularization procedure, equation (30), and RK4 with
variable steps. Now, the initial conditions afg = 0.8624, p? = —1.1640, ¢3 = 0.5980, p3 = 1.6543, ¢y = 0,

ty = 150. Next, we study the energy errbr= (p} + p3)/2 — 1/1/4? + 3, which varies linearly with time using

the RK4 method. It is assumed that it remains bounded and small for the Sl4 (Figure 4).
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Figure 3: The numerical solution of the regularized two-body problem (RK4)

Figure 4: Energy conservation for the two-body problem
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5 Conclusions

In this paper symplectic integrators (S14) were compared with traditional integrators of Runge-Kutta type (RK4).
It is shown that the symplectic integrators have the merits to integrate the Hamiltonian systems over a very long
time. Itis seen that the numerical solution does not distort the trajectory, but there is a precession effect (Figure 1).
Using regular differential equations the numerical precision is more efficient. This fact can be seen by comparing
the numerical results shown on Figures 1-3.

References

Channell, P. J.; Scovel, J. C.: Symplectic integration of hamiltonian sysimnBnearity, 3, (1990), 231 — 259.

Kinoshita, H.; Yoshida, H.; Nakai, H.: Symplectic integrators and their application to dynamical astrddemy.
lestial Mechanics, 50, (1991), 59 — 71.

Mikkola, S.; Wiegert, P.: Regularizing time transformations in symplectic and composite integ@dlestial
Mechanics and Dynamical Astronomy, 82, (2002), 375 — 390.

Neri, F.: Lie algebras and canonical integration. Dept. of Physics, Univ. of Maryland, preprint (1987).

Ruth, R. D.: A canonical integration techniquEEE Trans. Nucl. Sci, NS, 30, (1983), 2669 — 2671.

Saha, P.; Tremaine, S.: Symplectic integrators for solar system dynastics). J., 104, (1992), 1633 — 1640.
Sanz-Serna, J. M.; Calvo, M. Rlumerical hamiltonian problems. Chapman and Hall, London (1994).

Suzuki, M.: General theory of higher-order decomposition of exponential operators and symplectic integrators.
Phy. Lett. A, 165, (1992), 387 — 395.

Trotter, H. F.: On the product of semi-groups of operatBrec. Am. Math. Phys., 10, (1959), 545-551.

Wisdom, J.; Holman, M.: Symplectic maps for théody problemThe Astronomical Journal, 102, (1991), 1528
—1538.

Yoshida, H.: Construction of higher order symplectic integrateings. Lett. A, 150, (1990), 262 — 268.

Yoshida, H.: Recent progress in the theory and application of symplectic integi@ébestial Mechanics, 56,
(1993), 27 — 43.

Address: |. Csillik, Faculty of Mathematics and Computer Science, Babelyai University, Cluj-Napoca, R-
3400, Ciresilor-19, Romania.
email:i har ka@rat h. ubbcl uj . ro.

73



