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Thermodynamics of Deformable Dielectrics with a Non-Euclidean
Structure as Internal Variable

M. Dolfin, M. Francaviglia, L. Restuccia

In this paper we apply the geometrical theory of thermodynamics with vectorial and tensorial internal variables to
a model of deformable dielectrics (which include ferro-electric crystals) due to Maugin. We explicitly consider an
internal (non-Euclidean) metric as a thermodynamical non-equilibrium variable, together with polarization and
temperature gradients. With the aid of Clausius-Duhem inequality we obtain the extra entropy flux and the relevant
thermodynamical restrictions on entropy and free energy.

1 Introduction

In recent years there has been extensive work on a model for a fully Galilean thermo-electrodynamics of dielectric
deformable media proposed by Maugin and co-workers in a series of papers (Maugin and Pouget, 1980; Maugin,
1976, 1977a,b, 1988). This general non-linear model is based on an extensive application of the principle of virtual
power to continuum thermo-mechanics in presence of electromagnetic fields, as developed by the French school
(Maugin, 1980). The models considered in the literature quoted above include all kinds of deformable dielectrics
and in particular they have revealed themselves to be useful in explicit calculations involving models of ferro-
electric crystals and piezoelectricity. The concrete applicative interest of these theoretical models resides in their
explicit application to genuine materials important for technology, like the chemical components of polarizable
crystals used in electronic devices as, e.g., the barium titanate of the Perowskity family, see Kittel (1966).

1.1 The General Model for Deformable Dielectrics

We shall first summarize the theoretical framework developed by Maugin and coworkers in Maugin and Pouget
(1980); Maugin (1976, 1977a,b, 1980, 1988) to which we refer the reader for further details and examples of
applications. The considered model takes into account the stringent hypothesis that in nature there exist continua in
which elasto-mechanics phenomena couple with electro-magnetic phenomena encoded into constitutive equations
which depend on the electric polarization as well as on its spatial gradient. The thermodynamical properties of
these continua in situations far from equilibrium (i.e. when the temperature varies non-uniformly together with
its spatial gradient) lead to extra contributions into the Clausius-Duhem inequality (see Müller (1985); Maugin
(1990)) related to extra terms in the entropy flux. Following Maugin (see e.g. Eringen and Maugin (1989)) we
consider a bodyB with regular boundary∂B, which is continuously embedded into the Euclidean3-spaceR3

by means of a family of time-dependent configurations. The mechanical properties of the body are encoded by a
density functionµ, thedeformation gradientF (which is assumed to be invertible with inverseF−1), thesymmetric
Cauchy stress-tensorT, theinternal energyper unit masse and therate of deformation

L = ḞF−1. (1)

The thermomechanical properties of the body are encoded into thetemperature fieldθ (together with its spatial
gradient∇θ), theheat fluxq, theentropy functionS and theentropy fluxJS . The electromagnetic properties of the
body are reflected into an internal electric field vectorLE and a second order tensorLE. The first is called thelocal
electric-field vectorand it accounts for the interaction between the polarization of ”different molecular species”
and the usual crystal lattice; the tensorLE is calledshell-shell interaction tensorand accounts for polarization
gradients. Thevector polarizationper unit of mass is denoted byπ and its gradient is∇π. The body is embedded
into anambient electromagnetic fieldwith components(E,B). According to Maugin and Pouget (1980) a Galilean
quasi-static approximation is chosen in which

E = E + c−1U×B (2)

137



is the electric field in a co-moving frame (herec is the velocity of light in vacuum). Denoting byp(i) thevirtual
power of internal forces, the balance equation of the model turns out to be

p(i) = T ·D− µLE · π̂ + LE · ∇̂π (3)

(see e.g. Maugin and Pouget (1980) eqn. (48)), where: the symbol· denotes full tensor contraction;D is the
symmetric part ofL (T ·D is in fact equal toT · L because of the symmetry ofT); the hat̂ denotes the so-called
Jaumann ”co-rotational derivative”operator, defined by the local formula

ζ̂i = ζ̇i − Ωikζk, (4)

whereζi are the Cartesian components of a vector fieldζ, thė denotes total time derivative,Ω is the rotational part
of L (2Ωij = Lij − Lji) and summation over repeated indices is understood. Whenever non-rotating frames are
chosen (Ω = 0) eqn. (3) reduces to the simpler expression

p(i) = T ·D− µLE · π̇ + LE · ∇̇π. (5)

The dynamical behaviour of the polarization fieldπ is encoded into the following equation

E + LE + µ−1div(LE) = dπ̈ (6)

(eqn. (55) of Maugin and Pouget (1980)), wherediv(LE) = ∇ · LE is locally given byLEik,j andd 6= 0 is a
coefficient which expresses the so-calledpolarization inertia. In the sequel we shall use units for whichd = 1.
The first principle of thermodynamics in integral form reads (see Maugin and Pouget (1980) eqns. (33)-(46))

d

dt

[ ∫

Bt

1
2
µ(U2 + dπ̇2)dV +

∫

Bt

µedV +
∫

Bt

1
2
(E2 + B2)dV

]
=

=
∫

Bt

f ·UdV +
∫

∂Bt

(τ ·U + µπS · π̇)da + (7)

+
[ ∫

Bt

µhdV −
∫

∂Bt

q · nda
]
,

where:Bt is the actual configuration;U is thevelocity fieldof the body;e is theinternal energyper unit of mass;
f is thebody force; τ is thesurface tractionof purely mechanical origin ;πS is thesurface densityof electric
dipoles;h is theheat radiationper unit of mass;n is the outer normal of∂Bt; dV andda denote the volume and
the surface elements. The second principle of thermodynamics in integral form reads as follows

d

dt

∫

Bt

µSdV −
∫

Bt

µσdV +
∫

∂Bt

JS · nda ≥ 0, (8)

whereσ is theentropy sourceper unit of mass. Starting from equation (7) the local equation forė is obtained in
Maugin and Pouget (1980) (eqn. (65)) under the form

µė = p(i) −∇ · (q−P) + µh, (9)

whereP is the Poynting vector. By means of a Legendre transformation, one introduces then the free energyΨ as
follows

Ψ = e− θS. (10)

In Maugin and Pouget (1980) the following constitutive relations are chosen forσ andJS :

σ =
h

θ
, JS =

q−P
θ

. (11)

Starting from the second principle of thermodynamics and using equations (10) and (11) one finally obtains the
Clausius-Duhem inequality under the form

−µ(Ψ̇ + Sθ̇) + p(i) −
1
θ
(q−P) · ∇θ ≥ 0. (12)

In the following we will not take into consideration the vectorP. For further details and explicit applications we
refer the reader to Maugin and Pouget (1980) and references quoted therein.
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1.2 The Geometrical Perspective on Internal Variables

In a series of recent papers (see Dolfin et al. (1998a); Francaviglia et al. (2002)) two of us have developed and
applied with other authors a geometric method to deal with elasto-thermomechanical systems endowed with scalar,
vector and tensor internal variables, even including among them local non-Euclidean metrics of thermomechanical
origin (see Valanis (1995)). The purpose of this paper is to apply these new techniques to the model described in
Subsection 1.1. Before doing this we shall thence summarize the idea. The geometrical framework was developed
in Dolfin et al. (1998a, 1999) on the basis of earlier ideas of Coleman and Owen (Coleman and Owen, 1974;
Owen, 1984). It was there considered a state space at timet as the setBt of all state variables which ”fit” the
configuration of any single material element at timet. The setBt is assumed to have the structure of a finite
dimensional manifold so that the ”total state space” is given by the disjoint union

B =
⋃
t

{t} × Bt (13)

with a given natural structure of fibre bundle over the real lineRwhere time flows (Dolfin et al., 1998a, 1999). This
idea comes from the ”homogeneous formalism” of classical mechanics (or from relativistic considerations if one
prefers) and allows to treat also the time variable on an equal footing with the other thermodynamical parameters.
The justification is deeply rooted into the purpose of applying the technique to situations far from equilibrium
and of dissipative non-reversible nature, in which time cannot be frozen and it plays a dominant role in a sense
equivalent to the entropy role according to the second principle. If the instantaneous state spaceBt does not vary
in time the total state spaceB reduces to the Cartesian productR × B . Moreover, it was considered an abstract
space of processes (Dolfin et al., 1998a, 1999; Coleman and Owen, 1974; Owen, 1984; Noll, 1958) which consists
of a setπ of functions

P i
t : [0, t] → G , (14)

where[0, t] is any time interval, the spaceG is a suitable target space suggested by the model,i is a label ranging in
an unspecified index set for all allowed processes andt ∈ R is the so calledduration of the process. A continuous
function

ρ : R→ C0(B0 ,Bt) (15)

is defined in Dolfin et al. (1999); Coleman and Owen (1974); Owen (1984); Noll (1958) so that for any instant
of time t and for any processP i

t ∈ π a continuous mapping calledtransformation(induced by the process) is
generated. It is known that a real process occurs outside equilibrium and thermodynamical theories describing
transformations of this kind are known as non-equilibrium theories (De Groot and Mazur, 1962). They consist in
describing the system in such a state of non-equilibrium using the same state space which already accounted for
the equilibrium state variables.

In some cases, however, the description of the evolution of a thermodynamical system requires an extension of the
state space through the introduction of further dynamical variables like, for instance, internal variables. Internal
variables represent micro-local or mesoscopic phenomena which one cannot control in full detail and can be
described as averages governed by a set of parameters (of mechanical, thermodynamical or other physical origin)
having a mathematical structure which is suggested by the particular model chosen for the continuum (see De Groot
and Mazur (1962); Verhas (1997); Muschik (1990) for the general theory and applications). In principle and for
simplicity one assumes that the internal variables are collectively denoted byα, a variable which ranges in a
suitable vector space. In particular we shall be concerned in cases in which this vectorial space contains scalars,
vector fields and tensor fields over the bodyB.

Following Dolfin et al. (1999) we assume that our bodyB is mechanically a ”simple material” (in the sense of Noll
(1958)) endowed with internal variables of thermodynamic and electromagnetic origin. As in eqn. (30) of Dolfin
et al. (1998a) the state spaceB is assumed as the direct sum

B = Lin(ν)⊕ R⊕ ν ⊕W ⊕ Lin(W ), (16)

whereν ' R3 andW is the space of all internal variables. In Dolfin et al. (1998a) the variables ofB were
denoted by(F, e, β, α, ∇α) where:β = gradθ is proportional to the gradient of the temperatureθ. The process
is described by the assignment of a piecewise continuous functionPt = [L(t), f(t),γ(t)], whereL is the rate of
deformation as in eqn. (1),f(t) = −divq andγ is a phenomenological function accounting for the non uniformity
in time of the gradient of temperature. The dynamical system associated with the process was assumed in Dolfin
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et al. (1998a) to be the following 



Ḟ = LF

µė = T · Ł + f

∇̇θ = γ

α̇ = ∇ · Jα + σα,

(17)

whereµ 6= 0 is the density of mass;T is the Cauchy stress tensor as above, whileJα andσα are the internal
variable flux and the internal variable source respectively (see Dolfin et al. (1998a)).

Following the method of Coleman and Owen (1974), in Dolfin et al. (1998a) it is shown that the entropy action
s(ρt, b, t) is defined in terms of its variablesρt (the thermodynamic transformation induced by the process),b (the
initial state) andt (time) by an expression of the following kind

s(ρt, b, t) = −
∫ t

0

1
µ
∇ · JSdt = (18)

=
∫ t

0

h

µθ
dt +

∫ t

0

1
µθ2

(q · β)dt−
∫ t

0

1
µ
∇ · kdt,

where the total entropy fluxJS is phenomenologically assumed to have the form

JS =
q
θ

+ k, (19)

beingk anextra flux of entropydue to dissipation out of equilibrium (as introduced in Müller (1985) or in Maugin
(1990)). Notice that assuming (19) instead of the simpler relationJS = q

θ as in (11)2 above (withP = 0) produces
extra terms into the correspondig Clausius-Duhem inequality.

One assumes then that the system under consideration admits an ”upper potential” (in the sense of Coleman and
Owen (1974); Owen (1984)), i.e. an entropy functionS which satisfies

S(bt)− S(b) ≥ s(ρt, b, t)

for all processes. Thence the entropy satisfies the second law under the form

µṠ +∇ · JS ≥ 0, (20)

or equivalently
µθṠ +∇ · (θJS)− (JS · ∇)θ ≥ 0 (21)

for θ ≥ 0. It is then convenient to replace the internal energye with its Legendre transformΨ = e− θS, as in eqn.
(10). The free energy is assumed to satisfy a constitutive ansatz of the type

Ψ = Ψ(F, β, α,∇α) (22)

and the extra flux is postulated to follow the phenomenological ansatz

k =
1
θ
B · α̇ (23)

with

B = − ∂Ψ
∂(∇α)

. (24)

Out of these hypothesis one can specify the form of the gradient of deformationF, in order to exploit (18) in terms
of k and in order to work out the explicit form of the Clausius-Duhem inequality together with its thermodynamical
restrictions on the process.

As a concrete specific example, in Dolfin et al. (1998a,b) we considered the case in whichF admits an additive
decompositionF = Fe + Fi or a ”Lee decomposition”F = FeFi, where the elastic partFe replaces explicitlyF
and the inelastic partFi takes the role of a tensorial internal variable. The relevant equations are then equations (51)
and (55) of Dolfin et al. (1998a), to which we refer the reader for further details. In a further paper (Francaviglia
et al., 2002) it was instead considered the possibility of introducing as extra internal variable an ”inner metric”g
which mixes up with the deformation gradientF through an algebraic relation of the type

C = FT gF, (25)
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whereC is the materialCauchy-Green tensorandFT denotes the transpose. The internal variableg is a non
-Euclidean metric tensor that has to do with an average tensor characterization of local deviations from the Eu-
clidean structure associated with effects on the mesoscopic scale (atomic, molecular or grain level), see Valanis
(1995). What we mean is that if the microscopic subdomains have characteristic dimension too small to be detected
by technical instruments of measure then one may only observe the motion of certain aggregates of microscopic
subdomains. We call these detectable subsetsmesoscopic subdomains. Along a thermodynamical process the
individual microdomains migrate and diffuse, so that a domain’s neighborhood is constantly changing. This mi-
cromotion may influence the topology of the body, resulting thus in a non-affine deformation superposed on the
deformation of a mesodomain (Ciancio et al., 2001). This additional effect gives rise to a non-Euclidean (local)
structure. Moreover, it can produce an additional dissipation of energy inside the body which is not due to macro-
scopic phenomena. We take into account this type of situation by regarding the physical metric as an internal
variable. Then if, accordingly, we use (25) as a generalization of Cauchy-Green tensor, the relevant equations turn
out to be relations (25)-(30) and (38)-(40) of Francaviglia et al. (2002).

2 A New Model of Elastic Deformable Dielectrics with an Internal Metric

In this Section we are finally ready to apply the techniques of Dolfin et al. (1998a), Francaviglia et al. (2002) as
summarized in Subsection 1.2 to the general model of Maugin recalled in Subsection 1.1. The state spaceB is
now given by eqn. (16) where the spaceW of internal variables accounts now for both an internal metricg of
thermodynamical origin (as in Francaviglia et al. (2002)) and for the electric polarization vectorπ. In other words
we assume

W = ν ⊕Met(ν), (26)

whereMet(ν) denotes the space of all metric tensors on the vector spaceν ' R3 mechanically associated to the
body. To be more precise,π should be rather considered as a state variable depending on the internal variablesLE
andLE through eq. (6). However there is no change if, for simplicity, we treat formallyπ as an internal variable.
Finally we recall that as in the previous paper Francaviglia et al. (2002), the internal variableg and the mechanical
variableF mix up according to eqn. (25). As a result, under these hypotheses the theory can be formally and more
conveniently re-written on the new state space

B̂ = Lin(ν ⊕ ν)⊕ R⊕ ν ⊕ [ν ⊕ Lin(ν)] (27)

having obviously embeddedMet(ν) into Lin(ν). In other words we splitC and assume our variables to be

(F,g, e,∇θ, π,∇π)

which live in the spacêB of (27). Alternatively, if we prefer not to splitC thence we assume as variables the
following

(C, e,∇θ, π,∇π)

with C given by (25), which live in the further space

B̃ = Lin(ν)⊕ R⊕ ν ⊕ [ν ⊕ Lin(ν)]. (28)

Moreover, no dependence whatsoever on∇g will be considered, since covariant effects associated with the metric
should in fact pass through higher order derivatives ofg involved in curvature (see, e.g., Valanis (1995)). This kills
the componentLin[Met(ν)] from the effective dynamical variables.

We are now ready to work on the problem of finding expressions forL, its symmetric partD and the quantity
T ·D which enters eqn. (3) forp(i). Notice first that we are facing an implicit function problem, hidden in the fact
that among the three variablesF, g andC only two are independent because of eqn. (25). Specific calculations
suggest us to choose the two independent variables in different ways depending upon the formula envisaged (e.g.,
to calculateL, T · D and the entropy different but equivalent choices lead to simpler formulae). Here we deal
directly use the various results, the derivation of which is postponed to a technical appendix. Because of (10),
nothing will change if the internal energye is replaced byθ as an equivalent state variable. Using the relations
derived in the appendix, we see that a convenient choice for the dynamical system associated with the process and
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replacing (17) is the following 



Ċ = FT [g−1LTg + L + g−1ġ]F

µė = p(i) −∇ · q
∇̇θ = ∇ · J∇θ + σ∇θ

π̇ =
∫ t

0

(E + LE + µ−1div(LE))dτ

∇̇π = ∇ · J∇π + σ∇π

ġ = G(t),

(29)

whereJ∇θ, J∇π, σ∇θ andσ∇π are the current vectors and the sources of the gradient of the temperature and
the gradient of polarization respectively. In the next Section we will show, by suitable thermodynamical consid-
erations, how the splitting (25) ofC into the gradient of deformationF and the physical metricg, using equation
(29)1 as a necessary condition, reflects into the dissipation inequality.

3 Exploitation of the Dissipation Inequality

According to our hypothesis above, the free energy is then given as a functional of the type

Ψ = Ψ(C, π,∇π, θ,∇θ). (30)

By derivation with respect to time one obtains

Ψ̇ = T̃ · Ċ + H · π̇ + Y · ˙(∇π)− s̃θ̇ + R · ˙(∇θ), (31)

where the following positions are made

T̃ =
∂Ψ
∂C

; H =
∂Ψ
∂π

; Y =
∂Ψ

∂(∇π)
; s̃ = −∂Ψ

∂θ
; R =

∂Ψ
∂(∇θ)

. (32)

Formally, the pair(π, θ) can be seen as a single internal variableα, so that the pair(Y,R) corresponds toB as
given by eqn. (24). After some simple manipulation, the following form of equation (31) is obtained

Ψ̇ = T̃ · Ċ +A · π̇ +
∂Ψ
∂θ

θ̇ +∇ · (YT · π̇) + R ·
(
∇̇θ

)
, (33)

where

A =
∂Ψ
∂π

−∇ ·
[ ∂Ψ
∂(∇π)

]
=

δΨ
δπ

is the variational derivatives ofΨ with respect to the state variableπ. From the first and the second principle of
thermodynamics {

µė = p(i) −∇ · q
µṠ +∇ · JS ≥ 0,

(34)

whereS is the entropy per unit mass, one obtains the general form for the Clausius-Duhem inequality

−µ(Ψ̇ + Sθ̇) + p(i) +∇ · (θk)− JS · ∇θ ≥ 0, (35)

when the extra entropy fluxk given by (19) is considered. In the model developed in Maugin (1980) the power of
internal forces is explicitly given by (5). Easy manipulations (see eqn.(59) of the appendix) give

L = M−1(ĊC−1)M−M−1Ṁ (36)

with
M = FT g = CF−1. (37)

Recalling then thatD is the symmetric part of the velocity gradientL, one obtains from (5) and (36) the following
explicit expression for the power of internal forces in our model

p(i) = −Z · Ṁ +
(
ZF−T

) · Ċ +

−µLE · π̇ + LE · ∇̇π, (38)
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where we set for simplicityZ ≡ M−T T = (TM−1)T ; the notationX−T = (X−1)T is used for all matricesX.

By substituting equation (38) into the Clausius-Duhem inequality, the following relation is obtained

− µ(Ψ̇ + Sθ̇)− Z · Ṁ +
(
ZF−T

) · Ċ +

− µLE · π̇ + LE · ∇̇π +∇ · (θk)− JS · ∇θ ≥ 0. (39)

We now replace equation (31) into equation (39) and obtain

(ZF−T − µT̃) · Ċ− µ(A+ LE) · π̇ +

+LE · ∇̇π − µ(
∂Ψ
∂θ

+ S)θ̇ + (40)

−Z · Ṁ + µ∇ ·
[θk

µ
−YT π̇

]
+ R · ∇̇θ +

1
µ

θk · ∇µ− JS · ∇θ ≥ 0.

From inequality (40) the following constitutive relations are obtained

T̃ =
∂Ψ
∂C

= µ−1ZF−T , (41)

∂Ψ
∂θ

= −S,
∂Ψ

∂(∇θ)
= 0, (42)

A = −LE, (43)

k =
µ

θ

[( ∂Ψ
∂(∇π)

)
T π̇

]
. (44)

Then the following dissipation inequality remains

−Z · Ṁ + LE · ∇̇π +
1
µ

θk · ∇µ− JS · ∇θ ≥ 0. (45)

3.1 Exploitation of the Entropy Action

We now exploit the expression for the entropy action already defined in section 1.1 (see equation (18) for our
model). By using the first principle of thermodynamics (34)1 together with the explicit expression for the power
of internal forces (38) one obtains

−∇ · q = µė + Z · Ṁ− (
ZF−T

) · Ċ + µLE · π̇ − LE · ∇̇π. (46)

By substituting equation (46) into (18) the explicit expression for the entropy action along the transformation for
the system is obtained

s =
∫

σ

1
θ
de− ZF

µθ

−T

· dC +
[

LE
θ
− 1

µ
∇ ·

(
µY
θ

)]
· dπ +

− 1
θ

(
LE
µ

+ Y
)
· d (∇π) +

1
µθ

[
Z · Ṁ +

1
θ
q · ∇θ

]
dt, (47)

so that the entropy function is now calculated as an integral along a pathσ into the appropriate spaceR × B∗ of
all thermodynamical variables, together with the independent time variable. Here the choose forB∗ amounts to
choose(M,C, e,∇θ, π,∇π) as thermodynamical variables, i.e. to set

B∗ = Lin(ν)⊕ Lin(ν)⊕ R⊕ ν ⊕ ν ⊕ Lin(ν) ' B̂,

not forgetting thatM andC are redundant with respect tõB according to the discussion of the Appendix.
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