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Contact Displacements of Spatial Contact of a Rough Body and a 
Body with Coating 
 
A.S. Kravchuk, A.I. Kravchuk, Z. Rymuza 
 
This paper is an example of the  application of a structural nonlocal theory to the solution of  the contact 
problem of a rough curvilinear body with plastic coating on another body. The main goal of these investigations 
is the creation of extrapolation methods of results of theoretical investigations from flat surfaces to any 
tribological system with curvilinear macro surfaces. This paper deals with the application of a 
phenomenological approach which is based on using the middle layer. It allows to represent a contact problem 
for real bodies as a superposition of two problems. The first one is the problem of penetration of rigid roughness 
in a plastic coating taking into account statistical characteristics of the surface. The second problem is the 
elastic deformation of smooth bodies with a circular area of interaction. The external load is supposed to be 
constant. The solution is obtained with the help of the contracting mapping principle and a simple iteration 
method. It is established that the first analytical approximation of solutions of the corresponding equations is 
useful for practical applications with sufficient accuracy. The paper deals with the case of plastic penetration of 
a surface asperity only when the macro contact stress is less than the yield stress of the coating, i.e. without 
macro plastic penetration of curvilinear bodies into this coating. 
 
1 Introduction 
 
Thin metal coatings are widely used in mechanical engineering. They improve the work of machine parts with 
lubrication and under conditions of dry friction. The appropriate selection of a metal coating allowes to provide 
serviceability of bearings of dry friction in deep vacuum, with high temperatures and large pressure (Alexseev, 
1973; Holmberg, 1994 ). 
 
The first research on friction of rigid bodies with metal coatings was carried out by F.P. Bowden. He stressed 
that the force of friction in the contact of bodies is defined as a product of the area by the value of the shearing 
stress. And if the surface of one of the bodies is covered by a thin film of soft metal, then the value of  the 
shearing stress of such a junction is small. The force of friction decreases when the hardness of a coating is 
significantly less than  the hardness of the bodies. This was established by experiments (Alexseev, 1973; 
Holmberg, 1994). At the same time the experiments demonstrated that the absolute value of the coefficient of 
friction for selected materials is not fixed and depends on the surface roughness of the bodies, its geometry etc. 
 
The phenomenological approach to the problem based on reviewing the middle layer was used in the author’s 
studies (Kravchuk, 1998; Kravchuk et al., 2000). It allowed to represent a contact problem for real bodies as a 
superposition of two problems. The first one is a problem of penetration of surface asperity into a plastic layer. 
But the mechanics of rough surfaces contains several peculiarities (Kravchuk, 1998). They are explained by the 
fact that the surface asperity, formed as a result of technological processing, has various heights distributions. 
The irregularity of the surface leads to the necessity of application of  probability methods for the determination 
of the rigidity of the plane element of a rough surface. The similarity of dimensions of the element and  the 
contact area explains methodical complexities of solving contact problems for real bodies (Kravchuk, 1998). 
The second problem is the elastic deformation of smooth bodies composed by a material in the homogenious 
structure. 
 
 
2 General Suppositions 
 
The height of the plastic coating is small and has no significant influence on the deformation of a body. The 
paper deals with the case of a plastic penetration of the surface asperity only when the macro contact stress is 
less than the yield stress of the coating, i.e. without macro plastic penetration of curvilinear bodies into this 
coating. The structural phenomenological method allows for representing interacting bodies as a system, which 
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consists of smooth bodies separated by a middle layer. The latter  consists of rigid surface asperity penetrated 
into the plastic coating.  
An isotropic rough surface is investigated. The isotropic surface has similar probabilistic characteristics of 
roughness in any two directions of measurement by a profilometer. The friction is negligible in the contact area. 
The roughness is simulated by a set of spherical segments with a radius rR  which is shown in Figure 1. The 
spherical segments have a stationary value of curvature (Figure 2). The distribution of heights of segments is 
similar to the distribution of heights of the real roughness. 
 

 
Figure 1. Model of roughness 

 
 

 
Figure 2. Plane section of bodies contact 

 
 
3 Geometrical Suppositions 
 
Let us consider the spatial contact of a flat half-space 1B  and a coated smooth ball 2B . It is supposed that the 
point of origin is in the point of contact of the bodies. The surface 1S  of the body 1B  has segments that are 
simulating the roughness. The height of the segments (roughness) is rH  (Figure 2). The height of the coating is 

cH . Let us assume that cH  is a negligible value if compared with the radius of the contact area.  
 
The average probability characteristics of the surface of a rough body are defined on some elements of the 
surface (profilometer trace) in any directions. The length of this trace is L (Figure 2). The base length L is 
always larger than the height of roughness rH  (Kravchuk et al., 2000). 
 
The surface 2S  of a coated smooth body 2B  is defined by the equation (Johnson, 1985; Ponomarev et al., 1958) 
 

( )22 zx
R2
1y += , 

 
where R  is the main radius of the curvature of 2B  in the point of origin. 
 
It is supposed that 1SS ⊂  is the statistically maximum area of contact of the bodies (Figure 1). Its bound G is a 
circle with the radius b in the plane 0XZ (Figure 1, 3). The equation of G is (Figure 3) 
 

222 bzx =+ . 
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Let us take any point s  with the coordinates ( )zx,  in the area of contact S (Figure 3). The distance between this 
point and G is not less than 2L . We select a cylinder C for any point ( )yzx ,, 00  for which the inequality holds 
 

( ) ( ) 2
2

0
2

0
Lzzxx ≤−+− . 

 

Hence the sub-areas 1SC ∩  and 2SC ∩  are plane and parallel circles according to the suppositions given 
above.  

 
Figure 3. Projection of the contact area on the plane XOZ 

 
 
4 Mathematical Model of Micro Level Penetration of a Surface Asperity into a Plastic Layer 
 

The distribution of a statistically average pressure z),(x p*
L  is calculated by the equality (Kravchuk et al., 2000) 
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where )z,x(p*
00  is a distribution of the micro pressure (pressure on peaks of segments). 

 
The average distribution of heights between the bases of segments and the surface of the coating on 2SC ∩  

z),(xH*
L ( { } r

*
L

 S )y,x(
H)z,x(Hmax

L

<<
∈

0 ) is calculated by the equality 

 

∫∫
∩

=
1

00002
4

SC

**
L d z) d xz,(xH

 L
z),(xH

π
 

 

where )z,x(H*
00  is a distribution of micro heights (the height between the base of any segment and the 

surface of the coat on 2SC ∩ ). 
 
Let us suppose that the difference of penetration of any two bases of segments in 1SC ∩  is small in comparison 

with z),(xH*
L . But the probability characteristics of roughness on any two profilometer traces with the center in 

any point LS)z,x( ∈  are equal (Figure 3). Therefore the relative approach )z,x(*
Lε  of surfaces 1SC ∩  and 

2SC ∩  determined by the penetration has the following form 
 

( ) rLrL HzxHHzx ),(),( ** −=ε  
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Let us use the following equation for the definition of a connection between )z,x(*
Lε  and z),(x p*

L  (Alexseev, 
1973; Kravchuk et al., 2000) 
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where sσ  is the yield stress of the coating, rb  ,λ  are the coefficients of bearing at a curve ( 1>λ ) which are 
determined with the help of a profilometer. The area of the real contact of a rough body and the body with 
coating is the area square of the real contact peaks of roughness. It is significantly smaller than the nominal 
contact area. Therefore in (1) it is supposed that the penetration of nearby peaks has no sufficient influence on 
each other (Alexseev, 1973).  
 
5 Connection of Contact Macro-Pressure and Correction of Macro-Displacements 
 
The average macro-pressure z),(xpL  acts on the bases of segments in the direction of the body 1B . Hence the 

following equality holds for the statistically average value z),(x p*
L  and the average macro-pressure z),(xpL  for 

any point LS)z,x( ∈  (Kravchuk et al., 2000) 
 

z),(x pz),(x p L
*
L = , 

 
where 
 

∫∫
∩

=
1

00002
4 

SC
L d z) d xz,p(x

 L
z),(xp

π
.   (2) 

 
)z,p(x 00  is the distribution of contact macro-pressures, i.e. a solution of the contact problem for smooth bodies.  

 
On the other hand the normal contact macro-displacement )z,x(n

B1
V  in any point 1SS)z,x( ⊂∈  is represented 

as a superposition 
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where )z,x(n

S1
V  is a normal contact displacement of the smooth surface of 1B , )z,x(RV  is a displacement 

which is determined by the penetration of segments (roughness) into the coating. The last function is the 
solution of a contact problem with a homogeneous layer and it can be represented as )z,x(H)z,x( RrR ε⋅=V . 
Hence we can determine the contact average macro-deformation z),(xR,Lε  as (Kravchuk et al., 2000) 
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The function )z,x(n

B1
V  is a solution of an initial contact problem only if the following equality is fulfilled for 

any point LS)z,x( ∈   
 

z),(xz),(x *
LR, L εε = . 

 
Therefore we can use the same nonlinear equation (1) for the definition of the connection between the macro-
deformation z),(xR,Lε  and the macro-pressure z),(xpL  for any point LS)z,x( ∈ . 
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6 Approximate Definition of the Contact Displacement and Pressure in the Contact Problem for 
Spheres (Analogue Hertz’s Theory) 

 
The contact displacement has the following form (Johnson, 1985; Ponomarev et al., 1958) 
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where (Figure 3) 
 

22 zxr += , 
 
δ  is a maximal contact displacement, n
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1

 is a contact displacement of the body 1B .  

But the displacement of the half-space n
BV

1
 is defined by (3). Hence we obtain from equation (5) that 
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We use the following equation for an approximate evaluation of RV  
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where 1≥α  and ∆  are coefficients which homogenize the deformation properties of a rough surface, b is the 
radius of a circle contact. We will determine the coefficient of homogenization later.  
 
On the other hand we obtain from equations (4), (7) that 
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where (Figure 3) 
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The contact macro-pressure is of the following form taking account  (6) and (7) 
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where P  is a value of the load. Hence we obtain from (2) and (9) that 
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7 Definition of  the Homogenization Coefficient ∆  
 
We determine the coefficient ∆  from (7) taking account a precise fulfillment of (1) in the point of origin. We 
obtain from (8) and (10) that: 
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But the folowing equations are valid 
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The problem is well posed only when 1≥α . To simplify the following calculations for a circular area of 
contact, we suppose that Lb 5.1≥ . Hence we obtain from (11)  
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8 Definition of the Homogenization Coefficient α  
 
We define the coefficient α  from the condition of minimization of the average squared error of approximation 
of (1). We obtain the following equation by substituting (11) in (8) and taking account  (1) and (12) 
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We obtain from (13)  
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A s s e r t i o n. Function ,b)(αΧ  (14) has a single minimum for any b  at 
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and it is fulfilled when 1≥α . 
 
P r o o f. This assertion is based on the following facts. 
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iv. The inequality 1≥α  is the outcome of the items i., iii. and the inequality  
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The assertion is proved. The value of )b,(αΧ   allows us to determine the accuracy of the approximation of (1). 
 
 
9 Definition of the Contact Displacement for a Circle Area of Contact  
 
The circle area of contact S  is defined by the radius b  (Johnson, 1985; Ponomarev et al., 1958). The 
combination of equations (5), (6), (12) and (15) leads to the following form of the maximal displacement  
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where b is given by the nonlinear equation 
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The equations (16), (17) are valid for smooth bodies if 0=rH . We have used the method of simple iteration for 
solving (17). Its root is supposed to belong to a segment 
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The results of a numerical analysis of equations (17) and (18) show that 3,0<q . The error ratio of the 
approximate definition of the contact area with the help of )b(fb 01 =  is less than 0.05.  
 
The maximal contact displacement for the interaction of coated and rough bodies is less than the same 
parameters of smooth bodies without coating (Figure 4). The characteristics of roughness and plastic coating 
have an essential influence on  the size of the contact area for small loads. The average squared error ratio of 
satisfying condition (1) is less than 0.04. 
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Figure 4. Maximal contact displacement: 
 

 1 - smooth ball and smooth half-space; 
2 - coated smooth ball and rough half-space  
(   ,/105,1 211* mNE ⋅= mR  1,0 = , m10,02 5−⋅=rH , mL 3105,0 −⋅= , 27 mN 100,12 ⋅=yσ , 

2 =λ , 2=br ) (Alexseev N.M., 1973; Kravchuk  et al., 2000); 
 
 
10 Conclusions 
 
In this paper, the nonlocal model is applied to the contact of bodies with a circular area of interaction. The 
external load is supposed to be constant. A solution is obtained with the help of the contracting mapping 
principle and a simple iteration method. It is established that the first analytical approximation of the solution of 
equation (17) is useful for practical applications with sufficient accuracy. 
 
It is established that the maximal contact displacement for the interaction of coated and rough bodies is less than 
the same parameters of smooth bodies without coating. 
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