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Formulation of Kirchhoff Rod Based on Quasi-coordinates 
 
Y. Z. Liu, Y. Xue 
 
The quasi-coordinates are applied to formulate Kirchhoff's rod. The potential energy of the rod expressed by the 
quasi-coordinates has a similar form as the kinetic energy and complementary kinetic energy in dynamics. The 
conjugate quasi-momentum is defined and the canonical equations due to the quasi-coordinates are given. 
Kirchhoff's equations can be derived directly from Boltzman-Hamel's equations or its canonical form with arc 
length s as independent variables. Lagrange's theorem is extended to determine the stability of equilibrium con-
figuration of the elastic rod, and is proved using the Lyapunov's direct method. It is noticed that the condition of 
stability has a different physical explanation than in dynamics.  
 
 
1 Introduction 
 
The study of equilibrium and stability of a thin elastic rod was started by Daniel Bernoulli and Euler (1730) in 
the classic mechanics. The theoretical problem has a practical background in engineering, particularly, in the 
molecular biology as a macroscopic model of DNA. Kirchhoff (1859) found the analogy of equations of equili- 
brium of a thin rod with the equations of a heavy rigid body turning about a fixed point. The Kirchhoff equations 
of the elastic rod were derived analytically with the Euler angles as generalized coordinates. In this paper the 
quasi-coordinates are applied to formulate the Kirchhoff rod. The potential energy of the rod expressed by the 
quasi-coordinates has a similar form as the kinetic energy and complementary kinetic energy in dynamics (Rim-
rott, 1993). The conjugate quasi-momentum is defined and the canonical equations due to the quasi-coordinates 
are given. It is shown that Kirchhoff's equations can be derived directly from the Boltzman-Hamel equations or 
its canonical form with arc length s as an independent variable. Lagrange's theorem is extended to determine the 
stability of equilibrium configuration of the elastic rod, and is proved using Lyapunov's direct method. Although 
the condition of stability has a same form as in dynamics, it has a different physical explanation.  
 
 
2 Generalized Coordinates and Quasi-coordinates 
 
Consider a thin elastic rod with noncircular cross section and length L. The rod is assumed as homogeneous, 
inextensible, unshearable and without volume force and contact force. Then the configuration of the continuum 
rod is simplified to the attitude of its rigidified cross section with three degrees of freedom. We establish an 
arc-coordinate s along the centerline of the rod with the end point P0 as originale. We assume that an external 
force F acts on P0, while –F acts on another end point PL. Let P be an arbitrary point on the centerline, and 
(P-xyz) be the principal coordinate frame of the cross section in P with z-axis along the tangent of centerline. 
When P moves along the centerline with unique velocity, the cross section rotates with angular velocity ω , 
which can be regarded as the turning rate of the cross section with respect to arc length s and is called twist vec-
tor (Nizzete and Goriely, 1999). Denote the components of vector ω  in (P-xyz) by )3,2,1( =iiω , the compo-
nents of the resultant force F and torque M on the section P by  and iF )3,2,1( =iM i . When the volume force 
and contact force are ignored, F is a constant vector, which can be selected as the direction of a fixed axis ζ . 
The linear constitutive relations between  and iM )3,2,1( =iiω  are assumed as 
 

)3,2,1( == iAM iii ω                                      (1)  
 

where  are the bending stiffnesses about x-, y-axes and the twisting stiffness about z-axis, respec-
tively.  

)3,2,1( =iAi

 
The attitude of the cross section of the rod relative to the inertial reference frame can be expressed by the Euler 
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angles ϕϑψ === 321 ,, qqq as generalized coordinates, or by the quasi-coordinates )3,2,1( =iiπ , defined as 
 

)3,2,1( == iii ωπ&                                          (2) 
 

where the top dot denotes the differentiation with respect to the arc length s. The following relations between 
 and jq )3,2,1,( =jiiπ can be derived as 

 

∑
=

=
3

1j
jiji qa &&π  ,    i

j
jij bq π&& ∑

=

=
3

1

)3,2,1,( =ji                        (3) 

 
where and  are reversible matrices, )( ija )( jib
 

    ,       (4) 















−=

10cos
0sincossin
0cossinsin

)(

2

332

332

q
qqq

qqq
aij

















−
−=

1coscotsincot
0sincos
0coscscsincsc

)(

3232

33

3232

qqqq
qq

qqqq
b ji

 
 
 
3 Potential Energy of the Rod 
 
The total potential energy E of a thin elastic rod is composed of the elastic strain energy and the potential 
energy  of external force. 

eE

pE
 

                                                   (5) pe EEE +=

 
The elastic strain energy can be written as an integral along the centerline of the rod eE
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where is the density of elastic strain energy, eΓ
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Let r0 and rL be the vectors from a fixed point O to P0 and PL, and LrrR −= 0 . For a given virtual displace-

ment , the variation of energy  is equal to the negative virtual work of the external forces F and –F as Rδ pE
 

pδE RF δ⋅−= ∫∫ 00
δ−=δ⋅−=

LL
sFs dd γTF                           (8) 

 
where T denotes the unit vector along z- axis, ϑγ cos=  is the cosine of the angle between ζ - and z- axes. 
Then the variation of the total potential energy is 
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where  is the density of total potential energy Γ
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Defining the generalized momentum conjugated to the quasi-coordinate )3,2,1( =iiπ as 
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we obtain 
 

)3,2,1( === iMAp iiii ω                                    (12) 
 

which satisfy the equality of Poisson's brackets as (Marsden and Ratiu, 1994) 
 

( ) ( ) ( ) 213132321 ,,,,, ppppppppp −=−=−=                      (13) 
 

The quasi-velocity )3,2,1( =iiω  can be obtained by partial differentiation of Γ as  
 

),( pq
pi

i Γω
∂
∂

=    (                               (14) )3,2,1=i

 
The function  can be expressed by Γ )3,2,1( =ipi as 
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According to the Kirchhoff kinetic analogy, both expressions of the density of potential energy (10) and (15) 
correspond to the kinetic energy and complementary kinetic energy in dynamics (Rimrott, 1993) 
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4 Boltzman-Hamel's Equations 
 
According to the principle of minimal potential energy in the elasticity theory, the equilibrium conditions of the 
rod yields 
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sΓ                                          (17) 

 
Equation (17) has a same form as Hamilton's principle of least action when the arc length s is changed by the 
time variable t. Treating ),( qq &Γ  as a function of the generalized coordinates and its derivatives, 
we obtain the Lagrange's equations with arc-coordinate s from the variation of integral (17), (Westcott et al., 
1995) 
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where the density of the potential energy ),( qq &Γ  plays the role of a Lagrangian. If ),( ππΓ & is regarded as a 
function of quasi-coordinates )3,2,1( =iiπ  and its derivatives, then the Boltzman-Hamel equations of the 
holonomic system can be derived from eq. (17) as (Hamel, 1904) 
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where  is the three-index Boltzman symbol defined as i
kmγ
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Similar to the definition in analytical mechanics, we define the Hamiltonian function of the rod as 
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Then we obtain 
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which is similar to the function , where Γ γF− is changed by γF+ . Boltzman-Hamel's equations can be 
transferred to the Hamilton canonical form as 
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5 Kirchhoff's Equations and Jacobi's Integral 
 
Kirchhoff's equations can be derived from Boltzman-Hamel's equations directly without tedious calculation with 
Euler angles (Westcott et al., 1995). Substituting eq. (4) into eqs. (19) or (23) , we obtain  
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The constant force F yields the Poisson's equations as 
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Eqs. (24),(25) have the same form as the dynamical equations of a heavy rigid body about fixed point. There 
exists a Jacobi integral from eqs. (24), (25) as 
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It should be noted that the Jacobi's integral of elastic rod has a different physical significance than in dynamics. 
It means the conservation of the sum of the strain energy and the external work, but not the total potential energy 
of the rod. 
 
 
6 Extended Lagrange's Theorem of Stability 
     
A theorem of stability due to Lagrange in dynamics is stated as follows. In a conservative system an isolated 
equilibrium position corresponding to a minimum value of the potential energy is stable. In statics of elastic rod 
there is a similar theorem which can be called extended Lagrange's theorem: If an isolated equilibrium configu-
ration of elastic rod corresponds to a minimum value of the sum of strain energy and external work, the equili- 
brium is stable.  
 
To prove the theorem, we take the Hamiltonian function H as a Lyapunov function, which is positive definite 
when it has a minimum value. Since the function H is conserved, its total derivative with respect to arclength s is 
zero along the perturbed trajectory. According to the Lyapunov theorem, the equilibrium is stable. 
 
Above-mentioned theory can be applied in stability problem of equilibrium of elastic rod, but its physical means 
cannot be explained as the minimum of total energy of the rod, except that the external work vanishes.  
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