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On the Localized Vibration Modes of Thin Elastic Shells*

P.E. Tovstik

A short elaboration of the localized modes of free vibrations of thin elastic shells is presented. A two-dimensional
system of equations based on the Kirchhoff-Love hypotheses is used. Asymptotic expansions for the natural fre-
guencies and for the corresponding vibration modes in power series of the relative shell thickness are constructed.

1 Introduction

The investigation of the spectrum of small free vibrations of thin elastic shells and of the corresponding vibration
modes is the basis for solutions of a large number of dynamical shell problems. Among them there are the forced
vibrations, the parametric vibrations, the nonlinear vibrations, and so on. The general solution of this problem is
given in the book of Goldenweizer et al. (1979) (see also Aslanian and Lidsky (1974), Oniashvili (1957), Skudrzyk
(1968)). The shell spectrum is non-negative and discrete with the point of condensation at infinity. The low part
of the shell spectrum is very complex. The distance between adjacent points of the spectrum is asymptotically
small. The important characteristic of the spectrum is its density. In contrary to plates, for which the density is
asymptotically constant, for shells the density may have points of maxima (see the already referred books and also
the papers of Bolotin (1965), Goldenweizer (1970), Tovstik (1972)). Also in applications it is interesting to know
the minimal shell frequency (see Tovstik (1975)).

In the simplest case of a circular cylindrical shell with simply supported edges, the vibration modes occupy the
whole shell surface. Sometimes the same holds for high-frequency free vibrations of arbitrary shells. In contrary
this paper discusses the various cases of vibration modes localization. The localized modes may appear due to the
variation of the neutral shell surface curvatures or/and to the weak support of the shell edge. To construct localized
modes, asymptotic expansions based on a geometric small parameter equal to the relative shell thickness is used.
In cases of a varying shell curvature the so-called weakest points or lines appear. The deflection of the localized
mode exponentially decreases with increasing distance from these points or lines. The asymptotical description of
these modes contains turning points. The modes localized near the edge are also discussed. As a rule these modes
appear near the free edge or near the weakly supported edge. The types of the weak support for shells of positive,
zero and negative Gaussian curvature are indicated.

The vibration modes localization appears in the various problems of elastic bodies. For constructing these modes
asymptotic methods are used. For a membrane the mode types of "whispering gallery” and "jumping ball” are
found (see Babich and Buldyrev (1972)). The former are localized near the membrane edge, and the latter localized
near some line (for example, near the short diameter of the elliptic membrane). The eigen-function localized near
the free edge of a rectangular plate with two opposite edges simply supported is constructed by Ishlinski (1954).
In the three-dimensional range the edge excitation of shells of revolution is studied by Kaplunov (1991). Also in
the three-dimensional range the localized vibration modes of plates with variable thickness (see Tovstik (1994))
and of bodies of revolution with variable thickness (see Kaplunov et al. (2001)) are analysed.
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2 The Two-dimensional Shell Equations and the Boundary Conditions

We study a thin shell with the constant thicknéssiade of linearly elastic isotropic homogeneous material. The
material parameters are Young’s moduluand Poisson’s ratio. In the neutral shell surface we introduce the
orthogonal curvilinear coordinates= {x,y} € Q whereQ is the area occupied by this surface dhdenotes its
boundary.

To deliver the two-dimensional equations, we use the Kirchhoff-Love hypothesis. We use the well known equations
of displacements (see Goldenweizer (1961)), which after separation of variables(wjth = u(x) sin(wt),
obtain the form

(L (x) + RNy (x)uy + Adug =0, i=1,2,3 (2.1)

3
=1

j

Hereu = u;e; +uy6 +usnis the displacement vectas ande, are the unit vectors of the curvilinear coordinate
system in the neutral surface, amd= e; x & is the unit normal to this surface. In some cases we also denote the
displacement vector as = ue; + ve; + wn. The main small parametér, = h/R is equal to the relative shell
thickness, wher& is the typical linear shell dimension. The frequency parametsrequal to

_ pRZw?
=
wherew is the unknown natural frequency, apds the density of the shell material.

A (2.2)

Li;(x) andNjy;(x) denote linear differential operators with (in the general case) variable coefficients (see Golden-
weizer et al. (1979), Goldenweizer (1961)). The system (2.h).at 0 is elliptic with partial derivatives of 8th

order. Ifh, = 0, the system (2.1) degenerates to the so-called membrane (or momentless) system of 4th order.
The type of the membrane system can be elliptic, hyperbolic, or parabolic.

The system (2.1) is self-adjoint. At each edge it needs 4 boundary condition. We study the classical self-adjoint
boundary conditions. At the edge= const the possible variants of the boundary conditions are given in Table 1.

Table 1. The classical boundary conditions.

u=0|v=0| w=0 | y1 =0 | 1| Geometric restrictions

Ti=0]S5S=0|Qj=0| My=0| 0| Free conditions

Herevy; is the angle of rotation around the tangent to the edigendS are the stress-resultant in the tangential
plane,Q; = Q7 + 0H/0dy is the generalized shear stress-resultant,nds the stress couple. In the first line

of Table 1 the 4 generalized displacements are given, and in the second line the corresponding generalized forces.
Taking every possible combination of geometric restrictions and free conditions, we study 16 variants of boundary
conditions. Conditions with an elastic support (of the tf¥fper- cu = 0) are not considered here. It is convenient

to denote each boundary condition by a 4-digital number consisting of 1 and 0 according to the chosen condition
given in the order of Table 1. For example, we denote a clampedwedge = w =vy; = 0as 1111, a free edge

Ty =S =Qj =M; =0as 0000, and a simply supported edge=v =w = M; =0 as 0110.

We use the asymptotic approach to analyze the system (2.1). The important role in this analysis plays the index of
variationp introduced by Goldenweizer (1961) by the relation
oF } ~h,PF, (2.3)

max oF
dy

dx
whereF is any function describing the stress-strain state of the shell.

)

The lengthL of the deformation pattern is connected with the index of variation by the relatiorRh. The
system (2.1) is acceptable onlypf< 1 because in this cade>> h.

The index of variation helps Goldenweizer to introduce a classification of the types of the thin shell free vibrations

(see Goldenweizer et al. (1979)). Let
A~h; % (2.4)
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Figure 1: The dependencép)

Then there are the following 4 main types of free vibrations:
(1) the quasi-transversal vibrations with small variability
with0 <p<1/2, r=p, w> {u,v},
(2) the quasi-tangential vibrations
witho0<p<1, r=0 w<{u,v},
(3) the vibrations of Rayleigh type
with0 <p<1/2, r=—142p, w> {u,v},
(4) the quasi-transversal vibrations with large variability
with1/2<p <1, r=-1+42p, w> {u,v}

For the types (1)—(4) the dependence between the natural frequency of ardkthe index of variatiop is shown
in Fig. 1.

Instead of system (2.1) for the point= 1/2, r = 0 in Fig. 1, the more simple system of Donnell type may
be used. This system is acceptable to describe approximately all types of vibrations except the type (2) of the
guasi-tangential vibrations because in this system the tangential inertia forces are neglected. We write the Donnell
system in the form

WAAW —Aw + A D =0,

W AAD + Acw =0,

wherep > 0 is a small paramete®) is the stress function, and the linear differential operatoesmdA, are
1 0 Az ow 0 A] ow
Aw=——(—|—=— — | —=
W A]Az (ax (A] ax>+ay <A2 ay>)’

1 0 KzAz ow 0 K]A] ow
Aw = — — |+ = — ),
A]Az 0x A] ox ay Az ay

whereA, A, are the Larg coefficients of the neutral surface, and «, are its main curvatures.

hZ
4 *
W= 0 =2) (25)

Now by using asymptotic expansions we study various cases of the vibration modes localization.
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3 Axisymmetric Vibrations of Shells of Revolution

The problem of the axisymmetric vibrations of a shell of revolution is one-dimensional. Let the shell be bounded
by two parallelss = s; ands = s, wheres is the generatrix. The problem can be reduced to the singularly
perturbed ordinary differential equation of 6th order

2
- 4Zak Z 0, bals) =A—«k5(s) (3.1)

wherek;(s) is the generatrix curvature.

Equation (3.1) is very simple for a numerical solution, but it is complex due to the presence of turningspoints
for which b, (s.) = 0 (see Goldenweizer et al. (1979), Tovstik (1967)). Let us introduce the frequency imerval

A=[IAT AT, AT = msin{K%(s)}, AY = maxk3(s)} (3.2)

in which the turning point is contained. It is to be remarked that for cylindrical and for spherical shells the turning
points are absent. In this section we do not study these shells.

ForA ¢ A the turning point is absent and the general solution of equation (3.1) consists of the linear combination
of four bending solutions

1
ZukAkn exp( an( )ds>, an=by, n=1234, (3.3)
and of two membrane solutions

d? d
Wn(s) = Z 1 win(s), b2 dv:fn + by V(\;On +bowon =0, m=5,6. (3.4)

In the case with the turning point. for which b,(s.) = 0, bj(s.) # 0, the expansions (3.3) and (3.4) are
inapplicable neas = s, becausé\y,, — oo ats — s,, and equatlon (3.4) has a singular pointat s.. Near
the turning point five linearly independent solutions of equation (3.1) have the asymptotic expansions

Z eAx(s vk ) 4+ ednswW (s, 1, n=12734y5, (3.5)

Expansions (3.5) are expressed by the following standard funot(g)‘ﬁs

dsv(O) dV(OJ
K kv =0,  wYm :JVL“)(n)dn, k=0,1,... (3.6)

ans " dn

which are the entire functions of the complex argumgnThe 6th solution of equation (3.1) has the same form
(3.4) where the functions, ¢ are regular at = s..

In the case of the turning point expansions, (3.3) and (3.4) are valifers,| > ¢ and expansion (3.5) is valid

for |s — s.| < 1. To construct the solution in the whole interyg], s;] it is necessary to combine solution (3.5)

with solutions (3.3) and (3.4). Here we use thatjat> +oo the solutions (3.5) may be expressed through the
more simple solutions (3.3) and (3.4) (see Bauer et al. (1993)). Unfortunately, uniform asymptotic expansions of
equation (3.1) are unknown (evidently such expansions do not exist).
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Figure 2: The vibration modes for a conic shell of revolution with the turning point

In Fig. 2 the vibration modes for a conic shell of revolution are presented. As it is easy to see the turning point
separates the shell surface into two parts. In the first part the variability of the normal defiettiois large (the

index of variationp = 1/2), and in the second the function(s) changes slowly witls (p = 0). The maximal
deflection is near the turning point and its value is of the oedér

4 Non-symmetric Vibrations of Shells of Revolution
In this case after separation of variablegs, @) = w(s)cogme), m = 1,2,..., the problem again becomes
one-dimensional. Hera is the number of waves in the circumferential direction, gnid the angular coordinate.

If the number of wavesn is fixed and small enough, then this case in the asymptotic point of view does not differ
from the axisymmetric case. Therefore we suppose that the numkglarge (m > 1) and we put

m=up"p. (4.1)

Then the system (3.1) can be rewritten in the standard form of a first order system

d o0
R = Al Y, Als) = Y Ay = (i, us) (4.2)
k=0

The system (4.2) has 8 WKB solutions (see Goldenweizer et al. (1979), Bauer et al. (1993))
o0 n ]
Yl = YW e (L [imn(sias), m=t8 =V, 43
k=0

The functiongp, (s) satisfy the algebraic equation of 8th order
det(Ao(s) —ipE) =0, (4.4)
whereE is the unit matrix of 8th order. Equation (4.4) can be solved with respect to the frequency pafameter

(kap? + k1¢%)?
(p? + q2)?

f(p,a,s), q= %S) (4.5)

A=(p*+q%)* +

whereB(s) is the distance between the point on the neutral surface and the axis of rotation. It is supposed here and
below that all linear dimensions of the neutral surface (ﬂu;rb kg‘ ,s,B(s)) are related t&®. Then all variables
in (4.5) are dimensionless. If the ropt, (s) of equation (4.5) is multiple at the (turning) point= s., then the

corresponding solution (4.3) is not valid near this point becaﬁg’éﬁx) — oo whens — s,.

Let us introduce the value
Ao :pm(jrlf(P,q,S) = f(po, do, S0) (4.6)

for all realp, q and fors € [s1, s3].

Real rootsp,, (s) of equation (4.5) correspond to the oscillating solutions (4.3) of the system (4.2)<IfAq

then there are no real roots, and all solutions (4.3) increase or decrease exponentially. Therefore in this case the
vibration modes may be localized near one of the shell edges, and the existence of such modes depends on the
boundary conditions at this edge (see below in this Section).
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In the case\ > Ay equation (4.5) has one pair or two pairs of real roots and therefore equation (4.2) has oscillating
solutions which generate the vibration modes for arbitrary boundary conditions>1\, andA is close to\,

then the oscillations are concentrated near the poiatsy which is called the weakest point. Near the weakest
point the first vibration modes are localized. Here we study two cases of the weakest point position.

The weakest point is far from the shell edgesLet equation (4.5) have no more than one pair of real roots (the
case of two pairs is studied in Goldenweizer et al. (1979)) Let the frequency pardnhrem:rlose enough tyy

so that the real roots of equation (4.5) ara'at < s < s'? where the turning pomtsk satisfy the inequality
s1 < si” <sp < siz) < s3. (4.7)

Then the localized modes occupy the interval between the turning points and exponentially decrease with in-
creasing distance from this interval. The corresponding eigen-valtiescan be found from the equation (see
Goldenweizer et al. (1979))

(2)
1 (5~ 1
qupO(s)ds_ﬂ<2+n>+O(u)’ n=012,..., (4.8)

S«
where+p,(s) are real roots of equation (4.5) et [si”,s* 1.

The set of the localized modes is two-parametric and depends on the numbEmaves in circumferential
direction and the numbaet in equation (4.8), which is connected with the number of waves in the longitudinal
direction. Let the integer numben be fixed and close tevy = ' qoB(so). We introduce the function

£ (p,s) =f(p,als),s),  q(s)=——, p=pm, (4.9)
B(s)
and find
o™ = minf™ (p, s) = min LARRRPE T S S TR (4.10)
Ao _T,Isn B4 (s) K3(s _B4(S(()m)) K3(sy ). .

Here it is remarked that the weakest parallel may (slightly) depend.on

For the first some eigen-valuas§™™) and the corresponding vibration modes more simple explicit relations (in-
stead of equation (4.8)) can be found (see Bauer et al. (1993)). The frequency parameter is equal to

A(mvn)—xg,muu(;m)\/# ™ 4 0(u?), n=0,1,..., (4.11)

where the partial derivativeé’;?) and f\™ are calculated at — sém), p = 0. The vibration mode has the

asymptotic representation

W™ (s, @) = e75/2 (Hy (&) + O(1'/2)) cosm(e — po), (4.12)

/ oy
E, S —SO , C = f(im)
SSs

andH,, (&) are the Hermite polynomlalsHo &) =1, Hy(&) = &. We remark that the first eigen-values do not
depend on the boundary conditions.

where

In Fig. 3 the first vibration mode of an elongated ellipsoid of revolution is shown. The weakest parallel coincides
with its equator.

The weakest point coincides with the edge = 0. If A > Ao andA is close enough td, then near the edge

s = 0 there is a turning point = s,.. One of the solutions of equation (4.2) oscillates at s, and exponentially
decrease at > s.. The asymptotic expansion of this solution contains the standard Airy function and its derivative
(see Wasow (1965))

3 (s 2/3
wols, ) = a(s,w) Ai(n) + u'3b(s, WA’ (n), n= <2uJ pols) d8> (4.13)
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Figure 3: The Vibration Mode of an Ellipsoid of Revolution
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Figure 4: The vibration modes localized near the edge

wherepy(s) is the real root of equation (4.4) at< s., and the functionsi(s, 1) andb(s, 1 are the asymptotic
series in powers oft with the coefficients regular is.

To satisfy the given boundary conditions at the edlge 0, we add to function (4.13) three solutions (4.3) expo-
nentially decreasing with increasing distance from the edge0. As a result we get the vibration mode in the
form

4
w(s, @) = <WO(s,u) + Z Cnls, u)eip“s/”> cosm(e — @o), Impy >0 (4.14)

n=2

The first vibration mode for the clamped edge- 0 is shown in the left side of Fig. 4.

Such modes exist for arbitrary boundary conditions at 0 and the first some of them do not depend on the
boundary conditions at the opposite edge. The asymptotic expansion of the first eigen-values is the following (see
Goldenweizer et al. (1979))

Al = AL 23 0mn) z () o (ut/3) (4.15)

where)\ém) is the same as in (4.10&,5"““’ depends on the roots of equatidn(n) = 0 and does not depend on
the boundary conditions at= 0, and onIy)\ém‘“) depends on the boundary conditions.

The cases of a weakly supported edgélere we suppose that< Ap. In this case all solutions of equation (4.2)
exponentially decrease or increase. We try to satisfy 4 given boundary conditions at the-edd®y 4 solutions
which decrease away from this edge. We seek the vibration mode in the form

4
w(s, @) = (Z Cn(s,u)e”’“s/”> cosm(¢ — @), Impy >0 (4.16)

n=1

The problem is reduced to the equation
A4(N) =0, A< Ao (4.17)

whereA, is the determinant of the 4th order with elements dependingy &l 16 classical variants of boundary
conditions (see Table 1) are examined. The numerical calculations show that there exist only 6 variants for which
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Figure 5: The localized vibration modes of cylindrical and conic shells

equation (4.17) has roots. It occurs that no more than one root exists. These 6 variants are given in Table 2. We call
such boundary conditions weak boundary conditions. Among these conditions there are the free edge, 4 conditions
with one geometrical restriction, and one condition with two restrictions y; = 0).

Table 2. The weak boundary conditions.

N | Boundary conditiong Geometric restrictiong )\A

1 0000 — 0.4069
2 0001 v1 =0 0.537
3 0100 =0 0.842
4 0101 v=y; =0 0.880
5 0010 w=0 0.987
6 1000 u=0 0.995

The numerical example in Table 2 is given for the following values of parametetsl, k; = 1.5, ko = 1. From
this example it is easy to see which geometrical restriction is more essential to prevent the existence of localized
vibration modes with\ < A,.

5 The Localized Vibration Modes for Non-circular Cylindrical and Conic Shells with Slanted Edges

Vibration modes of circular cylindrical and conic shells with straight edges occupy the entire shell surface. But
if shells are non-circular and/or its edges are slanted then a localization of the vibration modes is possible. The
modes are localized near the weakest genereatrix .

In Fig. 5 the localized vibration modes are shown. The variability of these modes in the circular direction is much
larger than its variability in the longitudinal direction

‘aw ow . 5.1)

0|7 | s

The corresponding stress—strain state is called a semi-momentless state because the strelsk cnaplde
neglected compared with the coupl¢,. Relation (5.1) allows us to simplify the Donnell equations (2.5) to
perform the asymptotic separation of variables. In this problem the asymptotic expansions are the same as in
the corresponding buckling problem (see Tovstik and Smirnov (2001)). For simplicity we here study only the
cylindrical shells.

The simplified equations of the Donnel type have the form

%w
0s?

4 aZ(D 4
H*AAW+KZ(¢))7_A*W:0v H*AA(D—KZ(([))

. =0 (5.2)

where

_*w N *w _ 0%w
T 9s2 22 T 22’
HereA, andu, are the new frequency and the small parameter, respectively.

Aw A=piA,,  ul=n
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The asymptotic solution has the form

oo

P — Qx
w(s, @, i) (s, &) expli(i. /2q& + (1/2)ag?)}, &= ,
g VM (5.3)
Ao = Ao+ WA+ A+ q>0, Ima > 0.

Here wy,(s,&) are the polynomials in & in particular in the zeroth approximation
wo(s, &) = Hn(E)Wo(s), m = 0,1,..., whereH,, () are the Hermite polynomials. Due to km> 0 the
solution of equation (5.2) exponentially decreases with decreasing distance from the weakest generaprix
The asymptotic solutions (5.3) and (4.12) are similar to the expansions constructed by Maslov (1977).

The functionW, (s) satisfies the ordinary boundary value problem of the beam type

k3(@) =g+ (a® = Adh)Wo =0, (5.4)

Equation (5.4) contains the values q, and A as parameters. At each edge= s;(¢@) ands = sy(¢) itis

possible to satisfy only 2 (main) boundary conditions. The other 2 conditions may be satisfied by the edge effect
solutions which exponentially decrease away from the edges. The edge effect solutions in the case, when the edge
does not coincide with the curvature lines of the surface, are found by Goldenweizer (1961). The problem how
to choose 2 main boundary conditions for the given 4 conditions is discussed in detail for all 16 variants of the
classical boundary conditions in the book by Tovstik and Smirnov (2001). For the beam 4 variants of the main
conditions are possibléV, = dW,/ds = 0 (the clamped edge)V, = d*W,/ds*> = 0 (the simply supported
edge),dW,/ds = d3W,/ds®> = 0 (the weakly supported edge), addW,/ds?* = d3W,/ds® = 0 (the free

edge). The solution of equation (5.4) with the main conditions coincides with the function, which describes the
transversal vibrations of a beam

d4W0 0(4
ds? “
wherel is the beam length. For example, for both edges clamped wecdhavd.73, for simply supported edges
o« = 7. The 16 variants of the full boundary conditions are separated into 4 groups according to the main boundary
conditions. The list of the full boundary conditions, which correspond to these 4 groups of the main conditions in
the case wheds;/do = 0 is given in Table 3.

W, =0, (5.5)

Table 3. The groups of boundary conditions.

The groups of main conditions The full boundary conditions
The clamped group 1111, 1110, 1011, 1101, 1100, 1010
The simply supported group | 0111, 0110, 0011, 0101, 0100, 0010
The weakly supported group | 1001, 1000
The free edge group 0001, 0000

rwNPRZ2

For the given boundary conditions we fidand then we obtain

a*k3 (@)

q*1* (o)

After minimization of the functiorf(q, ¢) we get values\y, q, and the weakest generatrix, near which the
vibration mode is localized.

A=q*+ =f(q,9)  Ue)=s2(9)—s1(9). (5.6)

20%ka (@) 20k (o) a4_ o?ka (o)

Ao = minf(q, @) = min = , 57
=R =M ) = T g0) (o) 57)
The value\; depends only on the derivatives of the functidng, ¢) ato = @g
1
A= Agm) = <m + 2) f(p(Pfss — f%ps (5.8)
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Figure 6: The elliptic cylinder

and the next term; in the asymptotic expansion (5.3) depends on all the boundary conditions (see Tovstik and
Smirnov (2001)).

The eigen-functions (5.3) are complex. Therefore their real and imaginary parts are also eigen-functions of the
problem (5.2). But it is incorrect to think that the corresponding eigen-valuase double. Due to the asymptotic

character of the series (5.3) in reality two very close eigen—vaﬂﬁ:@sand A% with the coinciding asymptotic
expansions (5.3) exist

A AP =0 (em),  exo (5.9)
To these eigen-values the eigen-functions with the following asymptotic expansions
wi) = CVRe(w(s, @, 1)) + CYIm(w(s, @,1.)), =12, (5.10)
correspond with the definite constaﬁtg) and Cg").

In the paper by Naumova (2001) the free vibrations of a non-straight circular conic shell (as in the right side of
Fig. 6) are investigated. The asymptotic solution is compared with the numerical solution obtained by the Finite
Element Method.

These solutions are in good agreement, but the numerical solution gives only the first of two asymptotically double
eigen-functions.

The eigen-values and eigen-functions of an elliptic cylindrical shell.As an example, which illustrates the
asymptotically double eigen-values we study the free low-frequency vibrations of a thin elastic shell with simply
supported edges in the form of an elliptical cylinder (see Fig. 6).

Instead of the coordinate in circular direction, we use the angteshown in Fig. 6 as an independent variable.
After the separation of variables(x,y) = w(x) sin(wts/L) (which is possible for simply supported edges) we
rewrite the system (5.2) in a dimensionless form (see Krotov and Tovstik (1997))

a4 d*o

41,4 w _ 41,4 _
ek (x)W—Aerk(x)d)—O, 'k (X)W—k(x)w—o, (5.11)
where
h214 pw?2* . 3/2 b
8 _ _ _ 2 2 —

Heree is the small parameter, aidx) is the curvature of the ellipse.

We seek the eigen-values of the frequency paraméiarwhich there exist thérn-periodic solutionsv(x), ®(x)
of the system (5.11).

The problem has 2 weakest generatrixes: +7/2 therefore we expect to have 4 eigen-values, which are very
close each other and the asymptotically fourfold eigen-value which may be found by relations similar to (5.3),
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Figure 8: Rectangular plate Cylindrical panel
(5.7),and (5.8) is
2 _
A(m):%—&-s 7]92(67 D <1+m>+0(£2), m=0,1,... (5.12)
e e 2

We take the following numerical parametens= 0, e = 1.4, ¢ = 0.1 and numerically calculate the first eigen-
values. Due to symmetry of the problem it is possible to seek even and odd eigen-functions with respect to the
ellipse diameters (see Fig. 7) and also to separately find the corresponding eigen-values.

For this aim we solve the problem (5.11) in the inteaf x < 7t/2 and take the boundary conditions

Codx2 0 dx2
dw _ dw _do &0
dx  dx3  dx  dx3

0 (odd)
or (5.13)

=0 (even

at the ends of this interval.

Calculations show that 4 asymptotically fourfold eigen-values differ from each other by no morkthanit is
interesting to remark that these 4 eigen-values may be gathered in two gfeups:even, odd—odicind{even—

odd, odd—evehand the difference between eigen-values within the groups is much smaller, namely of the order
of 10710,

6 The Localized Vibration Modes of Cylindrical Panels with a Weakly Supported Rectilinear Edge

We study the free low-frequency vibrations of a thin circular cylindrical panel with rakliaad lengthL (see

Fig. 8, right). For the low-frequency vibrations the inequality (5.1) is fulfilled and the asymptotic separation of
variables is possible, after which the problem is reduced to a one-dimensional boundary value problem. Therefore
it is possible to obtain the approximate asymptotic solutions for arbitrary boundary conditions. In this sense this
problem for cylindrical panel vibrations is simpler than the problem for rectangular plate vibrations (see Fig. 8,
left). The last problem has no analytical solution for arbitrary boundary conditions.

Here we suppose that one of the rectilinear edges0 is weakly supported so that the vibration mode is localized
near this edge. The boundary conditions at the curvilinear edge® andx = —1 may be arbitrary, but at first
we begin from the simply supported curvilinear edges for which the exact separation of variables is possible.
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Figure 9: Forms of the localized eigen-functions

The equation which describes the low-frequency vibrations of a circular cylindrical shell may be written in the
dimensionless form

2w tw ?w  *w
8 A4 2
HoA"w — A (A w 3 2)

5= 0, Aw = Fahs 292" (6.1)

where—1 =—L/R < x < 0; ¢ isthe angle in circular directior; oo < ¢ <0, @o =yo/R, and

s h? pw?R?2
W=—o———— A= :
12(1 —~v2)R2 E

After the scaling of the variable = u,+/1/7m and the separation of variablegx, ¢) = Y(n) sin(rtx/1) we get
as the zeroth approximation for the unknown funcfin) the ordinary differential equation

ddy d*y 2u?m?
— —200—+Y=0 A= ——
0 dﬂ“ + ’ 12

dT]S AO: (62)

whereA, = 1 corresponds to the minimal frequency of a circular cylindrical shell closed in the circular direction.

We seek solutions of equation (6.2), which satisfy the given boundary conditions at the) edgé and the
decreasing condition
Yn)—0 at n— —oo. (6.3)

In the paper of Ershova and Tovstik (1998) the 6 variants of the weakly supported edge are found for which such
a solution of equation (6.2) exists. The eigen-valigsnd the corresponding eigen-functions are presented in
Fig.9.

We remark that in this problem the variants of the weakly supported rectilinear edge coincide exactly with the
variants of the weakly supported curvilinear edge of a shell of revolution. For the free edge 0000 there exists the

second eigen-valukéz) = 0.973 for which the corresponding eigen-function decreases more slowly than in Fig.9.

More exact than (6.2) the asymptotic relation for the frequency paramdterarbitrary boundary conditions at
the curvilinear edges has the form (see Ershova and Tovstik (1998))
2u%a

A= 1z

(Ao + 1A + 0(12)), (6.4)

Here the parametey, depends on the boundary conditions at the weakly supported rectilineatpedgeand it
is the same as in Fig. 9. The parameteappears when we asymptotically separate the variables as in equation
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(4.5). This parameter depends only on the groups of the main boundary conditions at the curvilinear-edges
andx = —1. The list of its possible values is the followingi§ = ;)

x11 :4.71, X112 :3.93, x22 :3.14:7'[, x13 :2.37, (6 5)
X14 = ].88, X23 = 1.57, X24 = X33 = X34 = Kgg4 = 0 ’

where the indices indicate the numbers of the groupscfer 0 andx = —1 (see Table 3). For the boundary
conditions withay; = 0 the relation (6.4) (and also relation (5.3)) is inapplicable. The parareter relation
(6.4) depends on all boundary conditions at the rectilinear and at the curvilinear edges.

7 Conclusions

By the asymptotic approach for thin elastic shells, two types of the free vibration modes localized near the weakest
lines are investigated. In the first of them the localization is possible if the neutral surface is heterogeneous (for
example the surface curvatures are not constant). To find the asymptotic expansions of the modes in this case it
is necessary to use the complex asymptotic constructions including turning point and lines. The second type of
localization is connected with the weakly supported edges. The 6 variants of weak boundary conditions are found.
It is surprising that for two essentially different problems (with the curvilinear edge of a shell of revolution and
with the rectilinear edge of a cylindrical panel) these variants are identical.

The used asymptotic approach is based on a single small parameter (the relative shell thickrseabthe other
parameters are supposed to be of the order of unity. In the other case the obtained asymptotic relations become
incorrect. For example the relation (6.4) is not valid for very long pabgl® > 1, or for very short panels

L/R <« 1, or for very narrow panelg, < 1. In the last case the opposite rectilinear edge begins to influence the
frequency.

Itis interesting to construct the vibration modes localized near the (weakest) point. For the buckling problems such
localization is studied in the book by Tovstik and Smirnov (2001). For a shell of an ellipsoidal form with three
different axes, the weakest point coincides with one of the poles. It is also interesting to study cases;wheén

for the cylindrical panel.
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