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The main components in gear vibration spectra are the tooth-meshing frequency and its harmonics, together 
with sideband structures due to modulation effects. Sideband structures can be used as an important diagnostic 
symptom for gear fault detection. The main objective of the present paper is to unravel amplitude modulation 
effects which are responsible for generating such sidebands. The parametrically excited vibration of a gear-pair 
system in mesh was investigated. A comparison between the model result and actual experimental data from a 
test rig was also presented. Some analytical expressions are derived to provide a logical explanation for ob-
served phenomena. The modelling result can be used to predict sideband amplitude in presence of the distributed 
gear faults such as non-uniform tooth wear, pittings. It may serve as a tool for aiding the gear fault diagnosis.  

 
1  Introduction 

Gearboxes are frequently used in machine systems for power transmission, speed variation and/or working 
direction. Dynamic modelling of gear vibration offers a better understanding of the vibration generation mecha-
nisms as well as the dynamic behavior of the gear transmission in the presence of gear tooth damage. Because of 
their ubiquity and importance, gearboxes have received a considerable amount of attention in this respect. 
A significant number of paper have been published concerning the problem.  In some studies, e.g. Bartelmus 
(2001), Howard et al. (2001), Vinayak and Singh (1998), Huang and Liu (2000), the researchers developed so-
phisticated models which take into consideration the most important dynamic factors in gearboxes such as 
periodic changes in tooth stiffness, the excitation from gear transmission errors, the coupling effect between the 
torsional and lateral vibrations of the gears and shafts. In addition, another approach focused on modelling the 
tooth mesh since the main source of vibration in a geared transmission system is usually the meshing action of 
the gears, e.g. Parker (2000), Theodossiades and Natsiavas (2000), Velex and Maatar (1996).  The intent of these 
studies is to unravel some of the unknown aspects related to the interaction of non-linear effects such as effects 
of friction forces at the meshing interface and gear backlash with the time-varying mesh stiffness.  

Vibration analysis has become a very important tool for detection of gear faults, and many signal processing 
procedures have been developed to extract information about incipient faults from the externally measured 
vibration signals (Forrester, 1996; Meltzer and Nguyen Phong Dien, 2003; Meltzer and Nguyen Phong 
Dien, 2004). It is well known that, the most important components in gear vibration spectra are the tooth-
meshing frequency and its harmonics, together with sideband structures due to modulation effects. The incre-
ment in the number and amplitude of sidebands may indicate a gear fault condition, and the spacing of the side-
bands is related to their source (Dalpiaz et.al., 2000). Consequently, sideband structures can be used as a impor-
tant diagnostic feature for gear fault detection. The main objective of the present paper is to unravel amplitude 
modulation effects which are responsible for generating such sidebands. The paper uses a relative simple model 
of a pair of helical gears in mesh to produce typical vibration signals resulting from tooth deflection under load, 
variations in mesh stiffness and geometrical errors caused by machining errors and non-uniform wear. This 
model is characterized as a parametrically excited system. The harmonic balance method is employed for solving 
the differential equation of motion. A comparison between the model result and actual experimental data from a 
test rig is also presented.  

2  Modelling of Gear-Pair System  

The mechanical model of the gear-pair system in mesh investigated in this paper is shown in Fig. 1. The gear 
mesh is modelled  as a pair of rigid disks connected by a spring-damper set along the line of contact. This kind of 
the model is also considered in ref. Parker (2000), Velex and Maatar (1996).  
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Figure 1. Mechanical model of the gear-pair system with faulty meshing 

The model takes into account influences of the static transmission error which is simulated by a displacement 
excitation e(t) at the mesh. This transmissions error arises from several sources, such as tooth deflection under 
load, non-uniform tooth spacing, tooth profile errors caused by machining errors as well as pitting, scuffing of 
teeth flanks. The mesh stiffness cz(t) is expressed as a time-varying function. The gear-pair is assumed to operate 
under high torque condition with zero backlash. Effects of friction forces at the meshing interface  are ne-
glected on the basis that in particular, the coefficient of friction is low (approx. 6%). The viscous damping 
coefficient of the gear mesh dz is assumed to be constant. 

The differential equations of motion for this system can be expressed in the form 
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where  ϕ  (i = 1,2) are rotation angle, angular velocity, angular acceleration of the input pinion and the 
output wheel respectively.  J

iii ϕϕ &&& ,,
1 and  J2 are the mass moments of inertia of the gears. M1(t) and M2(t) denote the 

external torques load applied on the system. rb1 and  rb2  represent the base radii of the gears.   

By introducing the composite coordinate  
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Eqs. (1), (2) yield a single differential equation in the following form 
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Note that in Eq. (4) the rigid-body rotation from the original mathematical model is eliminated. The new coordi-
nate q(t) is expressed as the dynamic transmission error of the gear-pair system (Parker, 2000). For a specific 
gear-pair, the mesh stiffness cz(t) is obtained by means of  LVR-Software (Boerner, 1999), based on the finite 
element analysis and the contact mechanics. In steady state motion of the gear system, the mesh stiffness can be 
approximately represented by a truncated Fourier series (Theodossiades and Natsiavas, 2000)  
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where  is the gear meshing angular frequency which is equal to the number of gear teeth times the shaft angu-
lar frequency and K is the number of terms of the series.  

zω

In general, the error components are not identical for each gear tooth and will produce displacement excitation 
which is periodic with the gear rotation (i.e. repeated each time the tooth is in contact). Therefore, the excitation 
function e(t) can be expressed in a Fourier series with the fundamental frequency corresponding to the rotation 
speed of the faulted gear. For instance, when the errors are situated at the teeth of the pinion, e(t) may be taken in 
the form      
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Where ω1  is the rotating frequency of the pinion shaft. 

It is assumed that when ,, 2211 constconst =ω=ϕ=ω= &&ϕ ,)(,0 0ctcd zz == the dynamic transmission error 

of the gear-pair system q is equal to the static tooth deflection under constant load q  as 0
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Therefore, from the Eq. (4) one yields (Keppler, 1994) 
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3  Experimental Set-Up 

The experiment was done at an ordinary back-to-back test rig (Fig. 2). The load torque was provided by a hy-
draulic rotary torque actuator which remains the external torque constant for any motor speed. The test gearbox 
operates at a nominal pinion speed of 1800 rpm (30 Hz), thus the meshing frequency fz is 420 Hz. The input 
torque load applied to the system is 400 Nm. The test gears are dynamically isolated from the slave gears in the 
back-to-back configuration. The major parameter of the gear-pair are shown in Table 1. These parameters are 
also used in the model.  
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Figure 2. Test rig 
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A Laser Doppler Vibrometer was used for measuring oscillating parts of the angular speed of the shafts (i.e. os-
cillating part of and ) in order to determine experimentally the dynamic transmission error. The meas-
urement was taken with two non-contacting transducers mounted in proximity to the shafts, positioned at the 
closest position to the test gears. The vibration signals were sampled at 10 kHz. The signal used in this study 
were recorded at the end of 12-hours total test time, at that time a surface fatigue failure occurred on some teeth 
of the pinion.   

1ϕ& 2ϕ&

 
             

Parameters Pinion Wheel 
Gear type helical, standard involute  
Material steel 
Module (mm) 4,50 
Pressure angle (o) 20,00 
Helical angle (o) 14,56 
Number of teeth z 14 39 
face width (mm) 67,00 45,00 
base circle radius (mm) 30,46 84,86 
Theoretical contact ratio  2,17 

 

Pinion 

Wheel 

 

                      Table 1: Parameters of the test gear pair 

 

4 Calculating Parametric Vibration and Experimental Comparisons  

The vibration equation of gear-pair system is a differential equation with the periodic coefficients, which have 
the following form 

 0)()( =−++ tfqdqtcqm zzred &&&  (10) 

where  [ ] )()()()( 000 tedtectcqctf zz &−−−=  (11) 

In this paper, four dominant coefficients c0, c1, c2, c3  in the Fourier series of the mesh stiffness expressed in Eq. 
(6) are taken into account 
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where  and the excitation function e(t) is expressed by the two first terms of its Fourier series as fol-
lows  

11ω=ω zz

     (13) ∑
=

α+ω=
2

1
1 )cos()(

k
kk tkete

Substituting Eqs. (12) and (13) into Eq. (11) one obtains 
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The harmonic balance method is employed for solving the differential Eq. (10). Based on the analytic form of 
functions cz(t) and f(t), it is now assumed that Eq. (10) has a solution which may be approximated by 
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This estimate now is introduced in Eq. (10) and its right-hand side is written as a sum of trigonometric functions. 
This differential equation then is approximately satisfied by setting the coefficients in this sum:  cos0, cosω1t, 
sinω1t, cos2ω1t, sin2ω1t, cos(kz1-2)ω1t, sin(kz1-2)ω1t, cos(kz1-1)ω1t, sin(kz1-1)ω1t, cos(kz1)ω1t, sin(kz1)ω1t, 
cos(kz1+1)ω1t, sin(kz1+1)ω1t, cos(kz1+2)ω1t, sin(kz1+2)ω1t (k = 1,2,3) equal to zero. This results in 35 algebraic 
equations for the unknowns 222222110 1111

,,...,,,...,,,,, ++−− kzkzkzkz babababaa . 

The following parameters of the model are used for numerical simulation: J1= 9,3⋅10-2 (kgm2); J2 = 0,272 (kgm2); 
mred = 7,92 (kg). Another parameters of the gears are shown in Table 1. According to the experiment, a nominal 
pinion speed of 1800 rpm ( π=ω 601  and  f1 = 30 Hz) is chosen.  

By using the LVR-Software, the mesh stiffness of the test gear pair at particular meshing position was obtained 
as shown in Fig. 3. It gives the values of coefficients: c0 = 8,04⋅108; c1 = 0,304⋅108; c2 = 0,185⋅108; c3 = 0,050⋅108 
(N/m) with corresponding phase angular γ1 =1,02; γ2 = -0,72; γ3 = -0,93 (radian) and static tooth deflection              
q0 = 1,2⋅10-5 (m), thus the static tooth force c0q0 is 9650,4 (N). The numerical simulation is realized with the pro-
gram MAPLE. The calculated dynamic transmission error is shown in Fig. 4.   Figs. 5 and 6 present results ob-
tained with different excitation functions e(t) . 

 

 
Figure 3. Mesh stiffness cz(t) used in the model 
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Figure 4. Modelling result: Time history of oscillating part of the  
dynamic transmission error q(t) 
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Figure 5. Modelling result: frequency spectrum of  )(tq&
(Excitation function e(t) with coefficients: e1 = 0,005 (mm), e2 = 0,0015 (mm) 

and phase angular α1=π/3, α2=π/4) 
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Figure 6. Modelling result: frequency spectrum of  )(tq&
(Excitation function e(t) with larger coefficients: e1 = 0,01 (mm), e2 = 0,003 (mm) 
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and phase angular α1=π/3, α2=π/4) 
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Figure 7. Experimental result: frequency spectrum of   )(tq&
 

The spectra in Figures 5 and 6 show clearly the meshing frequency and its harmonics with sideband structures. 
As expected, the sidebands are spaced by the rotational frequency f1 of the pinion. By comparing amplitude of 
these sidebands in both spectra, it can be concluded that the excitation function e(t) caused by tooth errors is re-
sponsible for generating sidebands. 

Figure 7 shows a frequency spectrum of the first derivative of the dynamic transmission error  determined 
from the experimental data. The spectrum presents sidebands at the meshing frequency and its harmonics. In 
particular, the dominant sidebands are spaced by the rotational frequency of the pinion and characterised by high 
amplitude, which gives a clear indication of the presence of the faults on the pinion. Comparing the spectra dis-
played in Figure 6 and Figure 7, it can be observed that results of computer simulation agree closely with results 
of measurements on test rig.  

)(tq&

 

5   Conclusions  

In the above sections, the parametrically excited vibration of the gear-pair system in mesh was investigated. A 
comparison between the model result and actual experimental data was also presented. The target of the study is 
to provide the fundamental understanding of the physical mechanism related to the gear faults, which generate 
modulation sidebands in vibration spectra. Some analytical expressions are derived to provide a logical explana-
tion for observed phenomena. The modelling result can be used to predict sideband amplitude in presence of the 
“distributed” gear faults such as non-uniform tooth wear and pittings. Consequently, it may serve as a tool for 
aiding the gear fault diagnosis.  

Here it must be noted that although the mechanical model is a relative simple, but it can be able to reveal essen-
tial dynamic properties of the gear-pair in mesh. Rather, this study is intended only to explain the appearance of 
the sideband phenomenon generated by errors and distributed faults on gears. No attempt is made here to present 
a generous study on the effects of external load variation, variations of the mesh stiffness caused by local tooth 
faults (cracks), parametric resonances etc., and a mathematical treatment of this problem is let for future investi-
gation. However, the obtained results seem promising and extension to more complicated geared systems and 
other types of fault.        
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