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Gear couplings transmit torque from driving to driven shafts whilst accommodating unavoidable misalignments 
and axial displacements. The friction forces at the sliding teeth transfer energy from the driving engine to the 
lateral oscillations of the shaft. Instability of the stationary motion, self-excitation, can result. The self-excited 
oscillations, in character related to the eigen-oscillations of the linear system, interact with the external excita-
tion by unbalance forces. For a two degrees of freedom rotor-bearing system we show how to study systemati-
cally cases of higher-order synchronisation (frequency locking) which can  help to interpret observed motions; 
numerical calculations and  perturbation techniques are combined.   
 
1 Introduction 
 
Gear couplings consist of an externally toothed hub, see Fig.1a, and a mating sleeve with internal teeth which 
permit relative axial sliding. Crowning (rounding) of the hub teeth and a clearance (backlash) between the mesh-

ing gears prevent jamming and allow small angular 
displacements (angular misalignments) between the 
axes of sleeve and hub (see the angle α in Fig.1b; | |α  < 
0.004 rad ≈ 0.25° at high speeds). The incorporation of 
the gear coupling into a rotor-bearing system has unwel-
come side effects: The touching teeth-flanks need some  
slipping for lubrication, thus a minimum misalignment 

|| α  > 0 is necessary. The Coulomb type friction forces 
between the sliding tooth flanks introduce strictly non-
linear effects into the otherwise linear rotor system. Like 
a shaft with internal friction (Ku et al., 1993) – rotating 

with an angular speed  – a rotor with a gear coupling will start to oscillate at a frequency  as soon as Ω rω Ω  
exceeds  As a rule, the r .ω relevant frequency rω is close to the natural frequency of that (linear) modal oscilla-
tion which draws most effectively energy from the power supply. Both, linear and non-linear terms of the equa-
tions of motion control the energy flow into the relevant mode and determine the amplitudes of the self-
oscillation (of course, this depends on several system parameters). The frequency rω remains about fixed when 

 increases further, the self-oscillation appears as a sub-harmonic oscillation. (Sub-harmonic in contrast to the 
harmonic oscillations – at the frequency  – forced by the unbalances of the rotor.) In this paper we study the 
interaction of these two types of oscillation in a simple rotor system.     

Ω
Ω

α
TTRTL MMM =≈

Fig. 1: Gear coupling; a) straight, b) displaced by
angle with moments applying to the left half, 

 

 
The bulk of literature on rotor systems with gear couplings concentrates on coupling alignment, lubrication and 
wear; e.g. Piotrowski (1995). Most of these publications contain no details about the vibrations which certainly 
accompany wear. A few authors report about instability and self-excited oscillations observed in plants; e.g. 
Shiraki et al. (1970). Common to all cases are the rather sudden onset of vibrations when the rotational speed of 
the rotor is increased, and the sub-synchronous frequency of the observed (self-excited) oscillations, independent 
of the speed Ω  Not all authors seem to identify the gear coupling as source of their trouble. Little literature 
exists on systematic investigations of  self-excitation by gear couplings. Morton (1982) demonstrates by a four 
degrees of freedom rotor that a sufficiently large angular displacement of the coupling stabilizes the system; 
Yamauchi et al. (1981) study the dynamic characteristics of gear couplings analytically and experimentally.  

.

 
The model of this paper is taken from Brommundt et al. (in preparation), where additional literature is listed. We 
use that model here to show how intricate oscillations, somewhat hidden in parameter space, can be uncovered 
by numerical means supported by perturbation techniques.         
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2    The Basics of Our System 
 
2.1 The System 
 

The rotor shown in Fig.2 consists of two massless 
rigid shafts, No.1 and No.2, mounted on two rigid 
bearings A and C, and on the flexible bearing B, 
which is suspended by spring-dashpot elements. The 
attachment points D, E of the suspension elements can 
be slid by (ax, ay) to produce special (angular) mis-
alignments in the gear coupling gc that connects the 
two shafts. Shaft 1 carries the rigid disk dk of a tur-
bine, eccentricity eU. The turbine drives the rotor with 
the constant speed (the angular velocity)  by a 
torque M

Ω
T which is consumed at the right hand side of 

the bearing C. Let ,Φ the angle of rotation, be given 
by (t) t.Φ = Φ = Ω  A detailed set of parameters is 
listed in Appendix 1. (All numerical results base on 

these “nominal parameters”, alterations only will be mentioned.) 

Fig.2: The system 

   
2.2 Equations of Motion 
 
The rotor deflections are measured by its displacements x x(t), y y(t)= = at the bearing B with respect to the 
straight reference position (x cf. Fig.2. The coupled non-linear second order differential equations , y) (0,0),=
 

  
( )

( )

2 2
x p 2 x x F 2 u u

2 2
y p 2 y y F 2 u u

x ym x d x J l y k (x a ) M l tanh v v * e m cos t ,
v

y xm y d y J l x k (y a ) M l tanh v v * e m sin t W,
v

+Ω
+ + Ω ⋅ + − + = Ω Ω

−Ω
+ −Ω ⋅ + − + = Ω Ω −

&
&& & &

&
&& & &

 (1) 

 
2v : (x y) (y x) ,= +Ω + −Ω& & 2  govern the motions. They are taken from Brommundt et. al., see also Krämer 

(1993). The terms ( )tanh v v *  regularize (smoothen) the jump of the Coulomb friction at v = 0.  
 
We introduce the configuration vector and the state vector  T(t) (x, y)= =u u (t)= =v v T T T( , ) =u u&  

They are applied to abbreviate (1) in an obvious way by the following second, or first order differen-
tial equation, respectively: 
(x, y,x, y).& &

 
   (2), (3) 2

U( , , ) e t) , ( ) e ( t).+ Ω + Ω Ω = = + Ω ΩM u F u u G( 0 v f v g&& & & 2
U

 
To compare magnitudes, it is advisable to work with non-dimensional quantities. We select as Reference quanti-
ties from the equations of motion the mass m, the (weight) force W, and the average stiffness (kx + ky)/2, respec-
tively, and obtain the values (cf. the parameters in Appendix 1): 
  
  6

R R R x ym m 50.19kg, F W 652.4 N, k (k k ) 2 25.25 10 N / m.= = = = = + = ⋅  (4) 
 
Auxiliary reference values are deduced: the angular frequency R R Rk m 709.3 rad/s,= ⋅ω = the period TR =  

3
R2 8.86 10−π ω = ⋅ s , the displacement 6

R R Re F k 25.8 10 m−= = ⋅ ,

.

and the velocity  

Sometimes, we mark non-dimensional quantities by a tilde, e.g. 

3
R R Rv e 18.32 10 m / s.−= ω = ⋅

Rt t= ω ⋅%  
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2.3 Solutions for the Linear System 
 
To become acquainted with our system we ask for its “linear behaviour” without the influence of the gear cou-
pling effects, i.e. for MF = 0 in (1): The free vibrations 
 
   (5) exp( t)= λu u(

 
are two (couples of complex conjugate) eigen-solutions ( , k)λ u( , k k kj ,λ = σ + ω k = 1, 2, ( j := √ (-1) ). Because 

of the gyroscopic effect they depend on the speed .Ω  Here are values for   R 0.0, 1.0, 2.0, 3.0:ω =/Ω = Ω%

T

  

R 1 R 1 R
T

2 R 2 R
T

R 1 R 1 R
T

2 R 2 R
T

R 1 R 1 R

0.0: 0.039 0.895j, e (1, 0),

0.064 1.093j, e (0, 1);

1.0: 0.040 0.885j, e (1, 0.013 0.208j),

0.064 1.105j, e (0.018 0.254 j, 1);

2.0: 0.040 0.860 j, e

Ω ω = λ ω = − + =

λ ω = − + =

Ω ω = λ ω = − + = +

λ ω = − + = +

Ω ω = λ ω = − + =

u

u

u

u

u

(

(

(

(

(

T
2 R 2 R

T
R 1 R 1 R

T
2 R 2 R

(1, 0.017 0.366 j),

0.064 1.137 j, e (0.026 0.447 j, 1);

3.0: 0.039 0.828j, e (1, 0.017 0.474 j),

0.065 1.181j, e (0.027 0.579 j, 1).

+

λ ω = − + = +

Ω ω = λ ω = − + = +

λ ω = − + = +

u

u

u

(

(

(

 (6) 

 
Fig.3 shows the trajectories (x(t), y(t)) of the free vibrations for R/ 1.0, 2.0, 3.0,Ω ω =

2

 starting at the point ○. For 
circulate the trajectories clockwise, i.e. opposite to the rotation of the shaft, for 1λ λ coincide both directions.  

The forced harmonic oscillations, due to the unbalance, have the form 
 

   (7) U c s x

U c s y

ˆ ˆ ˆx x cos( t) x sin( t) x cos( t ) ,
ˆ ˆ ˆy y cos( t) y sin( t) ycos( t ) ,

= Ω + Ω = Ω +α
= Ω + Ω = Ω +α

 
see Fig.4. 
 

ˆ ˆx( ), y( )Ω ΩFig.4: Amplitudes of the forced oscillationsFig.3: Free vibrations of the linear system 
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3   The Behaviour of the Perfectly Balanced System 
 
Perfect balance means eU = 0 in (1). Furthermore, we assume ax = 0 and sum the effects of the weight W and the 
adjustment ay. Their combined action is captured by the parameter ma (it steers the misalignment):  
   
   (8) a ym W W a k .= − y

 
Then, equation (1) gets the form 
 

  
( )

( )

2
x p 2 x F 2

2
y p 2 y F 2 a

x ym x d x J l y k x M l tanh v v * 0,
v

y xm y d y J l x k y M l tanh v v * m W.
v

+Ω
+ + Ω ⋅ + + =

−Ω
+ −Ω ⋅ + + = −

&
&& & &

&
&& & &

 (9) 

 
3.1 The Stationary Solution and its Stability 
 
The autonomous equation (9) has the stationary solution  
   
   (10) T

0 0 0(x , y ) ( cos , sin ) ,= = ρ γ −ρu γ
 
 
where ρ and γ follow from  
   

 
( )( ) ( )

( )

2 22 2 2
x y F 2 x F 2 a

x F 2

k k (M / l ) tanh( /v*) k (M / l ) tanh( /v*) m W,

tan k (M / l ) tanh( /v*) .

ρ + Ωρ ρ + Ωρ =

γ = ρ Ωρ
 (11) 

 
To investigate the stability of u0 it is disturbed by δu, and the behaviour of perturbed solution u = u0 + δu is 
obtained from the variational equation, cf. (1) and (2), 
 
   
   (12) 0 0( , , ) ( , , ) ,δ + Ω δ + Ω δ =u uM u F u 0 u F u 0 u 0&&& &

 
where  and  are Jacobi matrices of F with respect to  and u at the constant displacement uuF& uF u& 0 (the details 

are a bit lengthy). The displacement u0 is 
stable (with respect to sufficiently small 
perturbations) when all eigen-solutions 

exp( t)δ = λu u) decay, i.e., when 
.k k: Re 0,  for k 1,..., 4σ = λ < =  

 
As an example, Fig.5 demonstrates some 
results calculated for – 
nominal speed. Fig.5a shows the stationary 
displacement (x0, y0) of the bearing B as it 
changes when ma is increased from 0 to 6: 
the suspension point E of the (initially 

weightless) rotor is shifted from zero to a value equivalent to a rotor displacement caused by a 6-fold weight. 
(The bullet at (x0, y0) ≈ (0, 0) holds for ma = 1 where the coupling nearly sticks.) Fig.5b sh max ,σ  the largest 
real-part of the eigen-values, as function

N N;Ω

ts u0.)  

0.5Ω = ⋅Ω

ows 
 of ma. Except for the small gap between ma1 = 1.05 and ma2 = 1.28, 

maxσ is positive up to ma3 = 2.93. Throughout the region 0 < ma < ma3 the stationary displacement is unstable. (A 
careful study of the stable stationary solution within the gap between ma1 and ma2 reveals that it has a very small 
domain of attraction only: any not so small disturbance upse

maxσFig.5: Stationary solution; a) displacement, b) real-part  

 
Remark 1: Here, a value ma > 3 stabilises the stationary displacement. An ma = 3 leads to an angle α of less than  
0.1º (cf. the Introduction). Thus, an appropriately chosen ma seems  to be a remedy against instability, generally 
applicable. But the magnitude of ma is limited by the heat generation in the coupling (cf. Czerny, 1993)!        
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3.2 Self-Excited Oscillations 
 
For and mN0.5Ω = ⋅Ω a = 1, a point in the unstable region of Fig.5b, we solve the non-linear differential equa-
tion  (9) numerically. The initial state is chosen such that it differs little from the stationary state  of 
Fig.5a – corresponding to a small perturbation – but leads to clear diagrams. Fig.6 presents the motions for the 
first  40 revolutions of the transition from the phase point near the stationary state to the (periodic) limit cycle 

shown in Fig.6d: 

0 (0)=v v

 

( )x t
( )y t ( ( ), ( ))x t y t

Fig.6: Self-excited oscillations: a)  horizontal, 
b) vertical, c) the trajectory , d) the 
clockwise  rotating limit cycle, cf. (13) 

 
( ) ( )S S

S R S S

rot R rot R

x(t), y(t) x(t T ), y(t T ) ,
T 5.70T , 2 T 1.10
T 4.36T , 2 T 1.49

= + +

R

.
,= ω = π = ω

= Ω = π = ω
 (13) 

 
ST , Sω – period, frequency of the self-excited oscilla-

tion, rotT ,Ω – period, frequency of the rotation. 
 
The frequency S S, 1.10 R,ω ω = ω

2 R1.12
is close to the fre-

quency ω ≈ ω of the second normal mode, cf. 
(6). The elliptical limit cycle circulates in the same 
direction and has a similar convexity as the corre-
sponding modal oscillation , cf. in Fig.3; it is just 
tilted against the direction of the rotation. The ampli-
tudes of the self-oscillation have about the same mag-
nitude as the resonant peaks in Fig.4. 

2λ

 
Below, in Sect.4.3, we shall abbreviate the periodic 
limit cycle (of the self-excited oscillation) by 

 
     (14) ( T

p p(t) x (t), y (t) .= =p p )
 
 
4    The Behaviour of the Unbalanced System 
 
4.1 Some Numerical Explorations 
 
What will the rotor motion look like when the self-oscillation and the periodic excitation by the unbalance inter-
act ?  To calculate distinct – and not so simple – results, we choose the parameters ma = 1, cf. (8), Ω =  

N0.73 ,⋅Ω

Ue 2 e
i.e. Trot = 2.99 TR, and 

UN .= ⋅ The latter both are 
selected such that we are not too 
far above the (linear) resonance, 
see Fig.4, but retain the unbalance 
force which varies with Ω   2.

Fig.7: Stationary oscillations; a) trajectory , b) enlarged: 
trajectory near u(0), marked o, and u(T1), T1 = 109·Trot, marked +  

(x(t), y(t))

 
To get rid of transient effects and 
arrive at a stationary motion, we 
solve the initial value problem for 
equation (1) with for the 
time interval 0 t , with t

(0) =v

Et≤ ≤

) for (t t

0

E  = 
150·Trot, which leads  to a suitable 
starting state 

i.e. the new (shifted) time axis.  

0 (t ) ( ) t,= ⇒ − ⇒v v E E0v

  
Fig.7a shows the trajectory  for  (t)= =u u T(x(t), y(t)) 10 t T≤ ≤ , where t1T 109 Tro= ⋅

)
, i.e. for 109 rotor revolu-

tions. The structure of the trajectory is understood best when is conceived as a curve in 3D space (t)u (tu
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where it winds, torus-like, around the limit cycle of Fig.6d, and Fig.7a is just a projection of the space curve to 
the x-y-plane (cf. Ioos et al., 1980). On the torus the longitude measures the progress in the direction of the limit 
cycle, the latitude measures the winding. During the 109 rotor revolutions the trajectory cycles the torus (in the 
longitudinal direction) 58 times. 
 
Fig.7b presents an enlarged neighbourhood of the initial point “o” and the endpoint “+” of the trajectory: The 
trajectory misses periodicity by a narrow margin. But, the (nearly) parallel sections of u look very regularly 
spaced, their lateral distances satisfy about the ratio 3:8:11. Thus, the trajectory should close after a 10-fold repe-
tition, i.e. after 1090 revolutions.  

(t)

The corresponding calculation 
reveals that the trajectory closes 
already after nSH = 1058 revolu-
tions. Fig.8b shows that the initial 
point “o” and the endpoint “+” of 
the orbit agree very accurately. 
During that period the trajectory 
cycles the torus mSH = 563 times. 
(The orbit can not be shown in 
print since its torus is all blacked 
by lines; cf. Fig.7a.) 
 
Fig.8a – drawn at the same scale as 
Fig.7a – shows how the period-
points u k = 0 to 17, wan-
der along an oval curve. This wan-
dering is responsible for the devia-
tion of the number n

rot(k T ) ,⋅

SH = 1058 from 
the estimation 1090 above.  

 
The found solution has the period (t)u
   
   (15) SH SH rot SHT n T : (t) (t T )= = +u u ;  
 
we denote it by q Because of  SH SH(t;m , n ).
 
  SH SH SH rot SH2 T 2 (n T ) nω = π = π = Ω ,  (16) 
 
     (17) SH SH SH SH SH SH SH SH(t;m , n ) (t T ;m , n ) (t 2 / ;m , n )= + = + π ωq q q
 
is sub-harmonic of the order nSH with respect to the excitation in (1), which runs with the speed Ω the angular 
frequency of the rotation. The frequency  of the original self-excited oscillation, cf. (13), (14), hides behind 
the above m

,

Sω

SH cycles: 
 
  S SH SH SH SH S SH SH SH SH rotm m n ,  and T T m n mω = ω = ⋅Ω = = ⋅T .

R

 (18) 
 
The numbers from above lead to , cf. S 1.12ω = ω 2ω in (6), but now it is – or has become – a rational multiple 
of the exciting frequency .Ω What will happen when Ω is changed slightly ?      
 
4.2 Tracing of Sub-Harmonic Oscillations at Parameter Variations  
 
We want to trace a discrete sub-harmonic oscillation along parameter variations, especially along changes of the 
exciting frequency .The example of Sect. 4.1 is far too lengthy for this purpose. Therefore, we begin with the 
sub-harmonic oscillation cf. Fig.9, calculated for 

Ω
(t; 4, 5),q N0.47 ,Ω = ⋅Ω Trot = 4.64 TR.  

 
The states to the sub-harmonic solutions q satisfy the periodicity condition (16), (17): (4,5) (t)v (t; 4, 5)
 
  .  (19) (4,5) (4,5) SH(0) (2 n / )= πv v Ω

Fig.8: Some details of the completed orbit of Fig.7, same scale;         
a) Configurations for k = 0 to 17, pointsrot(k T )⋅u �(even), + (odd),  
b) Period points o, at u and +, at(0) , rot(1058 T ) ,⋅u coincide accurately 

 247



Solutions to the differential equation (1), for ,Ω + ∆Ω  which satisfy the periodicity condition (19) are obtained 
via the shooting method (Deuflhard et al. 2002) by Newton iterations (Deuflhard et al. 2003): the initial values 

thus calculated for Ω serve as starting point for (4,5) (0)v ;Ω + ∆Ω tiny steps ∆Ω only are allowed. The varia-
tional equation  
 
   (20) ( , , ) ( , , )δ + Ω δ + Ω δ =u uM u F q q u F q q u 0&

& &&& &

 
has to be solved parallel to (1) to yield the Newton matrix for the shooting procedure, as well as for the calcula-
tion of the characteristic multipliers for the stability investigation, cf. Farkas (1994). These continuations 
of converge only over the very narrow interval  

k ( )µ Ω
(t; 4, 5)q

 
   (21) {(4,5)L : 0.4698 0.471... .= Ω < Ω < }
 
The interval L is the locking region where the frequency(m,n) SHω of the sub-harmonic is locked to the excitation 
Ω as given by (16), cf. Sect. X.15 in Ioos et al. (1980). [Compared to Fig.9, the shape of the solution changes 
appreciably along L . ] At the borders of the interval the solution q becomes unstable, µ the  (4,5) (t; 4, 5) max ( )Ω ,

.

N

 

(t; 4, 5):q Fig.10: Characteristic multiplierFig.9: Sub-harmonic a) orbit, b) hodograph; 
         + • show 5 positions of the eccentricity  

 
largest characteristic multiplier, gets  > 1, cf. Fig.10. For the immediate neighbourhoods of  the shape of 

converts (numerically!) to high-order sub-harmonics like the one shown in Sect. 4.1. Their locking 
regions, although very narrow too, seem even to overlap with  Quasi-periodic solutions with unlocked 
frequencies Ω and could not be detected; cf. Fig.X.3 in Ioos et al. (1980). 

(4,5)L
(t; 4, 5)q

(4,5)L

Sω
 
Remark 2: The computation of by (29), cf. Fig.11b, yields 0Ω 0 0.4656 ,Ω = ⋅Ω which lies well outside  (4,5)L .

 
 
4.3 A Systematic Search for Sub-Harmonic Oscillations 
 
Since the locking regions are very narrow, it is difficult to calculate on purpose, for given the sub-
harmonic see Remark 2. We outline a procedure to find such oscillations systematically. It com-
bines perturbation techniques (related to Ch.6 of Farkas 1994) with numerical calculations. We proceed in 3 
steps: i) A small parameter ε is introduced into the equation of motion which permits to treat the forced oscilla-
tion as a perturbation of the limit cycle. ii) We choose the Example close to the 
above   compare: (13/16):(4/5) = 65/64. For the Example we evaluate the formal expressions 
of the perturbation terms numerically. iii) The numerically obtained terms are applied to compute, for ε = a 
solution which is continued to larger 

SH SH(m , n ) ,

(13, 16),

SH SH(t;m , n );q

SH SH,n ) = (4, 5)

(t, ;13,16)εq

SH SH(m , n ) =
(m ;

0.1,
ε  by gradual increase, 0.1,..0.2,..0.3,..ε = , and iteration with 

the complete equation of motion (equation (22) below).  
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Remark 3: In this Section 4.3, the calculation of periodic solutions by Fourier expansions is beneficial (cf. Urabe, 
1963); see  Appendix 2.   
 
 First, in equation (2) we multiply the excitation by the small parameter ε  and decompose the forcing term: 
 
   (22) ( )2 T T

U U c s c s( , , ) e m cos( t ) sin( t ) ; : (1,0) , : (0,1)+ Ω + ε Ω Ω +α + Ω +α = = =M u F u u r r 0 r r&& & ;
 

0ε = leads to the autonomous system of Sect.3, 1ε = leads to the original unbalanced (the forced) system. (The 
phase angle α will be needed later.) Next, we introduce the non-dimensional time τ such that the period T of 

is transformed to  
SH

SH SH;m ,n )(t,εq 2 :π
 

  SH SH SH SH SHt n , ( , ;m ,n ) ( 2 , ;m ,n ), (.) : d(.) d .′τ = Ω τ ε = τ + π ε = τq q  (23) 
 
Equation (22), for reads now ( , ) ,τ εu
 
  ( ) ( )2 2 2

SH SH U U c SH s SHn , n , e m cos(n ) sin(n′′ ′Ω ⋅ + Ω ⋅ Ω + ε Ω τ+ α + τ +α =M u F u u r r 0) .  (24) 
 
We assume and expand  with respect to ( )Ω = Ω ε ( , ), ( )τ ε Ω εu ε up to the first order: 
   
  .  (25) 1 0( , ) ( ) ( ) ... , ( ) (1 ...)τ ε = τ + ε τ + Ω ε = Ω + ν ε +0u u u 1

 
Then follow from (24) 
 
  (0 2 2

0 SH 0 0 0 SH 0 0: n , n ,′′ ′⋅ + Ω ⋅ Ω =M u F u u 0) ,ε Ω  (26) 
  

 

( ) ( )
( ) (( )

( )

1 2 2
0 SH 1 0 0 SH 0 0 0 SH 1 0 0 SH 0 0 1

2 2
1 0 SH 0 0 0 SH 0 0 0 SH 0 0 0 SH 0 0 0

2
U U 0 c SH s SH

: n , n , n , n ,

2 n , n , n , n ,

e m cos(n ) sin(n ) .

′

′ Ω

′′ ′ ′ ′ ′ε Ω ⋅ + Ω ⋅ Ω ⋅Ω ⋅ + Ω ⋅ Ω ⋅ =

′′ ′ ′ ′= −ν ⋅Ω ⋅ + Ω ⋅ Ω ⋅Ω ⋅ + Ω ⋅ Ω ⋅Ω

+ Ω τ+α + τ + α

u u

u

M u F u u u F u u u

M u F u u u F u u

r r

)

 

t)

 (27) 

 

S ( ) ;ω Ω
Fig.11: Frequency dependences, 
a) self-excitation  b) wedge- 
like region of entrainment

Equation (26) is equal to equation (9), the self-excited autonomous 
system of Sect.3, in the disguise of (2) and (23). After the transforma-
tion (23)1, the periodic solution 0 (t) (=u p , the limit cycle (14), 
satisfies 
 
    S SH(t) (t 2 / ), (t) ( n ) ( ) below.= + π ω = τ⋅ Ω ⇒ τp p p p p           (28) 
 
The frequency Sω depends on the speed :Ω S S ( ),ω = ω Ω cf. Fig.11a. 
Now, Sω must meet (18)1, depicted in Fig.11a by the straight line 

SH Sω = Ω

0( ,
Hnm⋅

0 )
through the origin. To compute the intersection 

Ω ω from S SH( ) m nSHω Ω = Ω⋅  we fix the phase of by the  (tp )
condition p 0 0y (0) c ,c constant= −& and solve the set of  5 equations  
  

                                                           p p S S SH SH(0) (2 / ) , ( ) m n ,= π ω ω Ω = Ω⋅v v  (29) 
 
for (  by an appropriately modified shooting method. From the computations result the )

τ

p p p Sx (0), x (0), y (0), ,ω Ω&

frequencies cf. Fig.11a, and the pertinent limit cycle  0 0 R N( , ) (1.072 ,0.458 ),ω Ω = ω Ω SH( ) ( 2 / m )τ = τ + πp p
recorded by means of its Fourier coefficients (cf. Appendix 2 for the notations), 
 
       (30) c ( ).= F

pf A p
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Next, we have to solve equation (27): Its left side, the homogeneous linear periodic variational equation 
 
  ( ) ( )2 2

0 SH 1 0 SH 0 0 SH 1 0 SH 0 1n ( ), n ( ), n ( ), n ( ), ,′′′ ′ ′ ′ ′Ω ⋅ + τ Ω ⋅ τ Ω ⋅Ω ⋅ + τ Ω ⋅ τ Ω ⋅ =u uM u F p p u F p p u 0  (31) 
 
has the four Floquet solutions (cf. Jordan et al. (1987); here are all numerical results expressed by state vectors): 
 
  F,k k F,k k F,k k k( ) ( ) exp( ), (2 ) (0), exp( 2 ), k 1,..., 4,τ = τ ⋅ λ τ π = µ µ = λ π =kv Φ v v  (32) 
 

kλ – characteristic exponent, kµ – characteristic multiplier, ( ) ( 2 );τ = τ + πk kΦ Φ  the first Floquet solution,  

F,1( ),τv is the derivative of p  ( ):τ
 
  ( )T

F,1 1 1( ) ( ), ( ) , 0, 1.′′ ′τ = τ τ λ = µ =T Tv p p  (33) 
  
The particular solution to the non-homogeneous equation (27) we split into the parts and  holding 

for and respectively; both computed with the initial conditions 
 

1
( )ν τv

Ue ( )τv

1 U( ,e ) ( 1,0)ν = −

1 Ue) , (0) .= =v 0 v
1 U U( ,e ) (0,e ),ν =

(0ν 0

U
v

 
The general solution to equation (27) gets the form 
 
    (34) 

1 1

4
k F,k 1 ek 1

( ) c ( ) ( ) ( ).ν=
τ = τ − ν τ + τ∑uv v v

 
To become part of the sub-harmonic solution, cf. (25)1, 1( ),τu thus  must be 2π-periodic: 

1
,uv

 
   (35) 

1 1
(2 ) (0).π =u uv v

 
These are 4 conditions for the 5 free constants ck and ν1 of (34). Because of (33), for infinitesimally small c1, the 
term corresponds to an infinitesimally small phase shift of 1 F,1c (τv ) ( ) ,τp but (relative) phase shifts between 

and the forcing terms are taken into account already by the angle α in (22). Therefore, we choose ( )τp 1c 0=  
and compute the other 4 constants from      
  
  ( ) ( )

1 U

T
2 2 3 3 4 4 1 2 3 4 e(2 ), (1 ) (0), (1 ) (0), (1 ) (0) ,c ,c ,c (2 ).ν π −µ −µ −µ ν =v Φ Φ Φ v π

τ

 (36) 
 
With the known ck follows from (34), (32) the initial vector which leads by numerical 
integration of (27) to  

1

4
kk 2

(0) c (0)
=

= ∑uv Φ

 
    (37) p1 p1( ) ( 2 ),τ = τ + πu u
 
and its Fourier coefficients  
 
   (38) 

1c p1( ).= F
uf A u

 
Here are some results for and α = π/4: The 4 multipliers SH SH(m , n ) (13,16)= kµ are (1.00000002, 5.4·10-5, 
2.7·10-10, -5.7·10-11). The first multiplier agrees very accurately with condition  (33)3: 1 1.µ = The remaining three 
multipliers are small because of the long period TSH and the comparatively large damping. For ν1 we obtain the 
small value ν1 = 1.6·10-7. [Additional calculations show | 1 |ν  < 2·10-7 for the whole region thus, the 
acute angle at the tip of the wedge in Fig.11b is very sharp.]   

;−π < α ≤ π
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Fig.12 shows the functions p1( )τ = p1 p1(x ( ), y ( )τu   The 
Fourier-terms of the 13

T) .τ
th and the 16th order dominate in p1( ),τu  

they have about the same magnitude. That leads to the (16-13)th 
= 3rd order beat-like ‘envelopes’ which can be recognized 

p1x ( )along τ  and p1y ( ).τ  
 
For step iii) we obtain by (28), (38) from (25)1 

SH SH( , ;m , n ) ( ) ( ),τ ε = τ + ε p1q p τu

1

after Fourier expansion: 
 
  .c c c= + εq p pf f f   (39) 
 
In numerical form, this is a suitable starting vector for the itera- 
tive solution to equation (A.4):  

  
   (40) c c( , , )Ω ε =H qf f 0.
 
Remark 4: Initially, at small ε the excitation is too weak to keep , ( , )τ εq in phase during the Newton steps, the 
iterations do not converge. Therefore, one of the large Fourier coefficients  that 
originate from the limit cycle, is kept fixed. Its place, as an unknown variable in (40), is taken by Ω which var-
ies now as function of ε Ω  

SH SH SH SHx,n x,n y,n y,na , b ,a ,or b
,

,

).: *= Ω (ε
 
Table 1 shows numerical values of the frequency *( )Ω ε for (0 : 0.1: 0.5).ε = Although, by magnitude, the varia-
tion is small, the curve  in Fig.11b is obviously bent to the right. (The locking region L*( )Ω ε (13,16) is not calcu-
lated; cf. Remark 2.) 
 
 

  
   

ε 0 0.1 0.2 0.3 0.4 0.5 
*/Ω ΩN  0.4578 0.4578 0.4579 0.4582 0.4585 0.4591

Table 1: Frequency dependence 
Ω*(ε) for ( , ;13 /16)τ εq  

Fig.12: Function p1( )τ =u T
p1 p1(x ( ), y ( )) ,τ τ

xp1: thick line, yp1: thin line  

( , ;13 /16)τ εq q q(x ( ), y ( ))τ τ

 
 
 
 
 
 
 
 
 
  
 
 
  
 

Fig.14: Sub-harmonic orbits   Fig.13: Sub-harmonic oscillations ; 
compare with Fig.12 

 
 
 
Fig.13 demonstrates how the character of the sub-harmonic oscillation changes when ε = – the   
amplitude of the external excitation – grows: At 

(0.2 : 0.1: 0.5)
0.2ε =  is the limit cycle with its 13 cycles still dominant, at 

 are the envelopes of Fig.12, the beats, clearly visible. The tori in Fig.14 do not change drastically when 
 grows, they just get thicker, the lines spread apart.  

0.5ε =
ε
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5  Conclusions 
 
In the unstable region of a rotor system with a gear coupling interact the self-excitation and the external excita-
tion by unbalance forces. High-order sub-harmonic synchronizations with very narrow locking regions  occur. 
Depending on the relative amplitudes of the limit cycle and the forced part of the oscillations, beat-like oscilla-
tions can happen. There are rapid variations of the character of the oscillations when the speed varies.  
 
To study the above phenomena, a method is developed which permits to calculate sub-harmonic oscillations of 
given frequency ratios systematically. Perturbation techniques combine with numerical calculations. Urabe’s 
Fourier-Galerkin expansions turn out as a favorable means to calculate and extrapolate periodic solutions of non-
linear differential equations.              
   
Appendix 1: Parameters and Reference values: 
 
The following set of nominal parameters was suggested by Prof. Dr. E. Krämer, Darmstadt. (More details will 
be provided in Brommundt et. al.) For Fig.2 and equation (1) hold: 
 
Longitudinal dimensions: l1 = 0.4 m, l2 = 0.8 m, l3 = 1.1 m, l4 = 0.9 m, eu = 16·10-6 m;    
Mass and Inertia: mdk = 100 kg, Jd = 1.60 kg m2, Jp = 3.13 kg m2, mgc = 12 kg, g = 9.81 m/s2; 
Bearing suspension: kx  =  20.25·106 N/m, ky = 30.25·106 N/m, dx  =  2.81·103 Ns/m, dy = 4.58·103 Ns/m; 
Coupling: torque MT = 3920 N m, friction 0µ = 0.10, diameter dgc = 0.18 m, smoothing vrel* = 0.01 mm/s, 
pressure angle α = 20°; 0

Nominal speed  n = 19 500 rpm  →  Ω N  =  2042 rad/s = R2.8789 ,⋅ω cf. (4);  
adjustments ax = 0, ay  = 0, or special choices. 
 
Several parameters of the equations of motion are combinations of the above parameters: 
 

  
( )

2 2 2
dk 1 2 gc 3 2 d 2 u dk 1 2 1 dk 3 gc 2

F 0 T 0 3 4 rel 2 gc 4 3 4

m m (l / l ) m (l / l ) J l ; m m (l l ); W g(l m l m ) l ;

M 2 /( cos ) M 1 l l ; v* 2 v l d l (l l ).

= + + = = +

= π ⋅ α ⋅ ⋅µ ⋅ + = +
 (A.1) 

 
Appendix 2: Notations for the Fourier Expansions; Galerkin Projection 
 
We approximate -periodic functions, 2π x( ) x( 2 ),τ = τ + π by Fourier polynomials (Fourier series, truncated after 
the N-th term): 
 
   (A.2) ( )N N

0 n n 0 n1 1
x( ) a a cos n b sin n a c cos (n ) .τ = + τ + τ = + τ + ϕ∑ ∑ n

,

;f .

 
The assembled Fourier coefficients  we denote by f When x is a column vector, e.g. 

 the Fourier coefficients f constitute a matrix. When we express the Fourier coefficients of the de-
rivative x by those of x we write 

0 1 N 1 N x(a ,a ,...,a , b ,..., b ) cx .
x ⇒ u cu cx′f

′
 
   (A.3) 0 1 N 1 N x 1 n N 1 n N x(a ,a ,...,a , b ,..., b ) (0,1 b ,..., n b ,..., N b , 1 a ,..., n a ,..., N a , ) ,= ⋅ ⋅ ⋅ − ⋅ − ⋅ − ⋅&

 
which we write in operator notation: furthermore holds cx cxd′ = ⋅f 2

cx cx cx cxd d (d ) : d′′ ′= ⋅ = ⋅ ⋅ = ⋅f f f f  
The operation of (numerical) Fourier Analysis we abbreviate by f A the Fourier Synthesis by  F

cx x,= F
cxx .= S f

 
The calculation of 2π-periodic solutions ( ) ( 2 )τ = τ + π

( , , , , , )′′ ′
q q of the differential equation (22) runs as follows (cf. 

Urabe 1965): We abbreviate (22) by .τ Ω ε =q q 0
F

c c c, , , , )⋅ τ Ω εq q qf S f
F ( )= τH% c

H q
F, df S

:f A .

For a numerical set of coefficients f we obtain from 

(A.2), (A.3) etc.  which should vanish. The condition  is re-

placed by its Galerkin-projection and

cq

F 2( ) : ( dτ = ⋅H H S%

cH

( )τ =H% 0

=Hf This leads to the set of 0 2 (2N 1)⋅ + equations  
 
    (A.4) c c( , , )Ω ε =H qf f 0
 
which is solved iteratively by Newton’s method. (The array operations of MATLAB apply very favourably.)  
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