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Optimal Design of Stiffened Cylindrical Shells Based on an Asymptotic
Approach

S. B. Filippov

The linear differential equations describing the free vibrations of ring-stiffened thin cylindrical shells are solved
with the help of asymptotic techniques. The received approximate formulas are used for the evaluation of optimal
parameters corresponding to the maximal fundamental frequency of the ring-stiffened shell with given mass.

1 Introduction

The fundamental vibration frequency is an important characteristic of a thin-walled structure. A simple way to
raise the fundamental frequency to avoid resonance is to increase the thickness of the structure. However in this
case the mass of the structure also increases. An optimal design of thin-walled structure lets to raise its frequency
without the increase of its mass. The optimal design of a stiffened shell is a rather complicated problem. The
method based on an asymptotic approach permits creating simple algorithms for the calculation of the optimal
parameters. The results obtained in Filippov (1997, 1999) show that the replacement of a cylindrical shell by the
optimal stiffened cylindrical shell with the same mass can increase the fundamental vibration frequency several
times more.

In Filippov (1997, 1999) and almost in all studies of ring-stiffened shells, including Yang and Zhou (1995); Wang
and Swaddiwudhipohg (1999), the rings have been considered as circular beams (beam model). Such traditional
formulation of the problem permits estimating the optimal area of the ring cross-section, but does not permit to
find the optimal form of the cross-section. If the cross-section is a rectangle, then the fundamental frequency
increases monotonically with the increase in the ratie b/a, whereb anda are the width and the thickness of

the ring. However, for large values &f the ring must be considered as a thin plate (plate model). The evaluation

of the fundamental frequency of the ring-stiffened shell with the help of asymptotic method for large values of

is presented by Filippov and Haseganu (2003).

In this paper the beam and plate models are used for the approximate calculation of the optimal values of the
parameter for the shell and ring with rectangular cross-section. An algorithm for the evaluation of the optimal

parameters corresponding to the maximum value of the fundamental vibration frequency of the ring-stiffened shell
with a given mass is developed. | particular, the optimal values of the parainaterobtained.

2 Two Models

To compare two models of a ring we consider the vibrations of a thin cylindrical shell stiffened at one edge by
a ring with rectangular cross-section. We take the radiusf the cylindrical shell as a characteristic length,
introduce the local coordinatesc [0,1], ¢ € [0, 2] on the middle surface of the shell and denote), w the
components of the displacement (see Figure 1).

After the separation of variables

u(s, p) = u(s) cosmey v(s, ) = v(s)sinmey w(s, p) = w(s) cosmep @)

the non-dimensional equations describing the free vibration of the cylindrical shell can be written in the following
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Figure 1. Cylindrical shell stiffened by ring

form

TI4mS+ =0 S —mlotQst2H +hv=0 Q) +mQs—Tso+ w=0
Ql = M{ + 2mH QQ = —mM2 M1 = h2(19/1 + sz%)/l? 2
My = B2(mds +v9,)/12  H =21 —0)05/12 Ty = o’ + v(w + mo) 2)
Ty =w+ mv+ v 2S5 =(1-v)(v —mu) Y = —w Py = mw + v

where () denotes the derivative with respect to the axial coordirate = 4m20pf?R2E~! is the frequency
parameterg = 1 — 12, v is Poisson’s ratioF is Young's modulusy is the mass density is the vibration
frequency, Ty, Ts, S, Q1, Q2, M1, Ms, H are the dimensionless stress-resultants and stress-cotiplasd s
are the angles of rotation of the normalis the dimensionless shell thickness.

Let the edge of the shell= 0 is clamped, i.e.
u=v=w=1 =0 for s=0 3

Assuming, that the thickness of the rings small andk = b/a ~ 1, whereb is the width of the ring, we consider
the ring as a circular beam and can use at the shell edgé the approximate boundary conditions obtained in
Filippov (1999):

F
mS7Q1+Uﬁm2(mv+w):O lefSJra%mzl(merv):O T, =0 My=0 (4)

whereF = ab andJ = ab®/12 are the area and the moment of inertia of the ring cross-section.

In this case for the evaluation of the dimensionless frequency parametad the vibration modes we have the
boundary value problem (2)—(4).

If the parametek is large, we have to use another model for the ring and consider it as an annular thin plate. The
non-dimensional equations describing the transverse flexural vibrations of the circular plate have the form

(5pQ1p)" +mQap + Aspw, =0 spQ1p = (spMip)" — My, spQ2p = —mMap + 2H),
spMp = a2[5p /117 + v(miz, + U1,)] /12 spMap = a2(m192p + V1p + 1/51)19/117)/12 )]
H, = a?s,(1 — v)0y,/12 V1p = —wy, spUap = mwy,

Here () denotes the derivative with respect to the radial coordisgte, [1, 1+b], w, is the transverse displacement
(deflection),Q1p, Q2p, M1, M2y, Hy, are the dimensionless stress-resultants and stress-cofigles)dv,, are
the angles of rotation of the normal.

The tangential (in plane) vibrations of the plate are described by the following equations:
(spTip) — Top + mSp + Aspu, =0 spSZ’, + 2S5, —mTo, + v, =0
spT1p = sptty, + v(muy + up) spTap = up +mu, + vspuy, (6)

25p8p = (1 — v)(spv, — muy, — vp)

whereu,, andv, are the tangential components of the displacenigpnt, 15, S, are the dimensionless stress-
resultants.
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At the circumference = [, s, = 1, the continuity conditions

W= U, U= —wp V=1 Y1 =y
)
th = aTlp hT1 = _anp hS = aSp hM1 = a]\/flp
have to be satisfied.
We assume that the edge of the plaje= 1 + b is free, and impose the boundary conditions
Tip=Qip=05,=M,=0 for s,=1+b 8)

To find X\ using the plate model of the ring one has to solve equations (2), (5) and (6) taking into account the
boundary condition (3), (7) and (8).

The boundary value problems for the plate and the beam models have been solved in Filippov and Haseganu
(2003). In Figure 2 one can see the effectvadbn the value of fundamental vibration frequentyn Hz. The
parameters of the shell and the ring take on the following values: h = 0.01,1 = 2.5, b = ka, v = 0.3,
R=10in, E =3-107 psi,p = 0.00073 Ib- §*/in*.
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Figure 2. Fundamental frequency of the cylindrical shell stiffened by ring ¥s.b/a

Curve 1 represent the results of the numerical integration of the equations (2), (5) and (6) with the boundary
condition (3), (7) and (8). Curve 2 plots approximate vafy®f fundamental frequency obtained by the solution

of the boundary value problems (2)—(4). Curve 3 shows the first asymptotic approxinfatimeording to the

plate model which is near to the fundamental frequency of the plate with a clamped,eg¢igeand the free edge
sp=1+0.

The casé: = 0 corresponds to the free shell edge- [. Fork < 15 the frequencyf, increases wittk, because
increases the stiffness of the beamk t& 15 then f;, varies slowly since the stiffness of the beam is so large that it
change do not have an essential influencégpri-or such values of the frequencyf; is near to the fundamental
frequency 400 Hz of the cylindrical shell with freely supported edlgel, corresponding to infinite stiffness.

Fork < 25 the annular plate is narrow and its fundamental frequency is higherfthdmerefore, the fundamental
frequencyf is close tofy,. Further increasing results in the decrease of the fundamental frequghneypproaching
to f,, since fork < 25 the plate is wide and its fundamental frequency is under the fundamental fregfiency

For smallk both the shell and the plate vibrate while the circumferential wave number satisfies the inequality
m > 1. For largek only the plate vibrates (the shell is practically motionless) and vibrations are axisymmetric
(m =0).

The numerical results show that the fundamental frequency of the cylindrical shell stiffened by thg(king,
takes on the maximum value for sorhe= k*. This optimal value:* is not very much different from the value
corresponding to the crossing point of curves 2 and 3 (see Figure 2). Therefore, the approximateivaisi¢haf
root of the equation

fo(k) = fp(k) 9)
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We use farther equation (9) to calculate the optimal parameters for the cylindrical shell stiffened by any number of
rings, because it is easier to fiffgland f,, than exact value of the fundamental frequency.

3 Asymptotic Method for Analysis of Plate Model

The results presented in Filippov and Haseganu (2003) show that forilalgelow-frequency vibrations of the
cylindrical shell stiffened at the edge by the plate are axisymmetiie< 0). In the casen = 0 the system of
ordinary differential equations (2) splits into the system

h? d*w du d?u dw
= - =) i =\ 10
12 ds4 erderw v d32+yds b (10)

describing axisymmetric vibrations of the cylindrical shell and the equation
d*v

T 2L+ =0 (11)

describing torsional vibrations. An analogous splitting takes place for system (6), describing the tangential vibra-
tions of the annular plate. Therefore, for= 0 we obtain two separate boundary-value problems for axisymmetric
and torsional vibrations. We consider only axisymmetric vibrations because the frequencies of torsional vibrations
are higher than the frequencies of axisymmetric vibrations.

The equations, describing the axisymmetric vibrations of the annular plate, have the following form

a? 1 d dw
—A%w, = A Aw, = —— (5, 12
12° wr e Sp dsy (Sp dsp ) (12)

d*u, du, u,
e Y 13
R ds? + ds,  sp “ (13)

Equations (12) describe the flexural vibrations of the plate, while equations (13) describe the vibrations in the plane
of the plate.

The solutions of equations (10)—(13) satisfy the following boundary conditions

u=w=1; =0 for s=0 (14)

w = Up u=—wp =, hM; = abMy, (15)
hQ1 = aTp KTy = —aQqp for s=1 sp=1

Tlp = Mlp = le =0 for Sp = 1+0b (16)

We assume that < 1 andh < 1 and use for the solution the boundary-value problem (10)—(16) the asymptotic
method depicted in Filippov and Haseganu (2003). Let seek the solutions of system (10) in the form

w = wgy + wi + wo U= ug + ui + us a7
Herew, andug are the solutions of the momentless system

du d*u dw
Z/E—I—w—/\w @—l—u%——)\u (18)

The functions

2 4
wy = h” Z C’jerjs/hl/2 wy = h® Z C'jerj(sfl)/hl/2

=t = (19)
a+1/2 Cj rjs/ht/? a+1/2 Cj ri(s—1)/ht/?
uy = —h VZ—eJ uy = —h I/Z—eJ
=1 i ="

224



where(C'; are the arbitrary constants,

rjgexp<5z7;7)i j=1,234 2=-1 g=og/4 (20)

describe the boundary effect. The functiansandw, decrease rapidly away from the shell edge- 0. The
functionsu, andw, are very small everywhere except near the edgel.

The low-frequency vibrations correspondXo~ a2. The form of asymptotic solution depends on the ratja.
The caseér = a is considered in Filippov and Haseganu (2003). In this easel, and in the first approximation

Ug = U] = Wy = W1 = Up =0 (22)

Therefore, in the first approximation we obtain the boundary-value problem for equation (12) with the boundary
conditions

wp = V1, =0 for sp=1 My, =0Q1, =0 for sp=1+b (22)
corresponding to the clamped plate edge= 1 and free edge, = 1 + .

This result explains why for largk the fundamental frequency of the cylindrical shell stiffened by the ring ap-
proaches the fundamental frequency of the plate with the clampedsgdgé.

The casé®/? ~ a? is of great importance in asymptotic analysis. In this case formulae (21) remainwvatid,/2,
and fors = [, s, = 1 in the first approximatiom,, = 0,

wy =0 =1 = % aMy, = hM; = h? d;;”f (23)
It we substitute (19) into (23), we get

C3+Cy=0 91, =r3C5+14Cy My, =h>2(r2C5 +1r3Cy) (24)
It follows from (24) that

aMi, = cpip cp = V2gh®/? (25)

This boundary condition corresponds to the elastic supported edge. Therefore, iP/Case a® we have the
following boundary conditions for equation (12):

wy =0 aMyp = cptiy for sp=1 M, = Q1p =0, for sp=14+b (26)
whereaM, ~ a®, ¢, ~ h%/2, 91, ~ 1.
If a® < h®/2 then conditions (26) have the form (22). In particulat, < h5/2 if a = h. If a® > h/2, then
M,(1) = 0 and the two first conditions (26) transform into the boundary conditions, corresponding to the simply
supported edge, = 1.
The solution of equation (12) can be written in the form

wy(sp) = C1lo(vsp) + Cado(ysp) + CsKo(ysp) + CaYolysp) v =4 (27)

Here Iy, Jy, Ko andY; are Bessel functions. Substituting (27) into (26) permits us to determine the arbitrary
constants”}, and the frequency parameter
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4 Approximate Methods for Analysis of Beam Model

Let us consider the low-frequency vibrations of a thin cylindrical shell. One can obtain an approximate solution
for equations (2) by means of the asymptotic method expounded in Bauer et al. (1993). For the shell with simply
supported edges the first approximation of asymptotic method yields

oot mih?

= — 4’ 2
A m4+ B (28)

wherec is the eigenvalue for the boundary value problem

4

%—a‘lwzo (29)
2

w:d—w:O for s=0 s=1 (30)
ds?

The boundary value problem (29) and (30) has the nonzero solutioassin o, s, if a,, = wn/l,n = 1,2,...
The lowest frequency parametey corresponds te;; = /1. Taking into account that the parameter~ h~'/4
is large we obtain from (28) the approximate formula

A = 2a3+/ho /12 (31)

Let us consider next a thin cylindrical shell with simply supported edges, stiffened at the para#eld/(n+1),
j=1,2,...,n bynidentical rings of rectangular cross-section (see Figure 3, wihete5). The rings have the
thickness: and the widthh = ka.

W W W W W

2 3 S4 Ss !

Figure 3. Ring-stiffened cylindrical shell

N N

In this case the asymptotic method for the low-frequency vibrations in the first approximatiomgivesquations

d4w(@) .
;; —dfwD =0 j=1,2,...,n+1 (32)

The functionw®) is the normal deflection of the shell part lying between the rings or between a ring and the shell
edge.

If the parametek is not large we can use the beam model for the rings. We assume that the rings and the shell are
made of the same material andx(a, b) ~ h3/4. Then the boundary conditions for equations (32) on the parallels
s = s;, derived in Filippov (1999), can be written in the form

+1 j 2 41 2 j 3 +1 3 j
WUHD — ) dwl+1D) _ dw@ A2+ _ d2w@) d3wU+D) _ d3w) +ew) (33)
ds ds ds? ds? ds3 ds?
wherec = a*k®>m8/(12h).
The boundary conditions on the shell edges 0 ands = [ have the following form:
d2 (1) 42 (n+1)
wh =22 for 5s=0 wrt) =28 T g for s=1 (34)
ds? ds?
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The eigenvalues: of the boundary value problem (32)—(34) satisfy the equafign) = 0, whereG(a) is a
determinant of orde2n with elements depending on the parameterandc.

We can find the least values affrom the formula

oat(m,c)  h*m*
\i(c) = mi i 35
(¢) I%n( p— T > (35)
wherea;(m, c¢) are the roots of the equati@i(a) = 0, ¢ = 1,2,.... The case: = 0 corresponds to the non-

stiffened shell. In this case; = 7i/ly, and one can use (31) for the evaluatiomf0).

Some of the rootsy;, namely the roote; = gm(n +1)/l, ¢ = 1,2,..., satisfyG(a) = 0 for anyc > 0. As
follows from (35),

N = A1 (0)(n +1)? (36)
is the lowest frequency parameter independent.on

Let A1 (c) denote the smallest of the (c). The function); (c¢) increases while inequality; (¢) < A* holds. The
valuec* for which

M(cf) = A" (37)
is called the effective stiffness of the ring. kor- ¢* we have the equality; (¢) = A*.

It is possible to apply the Rayleigh’s method for the approximate evaluation of the eigenyallibe Rayleigh’s
formula may be written in a dimensionless form:

1 2 2 n—1 1
d“w
of = (I + 1) /1 11:/ <d82> ds  L=cy w(s;) 10:/ w? ds (38)
0 o 0

Substituting into (38) the first vibration mode of the non-stiffened shsll= sin(7s/1), and taking into account
the formula

n—1
Z sin?(7i/n) = n/2,
i=1

we obtain
4 (T\* c(n+1)
@ = (z) T (39)
Hence,
12co(n +1
M) =XNO@ Y g=re  n=120D 40)

Formula (40) is valid for all) such that) < n* = kc*. The formulae (37) and (40) yield an approximate expression
for the effective stiffness:

e~ (n+1)t -1 (41)

It follows from (36) and (40) that

M) (14n)t/? 0<n<n*
A(0) { (n+1)2 n>n* (42)

From (42) we deduce that the fundamental vibration frequency increases with the reinforcement of the shell. The
stiffened shell has the madg, = M, + M, whereM is the mass of non-stiffened shell, aif, is the mass of

the rings. Therefore, the stiffened shell is heavier than the non-stiffened shell. It is more interesting to compare the
vibration frequencies for the stiffened and non-stiffened shells of equal mass.
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If the non-stiffened cylindrical shell has the thicknégsthen its mass i8/, = M (hg) = 2mR3hopl. We assume
that the stiffened shell has a thicknéss: hy and a mas3/, = M (h) + M, = My, whereM, = 2w R3pna’k is
the mass of the rings.

Using (42) we get

2 1/2 *
s 3 d(1+4n) 0<n<n
Ty =S5~ 43
wheref, and
1 [EMN(0)
- 44
fo=5 14 p” (44)

are the fundamental frequencies of the stiffened and non-stiffened shell respectively-ainth,. The values of
the parameters of the stiffened shell for which the functip@attains its maximum; are called optimal values.

For sufficiently smalh, we obtainr; = (n + 1)v/d*, whered* is a root of the cubic equation
d®—qld-1)?2=0 q = okl(n +1)/(hgn®*n*) (45)

The optimal values of anda ared* anda* = /(1 — d*)hol /nk.

The dependence of onn andk for a shell with parameterls = 4, ho = 0.01 andr = 0.3 is shown in Figure 4.
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Figure 4. The ratio; = f/fo vS. k = b/a and number of rings

The functionr; increases witln andk. We can not use the asymptotic method for lasgé-or largek instead of
the beam model we must use the plate model.

5 Evaluation of the Optimal &

To estimate the optimal value = k* for the thin cylindrical shell with simply supported edges, stiffened:by
identical rings we use equation (9) in the form

(k) = fo/fo = fp/fo =rp(k) (46)

Here f;, and fo can be found from (43) and (44). To obtafpp we solve the boundary-value problem (12), (26).
Since every plate is joint with the two cylindrical shells we replace the congantboundary conditions (26) by
constantc,,.

At first we choose some value= k, and findr;, a* andb* = ka*. Then, for the plate with the parameters- o*
andb = b*, we solve the boundary-value problem (12), (26) and estimatéf r; > r, (r; < r,), we choose
somek < ko (k > ko) and repeat the same procedure until the equajity= r, is fulfilled with the necessary
precision. Thus, instead of the set of curves in Figure 4, corresponding to differest obtain the curve (see
Figure 5), corresponding to the more exact solutiba= f*/ f, and the optimak = k*.
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0 2 4 6 8 n
Figure 5. The ratio* = f*/ fo vs. number of rings

The values of the optimal parameters of the stiffened shell for different numbers ofrireyg, given in the Table
1, whereh* is the optimal thickness of the stiffened shell (the thickness of the non-stiffened shell of equal mass

0.00979| 0.00439| 43.6| 1.192 | 1.98
0.00905| 0.00894| 23.9| 1.213 | 2.85
0.00528| 0.0362 | 3.61| 1.131 | 3.63
0.00316| 0.0446 | 2.29| 1.102 | 3.93
0.00213| 0.0442 | 2.01| 1.089 | 4.15
0.00154| 0.0424 | 1.88 | 1.080 | 4.32

H
SBoorsrNnr|S

Table 1. The optimal parameters

is ho = 0.01), a* is the optimal thickness of the ring,+ b* is the optimal outer radius of the plate (the inner
radius is equal to 1){* is the fundamental frequency of the stiffened shell with the optimal paramétersthe
fundamental frequency of the non-stiffened shell.

The thicknes%* decreases as the numbeincreases. Fon < 6 the increase im causes a rapid increasedh
andf*/ f, and a rapid decrease iri. Forn > 6 the functiona*(n), f*/ fo(n) andk*(n) vary slightly.

6 Conclusions

In the current paper the rings of the ring-stiffened shell have been considered as beams and as annular thin plates.
As a consequence, the problem becomes more complicated in comparison with problems analyzed in Filippov
(1999). However, the new approach permits obtaining more exact and realistic solutions by means of asymptotic
integration methods. It was shown that the replacement of a non-stiffened cylindrical shell by the optimal stiffened
cylindrical shell with the same mass can increase the fundamental frequency of a structure more than four times.
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