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The present paper is concerned with the quasi-static response of an elastic beam, loaded by a rigid beam, which 
is slowly transported along the elastic beam. The elastic beam is modelled as a Timoshenko beam. The present 
paper provides a limiting case of the model with constant distributed load that is often considered in the study of 
transported masses. The rigid beam is connected to the Timoshenko beam by means of an interface modelled as 
a Winkler foundation. We present a non-dimensional study on the influence of the interface stiffness upon the 
displacement, bending moment and shear force of the Timoshenko beam, when the rigid beam is assumed to 
suffer a prescribed transverse displacement. Special emphasis is laid on the distribution of pressure transmitted 
by the interface between the Timoshenko beam and the rigid beam. Considerable pressure concentrations are 
found to take place and the locations of the maximum bending moments in the Timoshenko beam move towards 
the ends of the rigid beam. 
 
 
1 Introduction 
 
The response of elastic beams to moving distributed loads has been the subject of numerous investigations in 
various areas, such as the response of bridges to moving vehicles, or the transportation of masses along a carrier 
structure. The moving loads have been modelled at first as single force or mass, or as series of moving forces or 
moving masses. Often, force loading with constant distribution was used as a simplified model to study the 
response of the structure to the transported masses see Felszeghy (1996). When the interaction between the 
structure and the moving load is of interest, more complicated models, which consist of rigid bodies connected 
by springs and dampers, come into the play. An extensive review on the dynamic response of a beam acted on 
by moving loads or moving masses has been presented by Fryba (1999). An overview of the recent research 
work on vibration analysis of various types of bridges under action of moving vehicles and trains has been given 
by Au et al. (2001). In reality, the moving loads represent a structure with an own stiffness, which is connected 
to the carrying elastic beam by means of an interface.  
 
In the following, we treat the limiting case of a rigid beam that is slowly transported along a simply supported 
elastic beam. In order to account for shear deformations the carrying elastic beam is modelled in accordance 
with the theory of Timoshenko (1921). There are numerous important investigations that deal with the response 
of infinite or finite elastically supported Timoshenko beams or cantilever beams, which are acted by 
concentrated forces or masses, or on simply supported Timoshenko beams acted by constant or given line loads. 
In order to cite only a few of these contributions, we mention a general series solution for Timoshenko beams by 
Anderson (1953). Recently Antes (2003) proposed a boundary integral formulation for the static case as a first 
step to dynamic analysis of Timoshenko beam systems. For the influence of shear deformations on flexural 
waves see Graff (1975). An interesting study on the influences of the layer properties on the structural 
characteristics of a layered beam is discussed in Chen (1995).  
 
In our present model the rigid beam is connected to the Timoshenko beam by means of an interface (or layer) 
modelled as a Winkler (one-parameter) foundation, see Timoshenko (1926). The problem then is mainly 
governed by two stiffness parameters, the bending stiffness of the elastic beam, and the stiffness parameter of 
the interface. This model finds a direct application in the field of steel production, where a rigid metal slab is 
transported over a series of elastic rolls, the latter being attached to some elastic carrier beams. However, the 
present model should also be of interest for the motion of a train across a bridge. The rigid beam then represents 
the first (transverse rigid-body-motion) term in a series representation for the deformation of the train, and the 
Winkler foundation models the elastically supported wheels of the train.  
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The following study deals with the case of a quasi-static motion of the rigid beam. In the case of a fast motion, 
vibrations about the corresponding quasi-static response of the Timoshenko beam will take place. The latter 
dynamic response is intended to be treated in a future investigation. Here, we are interested in the following 
interesting phenomenon, which has been detected in our subsequent computations: When the rigid beam is 
assumed to obey a given transverse displacement, such that the interface is compressed, and when the bending 
stiffness of the Timoshenko beam is sufficiently small, then displacements, bending moments and shear forces 
are found to deviate strongly from their well-known distributions for the case of a line load with constant 
distribution. In contrast to the latter solutions, considerable pressure concentrations are seen to occur at the ends 
of the region covered by the rigid beam, and the locations of the maximum bending moments in the Timoshenko 
beam move towards the ends of this region. Moreover, when the stiffness of the Timoshenko beam is further 
decreased, the Winkler interface even must suffer tensile forces, or a lift-off is to be expected in some regions of 
the interface.  
 
In the following, this situation is described in a non-dimensional setting in order to cover all possible cases by a 
single formulation. Accordingly, the problem is formulated in the form of two sets of first-order ordinary 
differential equations, one set being valid for the unloaded part of the Timoshenko beam, the other for the region 
loaded by the rigid beam. The two sets are coupled by means of transition conditions valid at the location of the 
front of the rigid beam. The problem is solved for various locations of this front along the elastic beam, where 
we assume the rigid beam is long enough, such that only one front is to be considered. When the elastic beam 
would be modelled in the framework of the Bernoulli-Euler theory of beams, the non-dimensionalised problem 
were governed by a single similarity complex or Pi-number only, namely a non-dimensional interface stiffness 
formed by the ratio of the Winkler foundation stiffness and the bending stiffness of the elastic beam, as well as 
by the fourth power of the span of the elastic beam. For the notion of a Pi number in similarity methods of 
engineering dynamics, see e.g. Baker et al. (1991). In the present paper, we also take into account the influence 
of shear stiffness of the elastic beam according to the theory of Timoshenko (1921), such that a second Pi 
number comes into the play. Since the influence of the latter is small, it was kept fixed in all of the numerical 
computations.  
 
In order to derive and demonstrate the above cited effect of pressure concentration, we utilise the symbolic 
computer code Maple 7 for solving the fourth-order system of ordinary differential equations with span-wise 
constant coefficients, where we use methods of linear algebra, as described lucidly e.g. in the book of 
Luenberger (1979). The results of our study are presented graphically in a non-dimensional form as a function of 
the axial co-ordinate of the elastic beam for various values of the non-dimensional interface stiffness, and for 
three locations of the front of the rigid beam. Non-dimensional deflection, bending moments and shear forces 
are depicted, and special emphasis is laid on the pressure distribution between the elastic beam and the rigid 
beam. In order to prove the results of our symbolic computations we also developed a Finite Element model 
using the powerful code ABAQUS 6.2. The convergence behaviour of the Finite Element model turned out to 
depend on the type of modelling of the Winkler interface by discrete springs, however the results were almost 
identical to the results of the symbolic computation in all of the considered cases. 
 
 
2 Rigid Beam on a Winkler Foundation Travelling on a Simply Supported Beam 
 
Consider a simply supported straight beam of length L that represents the elastic beam in our model. A subscript 
(b) is used to denote the corresponding mechanical entities see Figure 1a. We utilise the theory of Timoshenko 
(1921) to describe the deformation of the elastic beam. In the following, Bb=EbIb denotes the effective bending 
stiffness, Eb is the Young's modulus, Ib is the second moment of inertia of the cross-sectional area. The shear 
stiffness is given by Sb =γAbGb, where γ is the Timoshenko shear coefficient, Ab is the cross-sectional area and 
Gb denotes the shear modulus of the Timoshenko beam. This elastic beam is loaded by transverse forces qb. 
Deflection, slope, bending moment and shear force of the beam are denoted by wb, ϕb, Mb and Qb, respectively.  
 
In our problem, the transverse forces qb represents the pressure that is transmitted by an elastic interface from 
the moving rigid beam to the elastic beam see Figure 1b. The rigid beam is assumed to move slowly across the 
elastic beam, and to be displaced in transverse direction downwards to the Timoshenko beam. In order to fix 
ideas, the subscript (t) is used to denote the transverse displacement of the rigid beam, wt see Figure 1. For the 
sake of brevity, and in order to avoid ambiguities between the two beams under consideration, we call the 
Timoshenko beam the “bridge” in the following. That is why we have introduced the index  b  for the 
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Timoshenko beam. We model the transmitting interface by a Winkler foundation with stiffness parameter kt, 
such that: 
 

qb = −kt wb − wt( ),          (1) 
 
see Timoshenko (1926) and Knothe (2001). All of the mechanical entities under consideration are described as a 
function of the axial co-ordinate x measured in an inertial frame which has the origin at the left end of the 
bridge, see Figure 1a. The rigid beam is assumed to be semi-infinite and to travel slowly along the bridge, such 
that the front of the rigid beam is located at the distance s(t), also measured from the left end of the beam, see 
Figure 1a. 
 
       a)       b) 

        rigid beam

   wt(t)
                                                          kt

                                                    0
                                                 s(t)

x
 elastic beam, Bb, Sb      L

  rigid beam

   qb=-kt(wb-wt)                      M0

         Q0            Q0

s(t)            L-s(t)

 
Figure 1. An elastic beam carrying a rigid elastically supported beam 

 
In the co-ordinate system under consideration, the problem can be described by the following two boundary 
value problems of fourth order: 
 

0 < x ≤ s(t) :     
dwb

l

dx
= ϕb

l +
Qb

l

Sb
,    

dϕ b
l

dx
= −

M b
l

Bb
,    

dM b
l

dx
= Qb

l ,    
dQb

l

dx
= kt (wb

l − wt ),

                          x = 0 :  wb
l = 0,   M b

l = 0,

                          x = s(t) l :  M b
l = M0 ,   Qb

l = Q0  .

  (2) 

 
s(t) < x ≤ L :     

dwb
r

dx
= ϕb

r +
Qb

r

Sb
,    

dϕ b
r

dx
= −

M b
r

Bb
,   

dM b
r

dx
= Qb

r ,    
dQb

r

dx
= 0,

                         x = s(t) r :  M b
r = M0 ,    Qb

r = Q0,

                         x = L :  wb
r = 0,  M b

r = 0 .

   (3) 

 
For details of the underlying beam theory, see Timoshenko (1921), Graff (1975) and Ziegler (1991). In 
equations (2) and (3), the superscripts l and r denote the regions on the left and right hand side of the front of the 
rigid beam, x=s(t). Bending moment and shear force in the bridge at this location is denoted as M0 and Q0, 
respectively. Since we are interested in a quasi-static solution, the influence of the velocity of the rigid beam, 
and thus any effect of inertia, has been neglected in equations (2) and (3). This allows to model the problem as a 
system of first-order ordinary differential equations.  
 
According to the force method, see Ziegler (1991), the additional unknowns M0 and Q0 are calculated from the 
following two conditions of kinematical continuity for the bridge at the location s(t): 
 

wb
l (x = s(t) l ) = wb

r (x = s(t ) r ),   ϕb
l (x = s (t) l ) = ϕ b

r (x = s(t) r ).      (4) 
 
In order to work with the minimum number of parameters that determine the solution of the problem in hand, we 
introduce the following dimensionless formulations:  
 

  
x = L) x ,    s = L) s ,   wt = h ) w t ,   wb

l,r = h ) w b
l,r ,    ϕ b

l,r =
h
L

) ϕ b
l,r ,   M b

l ,r =
Bbh
L2

) 
M b

l,r ,   Qb
l,r =

Bbh
L3

) 
Q b

l,r , (5) 
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where a superimposed hat is used to denote dimensionless entities, x is the axial co-ordinate, s is the length of 
the rigid beam, wt is the displacement of the rigid beam, wb

l,r , ϕb
l,r , Mb

l,r and Qb
l,r are respective the deflection, 

slope, bending moment and shear force in the bridge on the left respective right side of the front of the rigid 
beam. It was preferable  to scale the deflection of the bridge and the displacement of the rigid beam by means of 
a characteristic  thickness h. The problem now is seen to be governed by non-dimensional interface stiffness in 
the form: 
 

  

) 
k =

kt
Bb

L4 .          (6) 

 
The non-dimensional pressure distribution between bridge and the rigid beam becomes: 
 

  
) q b = −

) 
k ( ) w b − ) w t )  .          (7) 

 
We also introduce the following non-dimensional parameter characterising the influence of shear: 
 

α =
Bb

SbL2  .          (8) 

 
We are now ready to write the differential equations given in equations (2) and (3) in dimensionless matrix form 
as: 
 

  

0 < ) x ≤ ) s :

                d
d) x 

) w b
l

) ϕ b
l

) 
M b

l
) 

Q b
l

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=

0 1 0 α
0 0 −1 0
0 0 0 1
) 
k 0 0 0

 

 

 
 
 
 

 

 

 
 
 
 

 

) w b
l

) ϕ b
l

) 
M b

l
) 

Q b
l

 

 

 
 
 
 
 

 

 

 
 
 
 
 

+

0
0
0

−
) 
k ) w t

 

 

 
 
 
 

 

 

 
 
 
 

 
,      (9) 

 

  

) s < ) x ≤
) 
L :

                d
d) x 

) w b
r

) ϕ b
r

) 
M b

r
) 

Q b
r

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=

0 1 0 α
0 0 −1 0
0 0 0 1
0 0 0 0

 

 

 
 
 
 

 

 

 
 
 
 

 

) w b
r

) ϕ b
r

) 
M b

r
) 
Q b

r

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 
.       (10) 

 
This system of first-order differential equations with constant coefficients has to be solved considering the non-
dimensional form of the boundary conditions given in equations (2) and (3): 
 

  

) x = 0 : ) w b
l = 0,  

) 
M b

l = 0, 
) x = ) s l (t ) :

) 
M b

l =
) 

M 0,  
) 

Q b
l =

) 
Q 0 ,

        (11) 

 

  

) x = ) s r (t) :
) 

M b
r =

) 
M 0 , 

) 
Q b

r =
) 
Q 0 ,

) x =
) 
L : ) w b

r = 0,  
) 

M b
r = 0,

        (12) 

 
where   

) 
M 0  and   

) 
Q 0  are the non-dimensional forms of M0 and Q0: 

 

  

) 
M 0 =

L2

Bb h
M0 ,   

) 
Q 0 =

L3

Bb h
Q0 .        (13) 

 
The non-dimensional form of the continuity conditions from equations (4) reads: 
 

  
) w b

l () x = ) s (
) 
t ) l ) = ) w b

r ( ) x = ) s (
) 
t )r ),    ) ϕ b

l () x = ) s (
) 
t ) l ) = ) ϕ b

r () x = ) s (
) 
t )r ).     (14) 
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3 Solution by means of Symbolic Computation 
 
The boundary value problems presented in Section 2 were solved by means of the symbolic computer code 
Maple 7. For the left region of the bridge, loaded by the rigid beam, we solved the system of first-order 
differential equations (9) in terms of the boundary conditions (11) and the loads. The system of differential 
equations can be formally written as: 
 

′ X = AX + bu ,          (15) 
 
where X denotes a state vector, 

  

XT = ) w b
l ) ϕ b

l ) 
M b

l ) 
Q b

l[ ] ,
′ X T = d

d) x 
) w b

l ) ϕ b
l ) 

M b
l ) 

Q b
l[ ] ,

        (16) 

 
A is the 4×4 matrix of coefficients: 
 

  

A =

0 1 0 α
0 0 −1 0
0 0 0 1
) 
k 0 0 0

 

 

 
 
 
 

 

 

 
 
 
 

 ,         (17) 

and b is the vector of external loads: 
 

  

bT = 0 0 0 −1[ ] ,
u =

) 
k ) w t .

         (18) 

 
Following Luenberger, the general solution of the system (15) is: 
 

  

X( ) x ) = Φ() x )X(0) + Φ() x − τ ) b u (τ )dτ
0

) x 

∫        (19) 

 
where τ is an independent variable. The first term on the right-hand side of equation (19) represents the response 
due to the state vector X( 0) . For systems with constant coefficients, the state-transition matrix is known to be of 
the form   Φ( ) x ) = exp(A) x ) , see Luenberger (1979). In order to compute the state-transition matrix, the Laplace 
transform method was utilised: 
 

).)p(()x( - 1−−= AI1L)Φ          (20) 
 
I denotes the identity matrix, and p stands for the parameter of the Laplace transformation. We used Laplace 
transformation approach, since the direct computation of  Φ( ) x ) by the command exponential of Maple 7 failed in 
our hands. We have been told that the corresponding computational problem will be corrected in future versions 
of Maple. 
Because the vector X( 0)  is not entirely known, we used the boundary conditions (11) to compute the unknown 
terms in X( 0)  as well as in  X( ) s ) . For that sake, equation (19) is written for  

) x = ) s : 
 

  

X() s ) = Φ() s )X(0) + Φ () s − τ) b u(τ)dτ
0

) s 

∫ .        (21) 
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The relation (21) reads in an ample form: 
 

  

) w b
l

) ϕ b
l

) 
M 0) 
Q 0

 

 

 
 
 
 
 

 

 

 
 
 
 
 ) x = ) s 

= Φ() s )

0
) ϕ b

l

0
) 

Q b
l

 

 

 
 
 
 

 

 

 
 
 
 

) x = 0

+ Φ() s −τ ) b u (τ )dτ
0

) s 

∫  ,       (22) 

 
In the system (22), the unknowns are: 
 

  
) ϕ b

l (0),   
) 

Q b
l (0),   ) w b

l () s ),   ϕb
l () s ) .         (23) 

 
We have thus arrived at a system of four linear equations, the solution of which defines the vectors X( 0)  and 

  X( ) s )  in equation (21), expressed as functions of  

) 
M 0  and  

) 
Q 0 .  

To solve the above problem, we used the functions of two packages of the symbolic computer code Maple 7, see 
(2001): the inttrans Package that is a collection of functions designed to compute integral transforms, and the 
Linear Algebra Package that allows standard matrix manipulation. We created the matrix A and vectors XT, X’T 
and bT as a list of initial values, and the matrix pI with help of the DiagonalMatrix function. With the 
MatrixInverse function we got the inverse of the (pI-A) matrix and with invlaplace function the inverse Laplace 
transform of (pI-A)-1, that is the state-transition matrix  Φ( ) x ) . In order to apply the same procedure to each 
element of a matrix or vector we used the map function, specially dedicated for this type of operations. Also, to 
extract the exponential components from the expression of each term of the state-transition matrix we used the 
op function. All the products between vectors and scalars are defined with VectorScalarMultiply function, and 
all the products between matrix and vector with MatrixVectorMultiply function. In order to transform the system 
(22) into a system of linear equations, we used the GenerateMatrix function with augmented option. In this way 
the free terms of each equation are returned as the last column of the result matrix. We solved the new system of 
equations for the set of unknowns (23) by the LinearSolve function. We substituted the result into the vector 
X( 0)  and now we could compute the solution of equation (19) for any  

) x . 
 
In case of unloaded right hand side of the bridge, the solution was performed through integration starting from 
the non-dimensional form of the boundary value problem (3). On the right side of the elastic beam the shear 
force is constant and equal to   

) 
Q 0 . Then, the bending moment is: 

 

  

) 
M b

r () x ) = −
) 

Q 0 (
) 
L − ) x ),          (24) 

 
the slope becomes: 

  

) ϕ b
r ( ) x ) =

) 
Q 0

) 
L ) x −

) x 2

2

 

 
  

 

 
  −

) 
C ,          (25) 

 
and the deflection is: 
 

  

) w b
r () x ) =

) 
Q 0

) 
L 

) x 2

2
−

) x 3

6
−

) 
L 3

3

 

 
  

 

 
  −

) 
C ) x −

) 
L  

 
  

 
 + α

) 
Q 0

) x −
) 
L  

 
  

 
 .     

 (26) 
 
We substitute   

) x = ) s  into the equation (24) and we obtain the bending moment at the front of the rigid beam: 
 

  

) 
M b

r () s ) = −
) 
Q 0 (

) 
L − ) s ) =

) 
M 0 ,         (27) 

 
which can be substituted into equation (21). In this way the bridge is described by a set of functions which are 
dependent from two unknowns:   

) 
Q 0  and   

) 
C . We used the continuity conditions (14) in order to calculate these 

additional unknowns. The pressure between railway track and rigid beam was computed according to the 
Winkler model (7) in a non-dimensional form. 
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4 Solution by means of Finite Element Analysis 
 
In order to prove the results of the symbolic computation we developed a Finite Element model using the code 
ABAQUS 6.2. The model consists of a rigid beam, which is connected to a simply supported elastic beam by 
means of single linear elastic springs. The single springs are attached to the adjacent nodes of the elastic and the 
rigid beam elements. The element types used in our Finite Element model were: an B22 beam element that 
allows for transverse shear deformation, a rigid body element, RB2D2 with tie nodes, which have translational 
and rotational degrees of freedom associated with the rigid beam. The motion of a single node, called the rigid 
body reference node governs the motion of the whole rigid beam. We kept the positions of the other nodes 
relative to the reference node constant throughout a simulation. For the Winkler interface we took a linear spring 
element, SPRING2, which acts between two nodes in a fixed direction that is the vertical direction for our 
model.  
We assumed a BOX cross-section for the element B22. For the rigid body element RB2D2, we used the default 
unit cross-sectional area. For the element SPRING2 we studied the following three assumptions for the spring 
stiffness kFEM: 
 

kFEM = kt
L

N −1
, kFEM = kt

L
N

,  kFEM = kt
L

N + 1
,      (28) 

 
where kt is the correspondent uniform distributed stiffness, L is the length of the elastic beam and N is the finite 
elements number. 
For the elastic beam we used the material properties of isotropic steel, defined by the Young's modulus, E, and 
the Poisson's ratio, ν, the shear modulus being given by G=E/2(1+ν).  
Thus, a linear static Finite Element analysis was performed, where we prescribed boundary conditions for the 
bridge at both ends, and for the rigid beam at the rigid body reference node. To verify the validity of the 
symbolic results we made the same analysis with various numbers of elements and studied the convergence of 
the deflection and bending moments. 
 
 
5 Numerical Results 
 
5.1 Symbolic Computation 
 
In order to illustrate the influence of the interface linear stiffness upon the pressure distribution between bridge 
and train, we performed a series of symbolic computations as prescribed above. In all of these computations, the 
non-dimensional shear coefficient was set to α = 0.005091. This value e.g. corresponds to an bridge structure of 
100 m span, consisting of a 7.5×7.5 m box-girder with Ib = 74.65 m4, Ab = 8.64 m2 and γ = 0.44. The material is 
steel with Young's modulus Eb = 2.1×1011 N/m2, shear modulus Gb = 8.1×1010 N/m2. With the above values one 
obtains Bb = 1.5676×1013 Nm2, Sb = 3.0793×1011 N. These values were also used in the Finite Element 
computations. 
 
We considered a unit non-dimensional rigid beam's displacement in vertical direction,  

) w t = 1, such that the train 
is displaced towards the bridge. We determined the dimensionless pressure distribution between rigid beam and 
the bridge   

) q b , the dimensionless deflection  
) w b , the dimensionless bending moment  

) 
M b  and the dimensionless 

shear-forces. These computations were performed for five values of the non-dimensional interface stiffness  
) 
k  = 

100, 1000, 3000, 5000, 10000, and for three locations of the front of the train,  
) s (t) = 0.5

) 
L , 0.75

) 
L  and 

) 
L . The 

results are plotted in Figures 2-5. For some location of the train front, we furthermore determinate the non-
dimensional interface stiffness   

) 
k  for which the minimum of the pressure distribution is zero, that means that the 

deflection of the bridge on the respective locations becomes equal to the train displacement,   
) w b = ) w t = 1. The 

corresponding interface stiffness-values   
) 
k  for zero  

) q b  are depicted in Figure 6 as a function of the front of the 
rigid beam,   

) s (t) . For higher interface stiffness ratios, regions with tensile forces transmitted by the interface 
take place. 
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c) 

Figure 2. Influence of the stiffness parameter  
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k  on the pressure distribution  

) q b , when the front of the rigid beam 
is at: a) 0.5  
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Figure 3. Influence of the stiffness parameter  
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k  on the bridge deflection  

) w b , when the front of the rigid beam is 
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Figure 4. Influence of the stiffness parameter  
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k  on the bending moment of the bridge  
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Figure 5. Influence of the stiffness parameter  
) 
k  on the shear force of the bridge  
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Q b , when the front of the rigid 

beam is at: a) 0.5  
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L ,  b) 0.75  
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L   and c)  
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5.2 FEM Analysis 
 
For the BOX cross-section of the element B22, the dimensions and material properties given above were used, 
Bb = 1.5676×1013 Nm2, Sb = 3.0793×1011 N. The uncompressed length of the springs was 0.5 m. The 
displacement of the rigid beam was prescribed by applying an vertical displacement of 0.25 m at the rigid body 
reference node. Within the framework of the dimensional Finite Element analysis, excellent agreement with the 
symbolic computations was found. Exemplary, Figure 7 shows a convergence study for the deflection and 
bending moment at the mid-span of the fully loaded bridge, using a spring stiffness which corresponds to k

)
 = 

5000. The Finite-Element results converge to the result of the symbolic computation with an increasing number 
of elements, where the speed of convergence depends on the discrete model of the spring stiffness, see relations 
from (28). 
 

1,07763

1,07754(Maple )

1,07744

1,07754

1,0760

1,0765

1,0770

1,0775

1,0780

1,0785

1,0790

50 100 150 200 250 300 350 400 450 500 550 600

Number of Elements

Deflection with Abaqus kFEM=kt L/N+1
Deflection with Maple7
Deflection with Abaqus kFEM=kt L/N-1
Deflection with Abaqus kFEM=kt L/N

 

D
ef

le
ct

io
n 2,46498

2,46314

2,45270

2,45884

2,30

2,35

2,40

2,45

2,50

2,55

2,60

50 100 150 200 250 300 350 400 450 500 550 600

Number of Elements

Bending Moment with Abaqus kFEM=kt L/N+1
Bending Moment with Maple7
Bending Moment with Abaqus kFEM=kt L/N-1
Bending Moment with Abaqus kFEM=kt L/N

 

B
en

di
ng

 M
om

en
t

 
   a)       b) 

Figure 7. The convergence of the deflection and bending moment as a function of finite elements number and 
spring stiffness. 

 
 
6 Conclusions 
 
As can be seen from Figure 2, considerable pressure concentrations take place at the ends of region covered by 
the rigid beam. These pressure concentrations increase with increasing dimensionless stiffness parameters  

) 
k . 

Depending on the location of the front of the train, the pressure distributions become zero somewhere inside the 
covered (left) region of the bridge for a critical value of  

) 
k , see Figure 6. For larger values of   

) 
k , regions with 

tensile (negative) interface forces take place, and the pressure concentrations in the compressive regions at the 
front of the rigid beam and at the left end of the bridge become more and more pronounced. With an increasing 
  
) 
k , the distributions of deflection, bending moment and shear-force deviate increasingly from their distributions 
known for the case of a uniform distributed load, see Figures 3-5. The rigid beam then tends to lift off from the 
bridge. It was the scope of the present paper to study this effect in some detail, and to provide corresponding 
information for the practical treatment of this problem. The present study refers to the linear case, in which the 
Winkler foundation is able to transmit tensile forces. When the latter can not be transmitted, a non-linear 
treatment of the resulting contact-problem would be necessary. In the present case, we were interested in using 
the power of linear algebra in combination with symbolic computation to determine the behaviour in case the 
interface can transmit compressive as well as tensile forces. Our study demonstrates that the space-wise constant 
line loads, often used in order to model the pressure of a mass moving along a bridge, represent an idealisation 
that does not lay on the safe side. 
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