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On the Stability of Oscillatory Pipe Flows

M. Zhao, M. S. Ghidaoui, A. A. Kolyshkin, R. Vaillancourt

The linear stability of pure oscillatory pipe flow is investigated by solving the linearized disturbance equations as
an initial value problem. The importance of the initial conditions on transient dynamics of the flow is analyzed. It
is shown that transient growth can play an important role in the development of flow instability. The accuracy of
the quasi-steady assumption is assessed. It is shown that the growth rates obtained with this assumption deviate
considerably from the results obtained with a direct numerical solution of the linearized initial value problem.

1 Introduction

Linear stability of unsteady flows is a relatively new topic in hydrodynamic stability theory. Oscillatory flows
represent an important subset of unsteady flows and often occur in engineering applications as well as in the field of
physiological fluid mechanics. Grosch and Salwen (1968) studied linear stability of oscillatory flow superimposed
on a steady plane Poiseuille flow (such a flow is known as a pulsatile flow in the hydrodynamic stability literature).
They found that modulation of the pressure gradient has an important effect on the stability characteristics of the
flow. In particular, for large modulation amplitude the flow is destabilized at lower mean Reynolds number. The
results of Grosch and Salwen (1968) are re-examined by von Kerczek (1982). He found that the oscillating plane
Poiseuille flow is more stable than the steady plane Poiseuille flow for a wide range of frequencies. However, the
results of von Kerczek (1982) differ substantially from those of Grosch and Salwen (1968) for certain values of
the parameters of the problem. A similar problem was recently solved by Straatman et al. (1998) for the range
of parameter values which are of interest in physiological fluid mechanics. Modulated plane Poiseuille flow for
high modulation frequencies is analyzed asymptotically by Hall (1975). It was shown that modulation destabilized
the flow. Note that the Floquet theory is used in their stability analyses. It should be pointed out that the Floquet
exponents (which are used to determine whether the given time-periodic flow is linearly unstable) are measures of
the average long-term growth or decay of perturbations. The magnitudes of the Floquet exponents cannot be used
to determine the transient behavior of a perturbation during one cycle of the imposed oscillation.

An exact unsteady solution of the Navier–Stokes equations for the case of a rigid wall oscillating transversely in
a viscous fluid was found by Stokes and is known as the Stokes layer. The linear stability of the Stokes layer was
investigated by von Kerczek and Davis (1974), Hall (1978), Cowley (1987), Blennerhassett and Bassom (2002)
and Hall (2003). Von Kerczek and Davis (1974) introduced a second boundary away from the oscillating wall and
found no unstable modes for Reynolds numbers up to 400. Hall (1978) presented an improved model without an
upper boundary but he also could not find unstable modes for Reynolds numbers up to 160. Cowley (1987) used the
method of multiple scales to demonstrate that, for sufficiently large Reynolds numbers, disturbances can experience
a significant growth over a part of the oscillating cycle. The analysis by Blennerhassett and Bassom (2002) showed
that the Stokes layer becomes unstable at Reynolds numbers about 708. Since this result is inconsistent with the
previous studies, in a recent paper Hall (2003) tried to resolve this inconsistency. He found that there are no
unstable Floquet modes at high Reynolds numbers.

The instability of a pure oscillatory flow in a pipe (which is the most interesting flow geometry from a practical
point of view) has been analyzed by Sergeev (1966) and Hino et al. (1976). Three types of flow regimes were
analyzed in their experiments: laminar flow, weakly turbulent flow and conditionally turbulent flow. It was found
that, in the conditionally turbulent flow, turbulence is generated in the decelerating phase but the flow returns to
laminar in the accelerating phase. Thus, the experiments by Hino et al. (1976) confirmed that some oscillatory
pipe flows can be unstable only over part of the oscillating cycle.

A major difficulty in comparing experimental data for oscillatory pipe flows with theoretical results is the absence
of a neutral stability curve. An oscillatory pipe Poiseuille flow (like a steady pipe flow) is found to be linearly

289



stable in accordance with the linear stability theory (no unstable Floquet modes were found). The transient growth
mechanism was used in the last decade in order to explain the transition in steady pipe flows (see, for example,
O’Sullivan and Breuer (1994), Schmid and Henningson (1994), Schmid and Henningson (2001)). It is based on
the fact that the superposition of stable modes can initially experience a large growth before the perturbation starts
to decay asymptotically (for large time). The energy amplification factor can be large enough to trigger instability
even if the flow is exponentially stable in accordance with the Floquet theory.

The perturbation dynamics of unsteady non-periodic flows is analyzed in Zhao (2003) and Zhao et al. (2004)
by solving the corresponding initial value problem. The dependence of the energy growth of perturbation on the
initial conditions is analyzed and the importance of transient growth mechanisms for stability analyses of non-
periodic unsteady flows is investigated. In the present paper, linear stability of pure oscillatory flow in a circular
pipe is investigated. The linearized stability equations are solved as an initial value problem. The initial value
problem approach allows one to analyze the behavior of perturbations for short time (transient growth) and large
time (asymptotic growth). In addition, the role of the initial conditions on perturbation dynamics is discussed.

2 Stability Model and Numerical Solution

Consider an axisymmetric unsteady flow in a circular pipe of radiusR of the following structure,

W̃ = W̃ (r̃, t̃); P̃ = P̃ (z̃, t̃) (1)

wheret̃, z̃ andr̃ are the dimensional time, axial and radial coordinates, respectively, andW̃ andP̃ are dimensional
axial velocity and pressure. The functions̃W andP̃ satisfy the following equation of motion (Schlichting, 1979),
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whereρ is the density of fluid andν is the kinematic viscosity. Consider the case of a pure oscillatory flow where
the pressure gradient is given by

−1
ρ
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∂z̃
= K cos ω̃t̃. (3)

HereK is a constant and̃ω is the dimensional frequency. Let the measure of the length, velocity and time beR,
U = K/ω̃ andR/U , respectively. Then equation (2) can be written in the form
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where the un-tilded variables are dimensionless variables and the Reynolds number is defined by Re= RU/ν.

The solution of equation (4) can be found in Hino et al. (1976), Yang and Yih (1977), and Schlichting (1979) and
has the form
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where<means real part,i =
√−1 is the imaginary unit andJm(q) is the Bessel function of the first kind of order

m.

Following Hino et al. (1976) we introduce the notationsβ =
√
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3
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The Reynolds numbersRe reported by Hino et al. (1976) are based on the cross-sectional mean velocity amplitude
(Ŵ ) and pipe diameter. Since the amplitude of the cross-sectional mean velocity is
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the Reynolds number can be written in the form
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Linear stability of flow (5) is analyzed below. We assume thatu(r, θ, z, t), v(r, θ, z, t), w(r, θ, z, t) andp(r, θ, z, t)
are the perturbations of the velocity components and pressure, respectively (hereθ is the azimuthal coordinate).
Adding these perturbations to (5), substituting the sum into the Navier–Stokes equations, linearizing the equations
in the neighborhood of the base flow (5) and assuming that

[u(r, θ, z, t); v(r, θ, z, t); w(r, θ, z, t); p(r, θ, z, t)]T = [û(r, t); v̂(r, t); ŵ(r, t); p̂(r, t)]T einθ+iαz, (8)

whereα andn are axial and azimuthal wavenumbers, respectively, we obtain the following system
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The boundary conditions atr = 1 are

û(1) = 0, v̂(1) = 0, ŵ(1) = 0,
∂û

∂r

∣∣∣∣
r=1

= 0. (13)

The boundary conditions atr = 0 depend on the azimuthal wavenumber and have the following form (details are
given by Moin & Kim (1980) and Lopez et al. (2002)):

(a) Forn = 0,
û(0) = 0, v̂(0) = 0, ŵ(0) ≡ finite, p̂(0) ≡ finite. (14)

(b) Forn = 1,

û(0) + iv̂(0) = 0, ŵ(0) = 0, p̂(0) = 0,

[
∂û

∂r
+ i

dv̂
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(c) Forn = 2, 3, . . .,
û(0) = 0, v̂(0) = 0, ŵ(0) = 0, p̂(0) = 0. (16)

A semi-implicit scheme suggested by Moin and Kim (1980) is used to solve the problem. Chebyshev polynomials
are used to discretize the system in the radial direction. Details of the numerical scheme are given in Zhao et al.
(2004). The initial conditions for the functionŝu, v̂, ŵ andp̂ are chosen in the following way. First, we generate
a random number from a standardized normal distribution at each radial node. Second, the linearized equations
without viscous terms are solved in order to obtain the functions which satisfy the incompressibility condition (9)
and these functions are used as initial conditions.

The results of the computations are compared with experimental data found in Hino et al. (1976). We selected
three runs for comparison, namely, runs 4, 9 and 14 from Hino et al. (1976), which represent laminar or distorted
laminar flow, weakly turbulent and conditionally turbulent flow, respectively. The following table gives the flow
parameters for these three cases.

Test Pipe Period Ŵ ν Re λ ω Flow
No. Diameter Regime

(m) (s) (m/s) (m2/s) (−) (−) ×103

4 0.03 6.0 0.355 1.5× 10−5 710 2.76 27.2 laminar
9 0.03 3.0 2.13 1.5× 10−5 4260 3.90 10.6 weakly turbulent
14 0.0145 3.0 6.03 1.5× 10−5 5830 1.91 1.08 conditionally turbulent

Table 1: Parameters for test cases.
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3 Transient and Asymptotic Growth

As pointed out earlier, the initial value problem approach allows one to investigate the full temporal dynamics
of perturbations including short-term transients and long-term asymptotics. The energy growth of a perturbation
can be characterized by the following integral which represents the kinetic energy per unit density of a three-
dimensional perturbation contained in a single wave length:

E(t) ≡ 1
2V—

∫ 2π/α

0

∫ 2π

0

∫ 1

0

(u2 + v2 + w2)rdrdθdz (17)

whereV— is the volume for a complete wave length.

Bergström initial condition

Random initial condition 1

Random initial condition 2

t/Tp

0 0.5 1.0 1.5 2.0

10
-20

10
0

10
-5

10
-10

10
-15

10
-25

E
n

er
g

y
 g

ro
w

th
 E

(t
)/

E
(0

) 

t/Tp

0 0.5 1.0 1.5 2.0

0.2

0.1

0.0

-0.1

G
ro

w
th

 r
a
te

Figure 1: (Top) Growth behavior of perturbations for case 9, and (bottom) growth rate for different initial condi-
tions.

The energy growth curves for three different initial conditions (namely, the initial condition suggested by Bergström
(1993) and two randomly chosen initial conditions) and the corresponding growth rates are shown in Fig. 1 for the
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Figure 2: Growth rates obtained from L-DNS and the quasi-steady assumption for case 4 (n = 1, α = 0.5).

casen = 1, α = 0.5. The dependence of the perturbation energy on the initial condition for short time is clearly
seen from the graphs. For large times all three graphs in top Fig. 1 are almost parallel to each other, therefore
the corresponding growth rates coincide (see bottom Fig. 1). The graph in bottom Fig. 1 shows that the flow is
asymptotically stable for large times (since the growth rates are negative). We performed calculations for other
values ofα, namely,α = 0, 0.5, 1 and2 and found that in all cases the growth rates are negative for large time.
Thus, the results of our calculations indicate that the flow is asymptotically stable (however, these calculations by
no means represent a proof of stability). It is interesting to note, however, that the growth rates are positive during
a short time interval. In addition, the magnitudes of the growth rates are quite large (the value are larger than 0.1
for some time interval). This is the transient growth which cannot be obtained by means of the Floquet theory.
Perturbations may experience sufficient growth during a short-time interval and this may lead to flow instability.

4 Quasi-steady Assumption for Oscillatory Flows

In this section we analyze the accuracy of the quasi-steady assumption for stability analysis of oscillatory pipe
flows. This assumption, which is widely used in hydrodynamic stability theory, assumes that the base flow varies
slowly compared with the growth of a perturbation. In other words, the base flow is treated as a steady state using
an instantaneous “frozen” profile. The classical approach in this case is to use the Floquet theory where the stability
of the flow depends on the sign of the real part of the Floquet exponents (von Kerczek 1982). Instead of calculating
the Floquet exponents by solving an eigenvalue problem, to calculate the asymptotic growth rate for a particular
velocity profile, we fix the velocity profile and use the solution of an initial value problem for sufficiently large
time. The results obtained in this way are based on the quasi-steady assumption. The results without quasi-steady
assumption are referred to as L-DNS (linear direct numerical simulation). As Fig. 1 indicates, the choice of the
initial condition is unimportant if one is interested in long-time asymptotics since the growth rate will be the same
for all perturbations at sufficiently large times. The computational results are presented in Fig. 2 for case 4 and in
Fig. 3 for cases 9 (top) and 14 (bottom) corresponding to the three different flow regimes reported by Hino et al.
(1976) (see Table 1).
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Figure 3: Growth rates obtained from L-DNS and the method of normal modes wiithn = 1 andα = 0.5 for case
9 (top) and case 14 (bottom).
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All the figures indicate the presence of a region of transient growth (where the growth rate is positive for a short
time) followed by a region of asymptotic decay (the growth rates are all negative for sufficiently large time). The
magnitudes of the growth rates are considerably higher for case 9 and case 14 in comparison with case 4. This may
explain why the instability is not observed in case 4 — the growth rate is not large enough and the perturbation
does not have enough time to grow. Note that the transient growth cannot be captured by Floquet theory which can
be used only to analyze long time asymptotic stability. All three graphs also show that even in the long-time limit
the growth rates obtained by means of the quasi-steady assumption deviate considerably from the L-DNS results.
In particular, for cases 9 and 14 the quasi-steady approach shows that for large times the flow become unstable for
a part of the oscillation cycle while the L-DNS approach shows no instability for large times. Therefore we suggest
the use of the L-DNS approach for stability studies of oscillatory pipe flows.

We wish to thank the Research Grant Council of Hong Kong for financial support under project No. HKUST6179/02E
and the Natural Sciences and Engineering Council of Canada.

References

Bergstr̈om, L.: Optimal growth of small disturbances in pipe Poiseuille flow.Phys. Fluids, A5, (1993), 2710–
2720.

Blennerhassett, P.; Bassom, A.: The linear stability of flat Stokes layers.J. Fluid Mech., 464, (2002), 393–410.

Cowley, S. J.: High frequency Rayleigh instability of Stokes layers. In:Stability of time dependent nad spatially
varying flows, ed. by D.L Dwoyer and M.Y. Hussaini. New York: Springer-Verlag (1987), 261–275.

Grosch, C. E.; Salwen, H.: The stability of steady and time-dependent plane Poiseuille flow.J. Fluid Mech., 34,
(1968), 177–205.

Hall, P.: The stability of Poiseuille flow modulated at high frequencies.Proc. R. Soc. London, A465, (1975),
453–464.

Hall, P.: The linear stability of flat Stokes layers.Proc. R. Soc. London, A359, (1978), 151–166.

Hall, P.: On the instability of Stokes layers at high Reynolds numbers.J. Fluid Mech., 482, (2003), 1–15.

Hino, M.; Sawamoto, M.; Takasu, S.: ‘Experiments on transition to turbulence in an oscillatory pipe flow.J.
Fluid Mech., 75, (1976), 193–207.

von Kerczek, C.: The stability of oscillatory plane Poiseuille flow.J. Fluid Mech., 116, (1982), 91–114.

von Kerczek, C.; Davis, S.H.: Linear stability theory of oscillatory Stokes layers.J. Fluid Mech., 62, (1974),
753–773.

Lopez, J. M.; Marques, F.; Jie Shen: An efficient spectral-projection method for the Navier–Stokes equations in
cylindrical geometries II. Three dimensional cases.J. Computational Phys., 176, (2002), 384–401.

Moin, P.; Kim, J.: On the numerical solution of time-dependent viscous incompressible fluid flows involving
solid boundaries.J. Computational Phys., 35, (1980), 381–392.

O’Sullivan, P. L.; Breuer, K. S.: Transient growth in circular pipe flow. I. Linear disturbances.Phys. Fluids, 6,
(1994), 3643–3651.

Schlichting, H.:Boundary-Layer Theory. New York: McGraw-Hill, 1979.

Schmid, P. J.; Henningson, D. S.: Optimal energy density growth in Hagen-Poiseuille flow.J. Fluid Mech., 277,
(1994), 195–225.

Schmid, P. J.; Henningson, D. S.:Stability and Transition in Shear Flows. New York: Springer-Verlag, 2001.

Sergeev, S. I.: Fluid oscillations in pipes at moderate Reynolds numbers.Fluid Dynamics, 1, (1966), 21–22.

Straatman, A. G.; Khayat, R. E.; Haj-Qasem, E.; Steinman, D. A.: On the hydrodynamic stability of pulsatile
flow in a plane channel.Phys. Fluids, 14, (1998), 1938–1944.

Yang, W. H.; Yih, C. S.: Stability of time-periodic flows in a circular pipe.J. Fluid Mech., 82, (1977), 497–505.

295



Zhao, M.:Investigation of energy dissipation and stability for transient pipe flows using numerical methods. PhD
dissertation, Hong Kong university of Science and Technology, (2003).

Zhao, M.; Ghidaoui, M. S.; Kolyshkin, A. A.: Investigation of the mechanisms responsible for the breakdown of
axisymmetry in pipe transient,J. Hydr. Res., in press.

Zhao, M.; Ghidaoui, M. S.; Kolyshkin, A. A.: Perturbation dynamics in unsteady pipe flows,J. Fluid. Mech.,
under review.

Address:Ph.D. Student M. Zhao and Assoc. Prof. M. S. Ghidaoui (corresponding author), Dept. of Civil Engi-
neering, The Hong Kong University of Science & Technology, Hong Kong.
email: cezhm@ust.hk ; ghidaoui@ust.hk
Prof. A. A. Kolyshkin, Dept. of Engineering Mathematics, Riga Technical University, Riga, Latvia LV 1048.
Currently, Visiting Scholar, Dept. of Civil Engineering., The Hong Kong University of Science & Technology,
Hong Kong.
email: akoliskins@rbi.lv
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