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Preface 
 
 
This volume contains selected papers presented at the 12th International Conference on vibrations in rotating 
machines, SIRM, which took place February 15-17, 2017 at the campus of the Graz University of Technology. 
 
By all meaningful measures, SIRM was a great success, attracting about 120 participants (ranging from senior 
colleagues to graduate students) from 14 countries. Latest trends in theoretical research, development, design and 
machine maintenance have been discussed between machine manufacturers, machine operators and scientific 
representatives in the field of rotor dynamics. 
 
SIRM 2017 included thematic sessions on the following topics: Rotordynamics, Stability, Friction, Monitoring, 
Electrical Machines, Torsional Vibrations, Blade Vibrations, Balancing, Parametric Excitation, and Bearings. 
The papers struck an admirable balance between theory, analysis, computation and experiment, thus contributing 
a richly diverse set of perspectives and methods to the audience of the conference. 
 
All participants were invited to submit full-length papers to a special issue of Technische Mechanik. The 
contributed papers were peer-reviewed and appear in this volume. 
 
Horst Ecker, Katrin Ellermann, Franz Heitmeir, Elmar Woschke 
October 2017 
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A two-lobe Journal Bearing with adjustable Gap Geometry for Vibration
Reduction of flexible Rotors

B. Pfau, R. Markert

Flexible rotors in journal bearings can exhibit large vibration amplitudes during the passage of bending critical
speeds. To reduce these vibrations, a two-lobe journal bearing with adjustable gap geometry is presented. By an
adjustment of the gap height, stiffness and damping properties of the bearing and as a consequence the damp-
ing ratio of the rotor system can be varied during the operation. When the system passes a critical speed in a
run-up process, a large gap is adjusted for higher damping. After the resonance pass through, the gap height is
reduced to increase the load carrying capacity and to enlarge the stability margin. Investigating the Jeffcott rotor
in adjustable journal bearings demonstrates the basic effects. For a validation, a test rig is set up and a related
mathematical model is created. Various experiments are made and compared with numerical results.

1 Introduction

Journal bearings exist in different geometric designs. At this, the classical cylindrical bearing has the simplest
geometry with respect to calculation and manufacturing. A disadvantage is a high susceptibility to self-excited
vibrations. Hence, multi-lobe bearings having better stability properties are used for applications with low Som-
merfeld numbers1, e. g. due to high rotational speeds. Depending on the designing with respect to resonance
behavior, onset speed of instability and load carrying capacity, large vibrations amplitudes may occur passing
bend-critical speeds. To reduce these vibrations, a journal bearing with adjustable gap geometry is presented.

In recent years, different types of active and controllable journal bearings were developed and are increasingly
found in the literature. The current state of research on controllable oil film bearings can be found in an overview
article from Santos(2011). Many of the existing concepts incorporate movable (Ulbrich and Althaus(1989);
Althaus(1991); Wu and de Queiroz(2010)) or flexible bearing pads (Krodkiewski et al.(1997)). Other concepts
apply external forces on the bearing shell or on the journal, for example magnetically (El-Shafei and Dimitri(2010);
Fürst and Ulbrich(1988)) or piezo-mechanically (Przybylowicz(2004); Tu̇ma et al.(2013)), without changing the
bearing’s gap geometry. Furthermore there are also bearings that utilize an active oil injection as suggested from
Santos and Scalabrin(2003) andSantos(2011). An unconventional bearing is shown byMartin and Parkins(2002),
here the outer part is rotating and the inlying stator is able to vary the gap geometry by use of adjustable pins. In
most of the cases, a PID controller is used.

The concept of a journal bearing with variable gap geometry for vibration reduction during the resonance pass
trough was firstly presented in a previous project. The results are to find in papers ofChasalevris and Dohnal
(2012, 2014, 2015). In this paper a new design is introduced, which differs significantly from the first version,
since the adjustment mechanism is installed in the upper part of the bearing. This has the advantage, that the
mechanism is not loaded by the self-weight of the rotor. Figure1 shows the working principle of the adjustable
bearing, which is basically a lemon bore bearing in horizontal construction design. The lower segment is fixed, the
upper one can be moved along the vertical direction. The movement, which is in the shown investigations constant
for certain values, leads to a change of the fluid film thicknessh as well as to a change of the geometric shape.
The related mathematical quantity is called preload factorδ, a measure for the geometric deviation of the lemon
bore shape (0<δ < 1) in comparison to the cylindrical shape (δ =0). The basic idea of an adjustable lemon bore
bearing was for the first time presented byPfau et al.(2015) and somewhat later byBecker and Seemann(2015),
whereby both publications deal with a time-periodic preload factor to increase the stability limit. This topic is also
investigated byBreunung et al.(2017). A constructional realization of the bearing is shown in detail byPfau and
Markert(2016).

1So = Fstat ψ2/(B Dηoil Ω)
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Due to an adjustment of the gap geometry, stiffness and damping properties of the bearing are varied during the
operation in dependence of the rotational speed. When the system passes a bend-critical speed in a run up process,
a low preload factor (larger gap) is adjusted for higher damping. Since this setup is susceptible to stability problems
and the load carrying capacity is comparatively low, the preload factor is increased after passing the resonance.

2 Description and Modeling of the Journal Bearing

At first, figure1 is explained in detail. The journal ro-
tates with an angular velocityΩ, the deflection is de-
scribed by the eccentricitye and the angleϑ (respec-
tively wL in z-direction andvL in y-direction). The
radius of the journal is given byRZ . The segments
of the sliding surfaces are all having the same radius
of RS . Thus, the gap function of thei-th (i=1, 2)
segment is expressed by

hi = (RS−RZ)−e cos(ϑ−γ)+hp,i cos(ϑ−ψi) . (1)

At this, the latter term describes an offset between the
centre of thei-th segment and the origin of ordinates
(see alsoPfau et al.(2015)). In the following, the term
(RS−RZ) = hn is denoted asnominal clearance. It
is appropriate to use it as reference quantity, due to
the fact that it is constant and independent of the seg-
ment’s movement. Since the lower segment is fixed
(hp,1 =0), the preload factor can be calculated to

δ = hp,2/(2hn) . (2)

γ

0

z

y

h

e

h
p
,2

ad
ju

st
m

en
t

Figure 1::. Lemon bore bearing in horizontal construction
design; adjustment of the upper segment

The calculation of the bearing forces is performed separated for the individual segments by numerical integration
of the Reynolds differential equation of lubricating film theory, see e. g.Lang and Steinhilper(1978),

1
R2

S

∂

∂ϑ

(

h3 ∂p

∂ϑ

)

+
∂

∂x

(

h3 ∂p

∂x

)

= 6ηoil

(

Ω
∂h

∂ϑ
+ 2

∂h

∂t

)

, (3)

which describes the pressure distributionp(ϑ, x) in dependence of the segment radiusRS , the gap functionh, the
angular velocityΩ and the oil viscosityηoil. Integrating the pressure distribution yields the forces acting on the
journal,Fz andFy. The solution procedure is based on a finite volume method (seePfau(2012) or Köhl (2015) for
details). The bearing model is verified by experimentally determined data fromGlienicke(1966) and numerically
determined data fromSomeya(1989).

The fluid-film forces depend on vertical and horizontal position (wL andvL) and the corresponding velocities of
the journal, which is in general expressed by a nonlinear relationship,Fz,y =Fz,y(w, v, ẇ, v̇)=Fz,y(e, ϑ, ė, ϑ̇).
If the journal performs small vibrations around an equilibrium position(wL,0|vL,0), the fluid film force can be
linearized which yields

[
ΔFz

ΔFy

]

=

[
bzz bzy

byz byy

][
ΔẇL

Δv̇L

]

+

[
kzz kzy

kyz kyy

][
ΔwL

ΔvL

]

. (4)

Equation (4) contains the stiffness coefficientskij as well as the damping coefficientsbij . Both depend on the
Sommerfeld number as well as on the preload factor. For simplicity, the letterΔ is neglected hereinafter.
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3 Vibration Behavior of a Jeffcott Rotor supported by adjustable Journal Bearings

First of all, the vibration behavior of a Jeffcott rotor supported by adjustable journal bearings is investigated. This
model represents a simplification of real-world rotors, but it is sufficient to show the elementary phenomena. The
rotor consists of a flexible massless shaft (stiffnessk) with a centered disc (massmS) and two journals (each mass
mZ ) mounted at its ends. The mass of the disc is not balanced, which is described by an eccentricityε. The
phasing ofε is – without any loss of generality – set to zero. The journals are, in contrast to the disc, assumed to be
perfectly balanced. The coordinates are given bywW andvW for the geometric center of the disc andwL andvL

for the journals in thez- andy-direction. The equation of motion for a constant rotational velocity and linearized
bearing forces is given by







mS

mS

2mZ

2mZ






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ẅW
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ẅL
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
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

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 .

(5)

A sketch of the system can be found in a contribution ofDohnal et al.(2015) or in any book on rotor dynamics.
By means of the reference frequencyω0 and the bend-critical speed in rigid bearingsωk,

ω2
0 =

(mS + 2mZ)g

hn mS
=

2Fstat

hn mS
and ω2

k =
k

mS
,

equation (5) is converted into a dimensionless form. It turns out, that the behavior of the system is described by
some few parameters. These are: the stiffness ratioκ, the Sommerfeld numberSo0, the mass ratioμ and the ratio
of the bearings width and diameterB/D. The definitions are given by

κ =
2Fstat

hn

1
k

=
ω2

0

ω2
k

, So0 = So
Ω
ω0

=
Fstat ψ

2

BDηoil ω0
and μ =

2mZ

mS
.

The parameterκ can be interpreted as a ratio between the bearing’s and the shaft’s stiffness. Forκ→0 the system
behaves like a rigid rotor in journal bearings. The Sommerfeld numberSo0 is a dimensionless load parameter.
It is calculated with the reference frequencyω0 and thus constant for a specific rotor design. For the most cases,
the Sommerfeld number is defined using the minimal clearance (see alsoDIN (1996)), ψmin = hmin/RS . Due
to the fact thathmin is varying in dependence of the preload factorδ, the nominal gap is chosen to calculate the
Sommerfeld number,ψ = hn/RS . The parameterμ describes the ratio between the two journal masses and the
mass of the disc. TheB/D ratio of the bearing is set to 0.5 in the shown investigations.

To begin with the systems behavior at constant rotational speedsΩ, figure2 shows the vibration amplitude of the
discGS/|ε| (semi-major axis) and the onset speed of instability for different preload factorsδ. It can be seen that in
the vicinity of the bend-critical speed atη0≈1.3 the maximal amplitudes are getting larger, the higher the preload
factor is. This arises due to different stiffness and damping properties, what results in a lower damping ratio.

Hence, for the passage trough the resonance a low preload factor is set. For higher rotational speeds, the preload
factor is increased to have a larger stability reserve as well as a higher load carrying capacity. Even if figure2 is
only valid for constant rotational speeds, the tendency is also given for non-stationary processes like run-ups. An
experimental investigation at constant speeds is quite difficult, due to the fact that the amplitudes of the journals
are getting to large, what violates the assumption of an equilibrium position (see equation (4)) at a certain value.

The individual subjects of maximal resonance amplitude, onset speed of instability and load carrying capacity are
discussed in the following subchapters.
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Figure 2::. Vibration amplitude of the discGS/|ε| and onset speed of instability for different preload factorsδ
(parameters:So0 =1, κ=0.5, μ=0, B/D=0.5)

3.1 Reduction of the Amplitudes during Resonance pass trough

Figure3 shows the maximum amplitudes ofGS/|ε| in dependence of the specific Sommerfeld numberSo0 for
a constant value ofκ=1. It can be seen, that especially for low Sommerfeld numbers the maximum amplitudes
differ significantly. Concerning to the amplitude reduction, this is the application area of the adjustable journal
bearing. For high Sommerfeld numbers the effect vanishes. This is because the journal center is located at low
position on the locus (G̈umbel curve) and the pressure build-up occurs mainly in the lower segment.

To evaluate the potential for vibration suppression, the maximum amplitudes are compared to a lemon bore bearing
with a typical preload factor ofδ=0.65 (see alsoDIN (1996) or Glienicke(1966)). As a measure, the quantity

R = 1 −
Gmax,δi

Gmax,δ=0.65
with δi = 0, 0.4, 0.5 and 0.6 (6)

is defined. Figure4 showsR for different values ofκ. As already mentioned, a vibration suppression can only be
achieved for small specific Sommerfeld numbers. Beyond this, the parameterκ plays an important role. For small
values ofκ, the gradient ofR with respect toSo0 is relatively weak in comparison to bigger values ofκ, which
results in a larger application area. Ifκ is getting larger, in other words the shaft stiffness decreases in comparison
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Figure 3::. Maximum amplitudesGS,max/|ε| in dependence of the specific Sommerfeld numberSo0 for different
preload factorsδ (parameters:So0 =1, κ=1, μ=0, B/D=0.5)
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Figure 4::. Comparison of the potential for vibration suppressionR for different values ofκ
(parameters:μ=0, B/D=0.5)

to the bearing stiffness, the damping properties of the bearings can not entirely reach the disc, what narrows the
effect. Forκ→∞ the system behaves like a Jeffcott rotor in rigid bearings (concerning the resonance behavior),
an influencing by the bearings is not possible.

3.2 Change of the Onset Speed of Instability

For a safe operation of a rotor system, the operational rotating speed should have a certain margin to the onset
speed of instability. Above this speed, self-excited vibrations will occur, which lead to a damage or in the worst
case to a destruction of a machine. Multi-lobe bearings are known for its good stability behavior in comparison to
cylindrical bearings (comparison atSomin =Fstat ψmin/(B D ηoil Ω)= const.), see also the book ofGasch et al.
(2001).

Figure5 shows the onset speeds of instability for the same system parameters already used in figure4. Generally,
the onset speed of instability decreases with a decreasing shaft stiffnessk. Furthermore it can be said, that the
higher the specific Sommerfeld number is, the higher is the onset speed of instability (except for very small values
of So0). Comparing the graphs based on different preload factors, it turns out that for a decreasing shaft stiffnessk
(increasingκ) the individual onset speeds of instability are getting closer to each other. This is especially the case
for low specific Sommerfeld numbers. For example forκ=2, here the difference nearly vanishes, the onset speed
of instability depends mainly onωk.

As a conclusion, the application area for an adjustable journal bearing concerning the onset speed of instability is
given for tendentially high specific Sommerfeld numbers and small values ofκ.
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Figure 5::. Comparison of the onset speeds of instabilityΩGr/ω0 for different values ofκ
(parameters:μ=0, B/D=0.5)

3.3 Load carrying Capacity

A further subject is the load carrying capacity of the bearing. For this, the residual gap related to the minimal gap,

hres

hmin
=

hres

hn

1
1−δ

, (7)

can be used as a measure, see also the book fromLang and Steinhilper(1978).

The higher the residual gaphres/hmin, the higher is the load carrying capacity. A comparison of different bearing
types (comparison atSomin =Fstat ψmin/(BDηoil Ω)=const.) yields, that the cylindrical bearing has the highest
load carrying capacity (see alsoLang and Steinhilper(1978)). In the presented bearing design, the geometric shape
and the minimal gap is changed due to the adjustment, at what the latter one has a higher influence.

Figure6 shows the load carrying capacity for different preload factors. Mind that the curves are plotted against
the Sommerfeld numberSo, due to the fact, that the load carrying capacity is a pure bearing property. Forδ =0,
or in other words for the largest gap, the load carrying capacity is relatively low. Increasing the preload factor,
respectively decrease the minimal gap, leads to a significant higher pressure build-up in the bearing and thus to a
a higher load carrying capacity. This effect is for lower Sommerfeld numbers more distinct. Note, that the load
carrying capacity has to be reduced during the resonance pass trough.

It is to mention, that the non-referenced residual gaphmin is decreasing with an increasing preload factorδ
for So<1, for So>1 it is nearly independent fromδ.
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Figure 6::. Residual lubrication gap in dependence of the Sommerfeld number for different preload factors

3.4 Conclusion

The investigation of a simple flexible rotor in adjustable journal bearings showed the fundamental effects concern-
ing amplitude reduction, onset speeds of instability and load carrying capacity. If an application is useful in a real
machine, these (and surely more) subjects have to be investigated for a specific machine design. As a simple rule
it can be said, that the stiffness of the bearing and the shaft should be of the same order, respectivelyκ=O(1).

4 Experimental Setup and Validation

To validate the effect of amplitude reduction
during the resonance pass trough, a test rig is
set up, see figure7. An AC-servomotor is used
as drive, it is connected with a double cardan
joint to the shaft. The shaft is supported by two
ball bearings at the driving end, which function
as simple suspension, and the adjustable journal
bearing at the opposite side. The position of
the upper bearing segment is adjusted by a high
voltage piezo stack actuator with a maximum
stroke of200 μm. By means of an active magnetic
bearing, additional stiffness and damping properties
can be generated. In this manner, a change of the
shaft stiffness and the influence of other damping
sources can be investigated. Furthermore, the test
rig contains two discs including retainer bearings.

disc 1

..............

disc 2

Adjustable
journal bearing

AMB
AC motor

two ball
bearings

Figure 7::. Picture of the test rig

Disc 1 is located between the magnetic bearing and the journal bearing, disc 2 is overhanging at the end of the test
rig. Their deflections are measured using eddy current sensors. Due to its overhanging position, disc 2 shows the
largest deflections, therefore it is mainly used for the analysis of the measurements.

The systems behavior is described by a MDOF model, see figure8, using a modular system based on a finite
element formulation. The shaft is modeled as Euler–Bernoulli beam, each individual element has a constant
bending stiffnessEIj and a column mass densityρAj . The journals of the magnetic bearing and the journal
bearing are approximated as point masses, for the discs the moments of inertia are additionally considered. The
forces from magnetic and journal bearing are indicated asFAMB andFL.

To update the model, a hammer testing of the running rotor (atδ = 0) was performed. In a first step, masses and
E-moduli were optimized to fit the first two bend-critical frequencies. After this, the damping was optimized using
Rayleigh damping (stiffness term only),B=βK. The first bend-critical speed is about 1020 min−1.
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Figure 8::. Mechanical model of the test rig

4.1 Run-up Processes

Figure9 shows the measured and simulated results of two exemplary run-up processes. Here, the deflection of
disc 2

|rS,2| =
√

w2
S,2 + v2

S,2 , (8)

whose steady component is eliminated, is plotted against the time. The bearing forces were calculated with a non-
linear force model (equation3). Both, experiment and simulation exhibit that the maximum amplitude is increasing
with the preload factorδ, as predicted in subchapter 3.1. The amplitude reduction for this example is about24.2%.
The agreement between experiment and simulation is satisfying.
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Figure 9::. Exemplary run-up processes with different preload factorsδ; experiment (left) and simulation (right)

Run-up processes were carried out for different preload factorsδ. Figure10 shows the resulting maximum am-
plitudes in a bar graph. For low preload factorsδ = 0. . . 0.4, the maximum amplitude is de facto the same. This
is also predicted by the model (see also figure2). A further increase ofδ leads to higher maximum amplitudes.
The reduction betweenδ = 0.7 andδ = 0 amounts to25.2% and betweenδ = 0.7 andδ = 0.3 it is about23.5%.
Hence, the adjustment must not be accomplished over the full range ofδ. For an application, the travel range of an
actuator can be chosen smaller. Furthermore, the decrease of the load carrying capacity is not that large during the
adjustment. The agreement between experimental and simulated results is satisfactory. The maximum deviation
(at δ =0.7) is about5%. A good result, considering that the model has been optimized for the value ofδ =0. An
optimization of the bearing model itself was not performed.

After the passage of the bending critical speed, the preload factorδ is set to larger value. A change of the stiffness
and damping properties during the operation leads to natural vibrations. These vibrations decay quickly, due to the
fact, that the damping ratios even after the resonance are relatively high. In general, the lower the change rate of
the preload factorδ, the lower the arising natural vibrations.
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4.1.1 Additional stiffness and damping due to an active magnet bearing

To investigate the influence of a modified stiffness relation between shaft and bearing and to examine the influence
of other damping sources in the system, experiments using the magnetic bearing were performed. The force of a
magnetic bearing, here exemplary for thez-direction, operating with aPD controller is calculated and linearized to

FAMB = (ki P − ks)w1 + ki Dẇ1 = kAMB w1 + bAMB ẇ1 . (9)

At this, the parameterski andks are physical constants,P andD describe proportional and derivative gains. An
operation with a pureP or D controller is not possible due to technical reasons, so both quantities have at all times
values greater than zero.

For an adjustment of the stiffness relation, the proportional gainP is varied. The bend-critical frequency increases
about2.5 Hz, this corresponds to a decrease ofκ. According to the theory, see figure4, the amplitude reduction
increases. Table1 lists the result. A difference is detectable, but it is relatively weak. The standard deviation,
calculated on a base of four measurements for each experiment, is one order smaller. However, the difference in
amplitude reduction between minimal and maximalP -gain mounts to 3.8 percentage points.

Table 1::. Maximum amplitudes max{|rS,2|} in dependence of different proportional gainsP (D=0.01As/mm)

proportional gain δ=0 δ=0.65 Reduction

P =10A/mm 0.790mm 1.045mm 24.3%

P =15A/mm 0.762mm 1.041mm 26.8%

P =20A/mm 0.743mm 1.034mm 28.1%

In a real-world rotor, there are several sources of damping, for example due to a surrounding fluid, material damp-
ing or other bearings. To capture this influence, experiments with different derivative gainsD have been carried
out. The results are listed in table2. At these experiments, the difference between minimal and maximalD gain
is about 7 percentage points. Hence, additional damping can decrease the effect of amplitude reduction. For
an eventual designing of a rotor system with an adjustable journal bearing, potential damping sources should be
considered.

Table 2::. Maximum amplitudes max{|rS,2|} in dependence of different derivative gainsD (P =10A/mm)

derivative gain δ=0 δ=0.65 Reduction

D=0.01As/mm 0.795mm 1.078mm 26.3%

D=0.03As/mm 0.622mm 0.788mm 21.1%

D=0.05As/mm 0.551mm 0.682mm 19.3%
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4.2 Measured and calculated Onset Speeds of Instability

Besides the run-up simulations, also the onset speeds
of instability were measured. For this purpose the ro-
tational speed is raised in small steps. If the rotor starts
to carry out vibrations with the bend-critical frequency,
what is good to observe in a real-time FFT, the onset
speed of instability is found and the rotational speed has
to be lowered immediately to avoid damage. This proce-
dure is repeated for several values of the preload factorδ.

Figure11shows the experimental and numerical results.
The present behavior – a decrease of the onset speed of
instability for high preload factors – is not observed in
this extent investigating the Jeffcott rotor. The reasons
for this are effects, which are not shown by the inves-
tigated Jeffcott rotor, this is for example a shift of the
onset speed of instability caused by gyroscopic effects
due to the overhung disc. An important point is, that
experiment and simulation show a similar global be-
havior. However, the differences between measured and
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Figure 11::. Measured and calculated (based on bearing
data from different sources) onset speeds of
instability

simulated results are with values up to15% satisfying only to a limited extent. Even comparing theoretical results
based on different bearing data results in a relatively high scattering.

The determination of onset speeds of instability is especially for non-circular bearings difficult, due to the fact that
a small change in the Sommerfeld number (e. g. by a change of the oil temperature) can lead to a significant change
of the results (see alsoGasch et al.(2001)).

5 Conclusions

In this paper, an adjustable journal bearing for the vibration reduction of flexible rotors is presented. An investiga-
tion of the Jeffcott rotor supported by such bearings shows the basic effects. It turns out, that a designing has to be
made among others with respect to the reduction of the maximum amplitude during the resonance pass trough, the
onset speed of instability and the load carrying capacity. For a validation, a test rig is set up. The experimental re-
sults show, that the effect of amplitude reduction arises. Numerical results using a simple mechanical model agree
with the experiments. Furthermore, the influence of additional stiffness and damping properties is investigated,
which influence the maximum amplitude more or less. Finally, measured and calculated onset speeds of instability
were compared.
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Strength Assessment of a Precession Driven Dynamo

S. Rother, M. Beitelschmidt

A pressure vessel, which shall be filled with eight tons of liquid sodium, has to be designed for a large-scale experi-
mental setup to investigate flow-induced magnetic fields. In addition to the centrifugal forces and gyroscopic loads
induced by the rotation about two non-parallel axes, the complex internal pressure distribution, the imbalance of
the container, as well as the thermal loads resulting from the elevated temperatures, which are required for the
experiments, must be taken into account. This leads to several millions of load cases. That is why a calculation
procedure is developed using the finite element method, which strongly reduces the computational complexity by
utilizing sector symmetry, load case decomposition and superposition. Here, the focus is to determine the most crit-
ical load cases, which will be used for the strength assessment, regarding both the static and the fatigue strength.
Besides the structural strength, the welded joints and the bolted joints are analyzed. Therefore, nonlinear effects
are considered, for example the contact status of the bolted joints. The submodelling technique is used to investi-
gate structural details.

1 Introduction

Within the framework of the project DRESDYN (DREsden Sodium facility for DYNamo and thermohydraulic
studies) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) experimental investigations of flow-induced mag-
netic fields will be performed (Stefani et al., 2012). This is comparable to the processes in the outer earth’s core,
in which iron and nickel are present in liquid form. In conjunction with an existing magnetic field, the flows of the
liquid metal induce an electric current, which in turn produces a magnetic field. If the flows show a sufficiently
helical shape, the original field is amplified and a stable magnetic field develops, called the homogeneous dynamo
effect. The aim of the experiment is to investigate whether rotation and precession of astronomical objects serve as
source for the described self-excitation of magnetic fields. The rotation and precession corresponds to the rotation
of the earth about its axis within 24 h and the rotation of the earth’s axis around the normal of the ecliptic plane
with a cycle of 25,700 years.

According to Stefani et al. (2008) the formation of the described flow phenomena requires a critical magnetic
Reynolds number Rm = µ0σvL, where µ0 describes the magnetic field constant, σ the electrical conductivity,
v the flow velocity, and L a characteristic length. Since the dimensions that can be realized in the test facility
are limited, high rotational speeds are necessary. Sodium is chosen as liquid metal, which on the one hand is
characterized by a low density, a low melting temperature and a high electrical conductivity, but on the other hand
ignites when exposed to air humidity and thus requires strict safety precautions. To avoid corrosion, all components
being in contact with sodium will be made of austenitic steel 1.4571.

The test facility designed by SBS Bühnentechnik GmbH is shown in Figure 1. A cylindrical pressure vessel with
an inner diameter and a length of two meters, which has conical ends and can be filled with about eight tons of
liquid sodium, is located in its center. The vessel shall rotate with a maximum frequency of 10 Hz and is positioned
on a platform, which itself can rotate with up to 1 Hz about the vertical axis. The angle between the two rotation
axes can be varied between 45◦ and 90◦ by a swivel frame.

The required flows should develop inside the cylindrical volume in the center of the pressure vessel (Figure 2).
Rectangular wings can be extended into the flow to guide the fluid and thus reduce the turbulence. 40 sensor
flanges in total are distributed on the cylinder wall allowing access for the measurement equipment. Because of the
two rotations, no equalization of the volume expansion to the outside is possible. Therefore, the thermal expansion
due to the warming of the sodium must be internally compensated. For this purpose, two argon-filled compensators
in the cones prevent a critical rise of pressure. The conical shape is necessary to empty the container completely at
a swivel angle of 42◦.
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Figure 1: Setup of the test facility (provided by SBS Bühnentechnik GmbH).

As a result of the high rotational speeds and the hazard potential of the sodium, failure during operation must be
reliably excluded. That is why the strength assessment of the vessel is performed in accordance with the FKM
Guideline (FKM, 2012), using the finite element method (FEM) to determine the stresses. The FKM Guideline is
also used to assess the welded joints, while the bolted joints are evaluated according to VDI 2230 Part 1 (2014).
For the following experimental validation of the numerically calculated pressure distributions water is used instead
of sodium.

2 Loads

Determining the stresses requires the consideration of all loads present at the structure, which are shown in Figure 3.
The mechanical loads result from the rotation about two non-parallel axes, leading to a gyroscopic moment of
almost 8 · 106 Nm. The rotation about the longitudinal axis of the container is described by the angular velocity ω1

in the model, while the platform rotation is expressed by the angular velocity of the global reference system ω2.
The ratio of the angular velocities describes the precession ratio

η =
ω2

ω1
. (1)

In addition, the radial and the axial imbalance have to be taken into account. Since the latter directly results from the
asymmetric structure, especially at the bearings, it is explicitly included in the finite element model and thus does
not require a separate consideration. In contrast, the radial imbalance due to manufacturing-related inaccuracies
cannot be completely compensated during balancing. The defined balancing quality limits its maximum value,
but its direction is unknown. As a consequence, the most unfavorable load combination has to be used for the
strength assessment. The weight force is also considered, although it is of minor importance because of its small
magnitude.

Much higher loads result from the fluid-structure interaction, whereby the pressure distribution strongly depends
on the precession ratio (Figure 4). In case of no precession (η = 0), the pressure distribution is equal to that of
a solid-body rotation. Hence, the pressure p increases with the radius r corresponding to p ∼ r2 and reaches a
maximum of 20.7 bar. With rising precession ratio, the gyroscopic moment acting on the fluid leads to a pressure
difference in the circumferential direction. Since the pressure distribution is constant in the coordinate system of
the platform and does not rotate with the container, a cyclic load is caused. At high precession ratios (η → 0.1),
the former laminar flow turns into a turbulent flow, which accompanies with a significant decrease of the pressure
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Figure 2: Sectional view of the pressure vessel.

Figure 3: Overview of the loads present at the vessel for a swivel angle of 90◦.

maximum. Because of the strong guidance of the fluid in the conical volumes of the vessel due to the numerous
internal installations, the pressure distribution corresponds to a solid-body rotation for all precession ratios. This
can lead to high pressure differences at the internal walls between the cylinder and the cones.

As the sodium experiments will be performed in a temperature range between 110 ◦C and 170 ◦C, thermal loads
have to be taken into account to determine the thermal stresses. The ambient air is restricted to a maximum
temperature of 60 ◦C in order to ensure the functionality of all electronic devices. The temperature difference
between the surface and the environment causes a heat transfer by convection and heat radiation. Due to the
high surface speed of the vessel (≈ 65 m/s), forced convection is of particular importance even for the water
experiment where the maximum temperature is limited to 85 ◦C. At high precession ratios, a large portion of the
applied engine power of 800 kW is converted into heat by friction due to turbulence. So, the sodium warms up
from 110 ◦C to 170 ◦C within about 25 minutes. In contrast, at low precession ratios corresponding to a laminar
flow the sodium cools down from the selected initial temperature of 170 ◦C, since no appreciable heat conversion
occurs. As a result of the low heat conductivity of the stainless steel, high temperature gradients are obtained in
the vessel, which are determined in a transient analyses and are accompanied by high thermal stresses.

All described loads are superimposed for the strength assessment of the vessel. Due to the numerous influencing
variables such as precession ratio, swivel angle, angle of rotation, direction of the radial imbalance and number of
time steps for the computation of the thermal stresses, several millions of load cases occur. Thereby, the rotational
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Figure 4: Pressure distribution on the cylinder wall as a function of the precession ratio (Giesecke et al., 2014;
Stefani et al., 2014).

motion is discretized in steps of 5◦. Since a numerical solution of all load cases is not possible, the number of
load steps has to be reduced by several orders of magnitude. For this purpose, a calculation algorithm has been
developed which will be discussed in more detail in the next section.

3 Computation Algorithm

Figure 5 illustrates the general calculation process starting with the geometry, which is provided by the construction
department, ending with the visualization of the utilization ratios. Here, the focus is on the computation of the
stresses and the determination of the most critical load cases. Hence, the number of load cases solved within the
finite element software has to be reduced from several millions to a manageable level. This requires a more precise
analysis of the loads, the geometry and the material properties. The aim is to decompose the complex loads and
afterwards to superpose the resulting stresses. The decoupling of the thermal and the mechanical field problem
resulting from neglecting the piezocaloric effect, is an essential precondition. Therefore, the temperature field is
computed in the first step before determining the thermal stresses. The temperature dependence of the material
properties is negligible in the examined temperature intervals. In accordance with the FKM Guideline linear-elastic
material behavior has been assumed (FKM, 2012). Furthermore, the bolted joints are linearized for the load case
identification and the components are connected by bonded contact in the clamping area as described for model
class I of VDI 2230 Part 2 (2014). Since a large sliding distance at the interface has to be avoided in general, this
linearization does not constitute a restriction with respect to the global structural behavior. The resulting linear
model is valid for the applied load case superposition. However, a separate analysis of the bolted joints has to be
performed afterwards.

3.1 Computation of Stresses

Three different angles between the two angular velocity vectors are considered for the strength assessment. On the
one hand, the horizontal position of the container (swivel angle 90◦) and on the other hand a swivel angle of 45◦,
taking into account both directions of platform rotation. It is necessary to distinguish between these two variants of
rotation directions, as for one case the effective angular velocity of the container increases while it decreases for the
other one. This has a strong influence on the expected pressure distribution. Preliminary numerical studies proved
that a restriction to four precession ratios ensures a safe dimensioning. In addition to the cases of no precession
(η = 0) and maximum precession (η = 0.1), these precession ratios are η = 0.03, where the highest pressure
amplitude occurs, and η = 0.08. This latter is a combination of a high pressure amplitude and a large gyroscopic
moment, because it is present shortly before turning from the laminar to the turbulent flow.

As it can be seen in Figure 6, the stress computation is divided into three parts and is performed for each swivel
angle and all four precession ratios. First, the thermal stresses are calculated, which is connected to the transient
solution of the temperature field and takes place at intervals of 100 s. Because of the model symmetry and the
symmetrical thermal load, the use of a quarter model is sufficient at this point. This is followed by the determination
of the stresses due to the radial imbalance and the other mechanical loads. In the latter case, the rotation angle of
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Figure 5: Flowchart of the calculation algorithms for the strength assessment.

the vessel, which is discretized in steps of 5◦, represents the crucial parameter. Regarding the mechanical loads,
it is necessary to evaluate a complete stress period. Except for the weight force, all loads appear either in the
body-fixed or in the platform-fixed coordinate system. However, since the direction of the weight force coincides
with the axis of rotation of the platform, it is identical in the inertial system and in the platform-fixed coordinate
system. For this reason, the investigation of one rotation of the vessel about its longitudinal axis is sufficient.
Here, in general the load is not symmetric, which requires a full model. The sector-symmetrical design of the
pressure vessel allows the reconstruction of a full rotation from a quarter turn. When the load is rotated through
90◦, the stress distribution is equivalent to the case where the container is rotated through 90◦ with an unchanged
load direction. The load resulting from the imbalance can be composed of two perpendicular components. That is
why one load step is sufficient to determine a complete revolution by using sector symmetry. Due to the complex
pressure distribution this procedure cannot be applied for the other mechanical loads.

In order to minimize both the effort involved in the preprocessing and in the postprocessing, a quarter model is
created and completed to the full model by 90◦ rotation. The nodes at the interfaces are merged in order to connect
the segments. This procedure ensures that each node in the original quarter model has three corresponding nodes
in the other segments. Thus, no stress interpolation is needed and the quarter model is sufficient for the strength
assessment.

The reduction of the computational effort is demonstrated using the example of the sodium experiment with the
precession ratio η = 0.1 and a certain swivel angle. Instead of computing all combinations of 72 rotation angles,
72 imbalance directions and 16 time steps, the finite element model system only has to be solved for 18 rotation
angles, 1 imbalance direction and 16 time steps. Hence, the number of load cases reduces from 82,944 to 35.

The load of the radial imbalance can be adapted to the current angular velocity by scaling and thus to the swivel
angle. Besides, this load does not depend on the precession ratio. Furthermore, for the precession ratio η = 0 a
distinction between the platform rotation directions becomes superfluous. Instead of many millions of load cases,
the calculation effort is reduced to a few hundred, as illustrated in Figure 7.

In addition, the used linearization has a further advantage. The stiffness matrix always remains constant, while the
load vector changes between each load case. As a consequence, the factorization of the system matrix must be
performed only once for the quarter model and the full model. Afterwards, the load vector is varied, which reduces
the computational costs drastically, especially if sufficient internal memory is available to store the factorized
matrix.
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Figure 6: Segmentation of the stress computation to reduce the number of load cases combining the rotational
speeds, the gyroscopic effects, the internal pressure and the weight force under further mechanical loads.

Figure 7: Load case combination and methods to reduce the computational effort. The number of variants is
indicated below the variables.

3.2 Load Case Superposition and Strength Assessment

All possible load combinations are reconstructed from the calculated stresses in order to identify the most critical
load case for the strength assessment. This is done separately for the static strength and the fatigue strength.
According to the FKM Guideline (FKM, 2012) different concepts are applied to assess the non-welded sections
and the welded joint. In addition, the bolted joints are examined via VDI 2230 Part 2 (2014).

The evaluation is conducted separately for each node and each bolt respectively with the strength values being
always related to the maximum temperature. The fatigue assessment is carried out for an infinite number of load
cycles, since the planned operating time of 2000 h with the maximum rotation frequency of 10 Hz corresponds to
7.2 · 107 cycles. This also allows the user-specific distribution of the different swivel angles and precession ratios,
because no stress spectrum has to be predefined. The stresses due to the imbalance are constant as the direction
does not change during operation. Furthermore, the thermal stresses can be regarded as quasi-static because one
temperature cycle consisting of heating and cooling takes several hours, resulting in a frequency, which is many
orders of magnitude lower than the rotational frequency. Therefore, the determination of the stress amplitudes is
limited to the mechanical loads.

Due to a sufficiently fine mesh, the stresses can be interpreted as local stresses for the non-welded areas. The
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computational effort is reduced by analyzing only the surface nodes of the quarter model because of the sector
symmetry and the fact that a potential crack is expected to start at the surface. For the static strength assessment
the maximum von Mises stress is evaluated for all load case superpositions and then the combination with the
highest value is determined. Plastic deformations are only taken into account for structural details, where the
assessment cannot be provided otherwise. However, the material has high strength reserves by strain hardening
that are considered during the strength assessment.

The largest stress amplitude is determined separately for each stress component during a full rotation. In order
to obtain an equivalent utilization ratio, the amplitudes are combined according to the von Mises hypothesis. The
load case combination with the highest equivalent stress amplitude is considered for the strength assessment. In a
second step the influence of the mean stress is taken into account, whereby the fatigue resistance decreases with
increasing mean stress. That is why the load case combination with the maximum mean stress is detected including
the constant stresses due to the imbalance and the quasi-static thermal stresses, which is used for the calculation
of the utilization ratio. Since this is performed separately for every node, supporting effects in the case of high
stress gradients are not considered because the determined stresses at adjacent nodes do not necessarily belong to
the same load case.

During the strength assessment of welded joints it is necessary to distinguish between butt welds and fillet welds.
The stresses at the butt welds can be directly interpreted as local nominal stresses. As the welds are positioned at
a sufficient distance from geometrical notches, no high stress gradients occur allowing the use of the fatigue resis-
tance values (FAT classes) for nominal stresses. For the fillet welds structural stresses are considered. However,
surface extrapolation (hot-spot method) as recommended by the International Institute of Welding (Hobbacher,
2007) is not feasible for the given geometry. For this reason, the concept of Haibach (Haibach, 1968) is used,
according to which the structural stress is determined at a distance of 2 mm from the weld toe. The obtained struc-
tural stresses are used only to identify the most critical load cases, which are assessed by effective notch stresses
afterwards. Therefore, the weld toes are rounded with a radius of 1 mm (Fricke, 2008). This can only be applied
in combination with submodelling techniques because of the very fine mesh and the large number of degrees of
freedom. Hence, it is necessary to identify the critical load cases and places for crack initiation in the global model.

The static strength assessment is mainly analogous to the non-welded areas, since only the equivalent stress σv

σv =
√
σ⊥2 + τ‖2 (2)

differs taking into account the stress perpendicular to the weld σ⊥ and the shear stress parallel to the weld τ‖
(FKM, 2012). In the first step of the fatigue strength assessment again the highest stress amplitude is determined,
while in the second step the load case combination with the maximum mean stress is detected. According to FKM
(2012) the equivalent stress amplitude σav

σav =
1

2
·
(
|σa⊥ + σa‖|+

√
(σa⊥ − σa‖)2 + 4 · τa‖2

)
(3)

follows, where σa⊥ and σa‖ describe the amplitudes of the stress components perpendicular and parallel to the
weld while τa‖ stands for the amplitude of the shear stress.

For the bolted joints, the linearized model is used to identify the most critical load cases and the most heavily
loaded bolts. Since the components, which should be bolted together, are connected within the non-overlapping
clamping area, the contact loads can be used to infer the transmitted load at each bolt. Here, the tensile force as
well as the shear force and the bending moment are of particular interest. If materials with different coefficients of
thermal expansion are screwed, as in case of the flanges connecting the main assemblies of the vessel, the change of
pretension due to heating must be considered. The load case identification is performed separately for the different
load components as a weighting with respect to their effect in the nonlinear model is not yet possible. Afterwards,
a finite element model of model class III according to VDI 2230 Part 2 (2014) is used for a detailed analyses and
the strength assessment. Therefore, the bolts are modeled as equivalent cylindrical volumes. Both the pretension
of the bolts and the contact status, including the friction between the clamped components, are taken into account,
which inevitably leads to a nonlinear model. However, due to the restriction to a few load cases the computational
effort remains manageable. For the static strength assessment the stresses at maximum preload are of interest.
In contrast, for the fatigue strength assessment the minimum preload must be applied, considering the tightening
factor and the amount of embedding, since the highest stress amplitudes result in this case. The simplified screw
model leads to stress singularities under the bolt head and in the thread. That is why the nodal reaction forces are
used for the computation of the nominal stresses, which are needed for the strength assessment.
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4 Results

The complexity of the vessel does not allow to include all structural details within one finite element model, since
the resulting degree of freedom would clearly exceed the computational feasibility. Therefore, a global model
is used, first considering only the outer wall of the container and the parts connected to the bearings in detail.
The conical ends and the interior walls have a coarse mesh, which does not allow the evaluation of local stresses.
However, the model contains the inertial effects and the global deformations of these assemblies. Figure 8 displays
the results of the static strength assessment for the outer wall of the vessel. Here, the utilization ratio which is
defined as the quotient of the acting stresses and the allowed stress reaches a maximum of approximately 89 %.

Figure 8: Utilization ratio for the static strength assessment of the vessel.

The result of the fatigue strength assessment of the welded joints is shown in Figure 9. Here, the maximum
utilization ratio is 96 %, thus both assessments are fulfilled. The guideline-specific safety factors are already
included in these values. The sensor flanges, the cones, the interior assemblies and the bolted joints are examined
separately using submodels. Furthermore, the strength assessment of the fillet welds with effective notch stresses
requires additional submodels.

Figure 9: Utilization ratio for the fatigue strength assessment of the welded joints.

5 Summary

A concept was developed for the computational strength assessment of a precession driven dynamo to explore
planetary magnetic fields. The various thermal and mechanical loads acting on the pressure vessel lead to several
millions of load cases. By decoupling the thermal and mechanical field, linearization, utilization of sector symme-
try and dividing the stresses into the thermal stresses, the stresses due to imbalance and the stresses resulting from
the other mechanical loads, the computational effort is drastically reduced by several orders of magnitude. Stress
superposition allows to identify the most critical load cases and load case combinations respectively needed for the
strength assessment. Therefore, it must be distinguished between the non-welded structure and the welded joints.
In both cases the FKM Guideline is used, while the bolted joints are proved according to VDI 2230.
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Bifurcations of Relative Equilibria Sets of a Massive Point on Rough
Rotating Surfaces

A. Burov, E. Shalimova

Dynamics of a massive point on a rotating wire or surface under dry friction force action is considered. Existence,
stability and bifurcations of non-isolated relative equilibria sets of the point located

- on a sphere uniformly rotating about an inclined fixed axis;

- on a thin circular hoop rotating about an inclined fixed axis;

- on a paraboloidal bowl uniformly rotating about its axis

are studied. The results are represented in the form of bifurcation diagrams.

1 Introduction

Problems similar to those considered in the present paper arise when we study dynamics of mechanical systems
with rotating parts performing various operations such as mixing, grinding, drying, etc. of diverse substances
(Joshi et al. (1995)), as well as, self-compensating systems (van de Wouw et al. (2005)).

Modern advances in computer simulation (Fleissner et al., 2010; Alkhaldi et al., 2008) allow to investigate dy-
namics of systems with a large number of moving parts numerically. However it is usually difficult to perform the
qualitative analysis of the obtained results. That is why it is reasonable to consider some simple problems such
as the motion of a material particle on some mobile surface or curve under the action of a friction force. It turns
out that appropriate mechanical systems exhibit rather complicated behaviour even be considered in this simple
formulation.

One of the main points relates to existence of non-isolated equilibria, in particular, of relative equilibria. Though
existence of non-isolated equilibria for systems with dry friction has been known for a long time (cf. Kauderer
(1958); Magnus (1976)), systematic investigation of their stability properties and dependence on parameters at-
tracted attention of specialists much later (Pozharitsky, 1962; Matrosov and Finogenko, 1998; Leine and van de
Wouw, 2008; Ivanov, 2009; Burov, 2010; Biemond et al., 2012; Burov and Yakushev, 2014; Ivanov, 2015; Burov
and Shalimova, 2015, 2016; Várkonyi and Or, 2016)).

2 Formulation of problem and equations of motion in redundant coordinates

Consider a massive point P of mass m moving on a rotating surface A. Let O be an origin of a moving frame
Ox1x2x3 (MF). In this frame −−→OP = x = (x1, x2, x3)T , and the surface A is given as

ϕ = ϕ(x) = 0. (1)

Furthermore we assume that the point P is moving under the action of potential active forces with a potential

U ′(x) = mU(x). (2)

A Coulomb friction force F with a coefficient of friction µ appears between the point P and the surface A. This
surface is assumed being in rotation with an angular velocity ω = (ω1, ω2, ω3)T .
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The motion of the point can be described by

ẍ = FC + Fc + FN + N + F. (3)

Here, FC = 2ẋ × ω, Fc = (ω × x) × ω, FN = −Ux, N = λϕx = Nn and F are Coriolis force, centrifugal
force, potential force, normal reaction force and friction force, respectively;

n = ϕx |ϕx|−1 ,
(
ϕx

def
=

∂ϕ

∂x

)
is a unit external normal to the surface. All these forces are divided by m. A magnitude of the normal reaction
reads

N = (N,n) = λ (ϕx, ϕx) |ϕx|−1 = λ |ϕx| .

The multiplier λ can be determined via a standard way. It reads

λ = − (ϕx, ϕx)
−1

[(ϕxxẋ, ẋ) + (ϕx,FC + Fc + FN )] ,

(
ϕxx

def
=

∂2ϕ

∂x2

)
. (4)

The sign of λ determines the direction of the normal reaction.

Determining the friction force, one must distinguish two cases (see, for example, Levi-Civita and Amaldi (1930)).
In the case of slipping of the point P on the rotating surface the friction force F is perpendicular to the vector of
the normal reaction N, i.e. (ϕx,F) ≡ 0, and the direction of this force is opposite to direction of slipping.

In the case of the resting point P with respect to the rotating surface the friction force is directed to the side,
opposite to direction of possible slipping. Its magnitude does not exceed the magnitude of the normal reaction,
multiplied by the coefficient of friction. It means that

Fc + FN + N + F = 0, and |F| ≤ µ |N| (5)

yieds

|Fc + FN + N| ≤ µ |N| , (6)

which determines a set of relative equilibria.

Further assume that coefficient of static friction is equal to coefficient of sliding friction.

2.1 Equations of relative equilibria in redundant coordinates

Inequality (6) gives the condition of existence of relative equilibria and depends, in particular, on the vector ω. It
allocates regions on the surface A, ‘filled’ by relative equilibria (RFbRE). By virtue of inequality (6) boundaries
Σ of these regions are determined as

f = 0, (7)

f = (Fc + FN + N,Fc + FN + N)− µ2 (N,N) =

= (ϕx × ((ω × x)× ω − Ux) , ϕx × ((ω × x)× ω − Ux))− µ2 (ϕx, (ω × x)× ω − Ux)
2
.

The curve Γ = Σ ∩ A bounds a set of relative equilibia. Equilibria correspond to points P : f ≤ 0 for all instants
of time.

Remark. The similar approach can be used for describing the sliding of the point P along a curve, if this curve is
given as an intersection of a couple of surfaces.
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3 A point on a sphere

3.1 Description of the mechanical system

A heavy material point P moves on the ‘standard’ sphere S2 under the action of dry friction force. The sphere is
rotating with a constant angular velocity ω about a fixed axis, passing through the center of the sphere O. Let α be
an angle of inclination of the axis. A dry friction force F with a friction coefficient µ acts between the point and
the sphere (Figure 1).

x3

x2

x1

g

P

P`

a

O

x

h

W

Figure 1. A point on a rotating sphere.

Let Ox1x2x3 be a rectangular coordinate system fixed to the sphere with the axis Ox3 coinciding with rotation
axis. The position of the point in this system will be specified by two spherical angles ξ and η. Let ξ be an angle
between the axis Ox3 and−−→OP and η be an angle between the axis Ox1 and

−−→
OP′, where P ′ is the projection of the

point P onto the plane Ox1x2.

Now introduce dimensionless time t 7→ t
√
`/g and dimensionless parameter Ω2 = ω2`/g. The derivatives with

respect to the new time will be denoted by a stroke. Then the system of motion in the relative coordinate system
can be written as

sin2 ξη′2 + ξ′2 = (sin ξ sinα sin(ωt+ η) + cos ξ cosα)− Ñr − Ω sin2 ξ (Ω + 2η′) ,

ξ′′ − sin ξ cos ξη′2 = − (cos ξ sinα cos η sin(ωt+ η)− sin ξ cosα)− F̃ξ + Ω sin ξ cos ξ (Ω + 2η′) ,

sin ξη′′ + 2ξ′η′ cos ξ = − sinα cos(ωt+ η)− F̃η − 2Ω cos ξξ′,

(8)

where F̃ξ = Fξ/mg, F̃η = Fη/mg are dimensionless projections of the friction force on the coordinate axes ~eξ
and ~eη , Ñr = Nr/mg is a dimensionless normal reaction.

3.2 Sets of equilibria

Introducing the angle γ = η − π/2 + ωt, the equilibria can be found from these equations by supposing ξ′ = 0,
η′ = 0, ξ′′ = 0, η′′ = 0. If the point is in a state of equilibrium then

F 2
ξ + F 2

η ≤ µ2N2
r , (9)

Nr = sin ξ sinα cos γ + cos ξ cosα− Ω2 sin2 ξ,

Fξ = cos ξ sinα cos γ + sin ξ cosα+ Ω2 cos ξ sin ξ, Fη = sinα sin γ.
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Using these expressions and inequality (9) one obtains

(− cos ξ sinα cos γ + sin ξ cosα+ Ω2 cos ξ sin ξ)2 + sin2 α sin2 γ ≤

≤ µ2(sin ξ sinα cos γ + cos ξ cosα− Ω2 sin2 ξ)2.
(10)

Figure 2 represents the bifurcation diagrams for different values of the inclination angle α and µ = 0.7. The
equilibria sets can be obtained by a rotation of the angle 2π around an axis that coincides with the rotation axis.
When α = 0 the diagram represents a half of a ‘fat fork’, denoted with F , and a equilibrium set in a form of a
‘needle’, denoted with G, near the axis ξ = 0 that converges to zero when ω → ∞ (Figure 2a, see also Burov
(2010)). With increasing of the angle α the area G and the middle ‘prong’ converge to zero and ξ = π respectively
(Figure 2b), then if α = α? there is only one point between the ‘prongs’ (Figure 2c), and when α > α? there is
only the bigger jag left (Figure 2d) that straightens itself with the further increase of α (Figure 2e). When ω →∞
the bifurcation diagram for every α is a strip with the boundaries ξ = π/2− α? and ξ = π/2 + α?.

Figure 2. Bifurcation diagrams for α = 0, α = arctan(0.7)− 0.1,
α = arctan(0.7), α = arctan(0.7) + 0.1, α = π/2.

4 A bead on a circle

4.1 Description of the mechanical system

The motion of a heavy beadP of massm on a circular hoop with radius `with its center at the pointO is considered.
The hoop rotates with a constant angular velocity ω about an inclined axis lying in its plane and passing through
its center. The angle of inclination of the axis α is constant. A dry friction force F with a friction coefficient µ acts
between the bead and the hoop (Figure 3).
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Figure 3. A bead on a circular hoop.

SupposeOx1x2x3 is a moving coordinate system (MCS) with origin at the center of the hoop, the x3 axis of which
is directed along its axis of rotation, the x2 axis lies in the plane of the hoop and the x1 axis is perpendicular to this
plane.

In the MCS, the bead position is given by coordinates (x1, x2, x3). For the sake of convenience, represent the
constraints restricting its motion as

f1 =
1

2

(
x22 + x23 − `2

)
= 0, f2 = x1 = 0. (11)

Suppose vr = (ẋ1, ẋ2, ẋ3) is the bead velocity in the MCS, vr = (vr,vr)
1/2 , and the transfer velocity ve =

(−ωx2, ωx1,0). The kinetic energy of the system, free from constraints, and the potential energy in the MSC are
given by the relations

T =
m

2
((ẋ1 − ωx2)2 + (ẋ2 + ωx1)2 + ẋ3

2),

U = mg(x1 sinωt sinα+ x2 cosωt sinα+ x3 cosα).
(12)

Putting

x1 7→ x′1`, x2 7→ x′2`, x3 7→ x′3`, t 7→ t′

√
`

g
, ω 7→ ω′

√
g

`

λ1 7→ λ′1m
g

`
, λ2 7→ λ′2mg, L 7→ L′mg`, Fx2 7→ mgF ′x2

, Fx3 7→ mgF ′x3
.

(13)

where λ1, λ2 are Lagrange multipliers:

λ1 = −(ẋ1
2 + ẋ2

2)− ω2x22 + x2 cosωt sinα+ x3 cosα, λ2 = −2ωẋ2 + sinωt sinα, (14)

and dropping the strokes we obtain the equations of motion in the form:

ẍ2 = ω2x2 − cosωt sinα+ λ1x2 + Fx2
, ẍ3 = − cosα+ λ1x3 + Fx3

, (15)

According to Amontons-Coulomb law

F 2 = F 2
x2

+ F 2
x3
≤ µ2

(
λ21 + λ22

)
. (16)

4.2 Sets of equilibria

If the point is in equilibrium, then the friction force compensates the sum of the tangential components of the
gravitational force and the centrifugal force, so

F = ω2x2x3 − x3 cosωt sinα+ x2 cosα.

Then condition (16) can be rewritten as

(ω2x2x3 − x3 cosωt sinα+ x2 cosα)2 ≤ µ2(x2 cosωt sinα+ x3 cosα−ω2x22)2 + µ2 sin2 ωt sin2 α.(17)
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For equilibria this inequality must be fulfilled identically for all time instances.

The sets of relative equilibria depend on three parameters (µ, α, ω). Let us now introduce an angular coordinate
ϕ, measured clockwise from the Oz axis of the MCS (Figure 3). Then x2 = sinϕ, x3 = cosϕ, and the condition
(17) reads

(ω2 sinϕ cosϕ− cosϕ cosωt sinα+ sinϕ cosα)2 ≤

≤ µ2(sinϕ sinα cosωt+ cosϕ cosα− ω2 sin2 ϕ)2 + µ2 sin2 ωt sin2 α.
(18)

Putting in (18) cosωt = 1 and cosωt = −1, respectively, one obtains the regions Σ+ and Σ− in the (ϕ, ω) plane.
These regions are bounded by the curves Γ+ and Γ− respectively. The intersection Σ+ ∩ Σ− is a set of relative
equilibria.

The part of the (ϕ, ω) plane enclosed between the lines ϕ = 0 and ϕ = π is shown in Figure 4. The relation
between the equilibrium positions and the angular velocity of rotation of the sphere ω is depicted in this figure for
different values of the inclination angle of the rotation axis, assuming the friction coefficient µ = 0.7. The Σ+

regions are denoted by the lightest shading, the Σ− regions are denoted by the darker shading, and their intersection
is distinguished by the darkest shading. It has been shown by Burov (2010) that, when α = 0, the set of relative
equilibria is the half region F of the ‘bold-face fork’ that is symmetrical about the axis ϕ = π, and also the region
of equilibriaG in the form of a ‘needle’ stretched along the line ϕ = 0 that converges to zero when ω →∞ (Figure
4a). When α is increased, the regions Σ+ and Σ−, which coincide when α = 0, diverge (in Figure 4b the case of
α = arctanµ − 0.04 was chosen for purposes of convenience), and, when α = arctanµ, the region G vanishes
and only one point of the middle prong of the ‘fork’ remains (Figure 4c). When arctanµ < α < π/2− arctanµ
these prongs split completely and diverge (Figure 4d). When α > π/2−arctanµ a new region I appears for small
ω (Figure 4e) that becomes larger as α increases (Figure 4f) and it joins the region F when α = π/2. In this case
the bifurcation diagram is a strip.

Figure 4. Bifurcation diagrams for different angles of inclination α, µ = 0.7.
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5 A point on a paraboloidal cup

5.1 Description of the mechanical system

A heavy material point P moves on the surface of a paraboloidal cup under the action of a dry friction force. The
cup is rotating with a constant angular velocity ω about its symmetry axis (Figure 5). The coefficient of dry friction
is µ.

Figure 5. A point in a paraboloidal cup.

Let Ox1x2x3 be a moving frame, uniformly rotating about an axis Ox3 directed along the upward vertical. In this
system the position of the point is given by the coordinates (x1, x2, x3), and the constraint restricting its motion is
defined by the relation

f = x3 −
1

2

(
x21
a1

+
x22
a2

)
= 0. (19)

5.2 Relative equilibria sets

Introduce dimensionless variables and parameters

x1 =
√
a1a2 x

′
1, x2 =

√
a1a2 x

′
2, x3 =

√
a1a2 x

′
3,

p′ =
√
a1a2 p, p = ω2/g, b1 =

√
a1/a2, b2 =

√
a2/a1, (0 < b1 ≤ 1 ≤ b2).

Dropping the strokes over the symbols and using (6) with FN = mg for determination of relative equilibria, we
obtain the boundary of the equilibria sets as follows:

(
p2
(
x21 + x22

)
+ 1
)(x21

b21
+
x22
b22

+ 1

)
−
(
1 + µ2

)(
p

(
x21
b1

+
x22
b2

)
+ 1

)2

= 0. (20)

At first we consider the symmetrical case, i.e. b1 = b2 = b. If x > 0 : x2 = x21 + x22 is a new coordinate, then the
boundary of the equilibria sets can be rewritten as

P (x, p, b, µ) = x2
(

1− µ2x
2

b2

)
p2 − 2(1 + µ2)

x2

b
p+

x2

b2
− µ2 = 0. (21)

Consider this expression as an equation on y = x2. It is possible to show that this equation has only one root if

p = p± =

(√
1 + µ2 ± µ

)2
b

=
1± sinα?
b(1∓ sinα?)

.

The relative equilibria sets on the (p, x)-plane are depicted on Figure 6. If p = 0 the set of equilibria is a disk that
contains the point (x1, x2) = (0, 0). If 0 < p < p− the set of equilibria is a plane except for an annulus, the center
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of which is the point (x1, x2) = (0, 0). The radius of the outer circle of the annulus increases indefinitely when
p 7→ 0. If p− < p < p+, then the whole cup becomes the set of equilibria. When p > p+ the set of equilibria is
again a whole cup except for an annulus. When p 7→ ∞ the radius of the inner circle of the annulus converges to
zero and the radius of an outer circle approaches

√
b/µ.

Figure 6. Relative equilibria sets in the symmetrical case.

Now, consider the asymmetrical case. Since Ox1 and Ox2 are symmetry axes of the boundary of equilibria sets, it
is reasonable to study topological restructuring of the equilibria sets on these axes.

Let

p±k =

(√
1 + µ2 ± µ

)2
bk

=
1± sinα?

bk(1∓ sinα?)
, k = 1, 2

be parameters, similar to p± used above.

Consider a section of sets of equilibria by a plane x2 = 0. This section is a curve

P (x1, p, b1, µ) = 0. (22)

This curve bifurcates for p = p±1.

Similarly, the section of sets of equilibria by a plane x1 = 0 is

P (x2, p, b2, µ) = 0. (23)

This curve bifurcates for p = p±2.

Topologically, there are four types of “regular” sets of equilibria and three types of “singular” sets in this problem.
The regular, topologically coarse, sets are

– D : a disk;

– D ∪ 4T : a disk and four tongues;

– Si ∪ 2Tj : a strip and two tongues;

– C : a cross.

These sets are structurally stable.

The singular sets are

– S2Si ∪ 2Tj : a strip with 2 straps;
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– C2Si : a cross with 2 straps;

– C4S : a cross with 4 straps,

respectively. Quarters of sets of these types are depicted in Figure 7.

Figure 7. Possible types of equilibria sets.

It is supposed that b1 < b2, so p+1 > p+2 and p−1 > p−2. Thus there are three possible cases of mutual
arrangement of p−1 and p+2, and so there are three possible ways of the evolution of equilibria sets:

1) p+1 > p−1 > p+2 > p−2,

D →D ∪ 4T →S2S2 ∪ 2T1 →S2 ∪ 2T1 →S2S2 ∪ 2T1 →D ∪ 4T →S2S1 ∪ 2T2 → S1 ∪ 2T2 →
S2S1 ∪ 2T2 →D ∪ 4T

2) p+1 > p−1 = p+2 > p−2

D → D ∪ 4T → S2S2 ∪ 2T1 → S2 ∪ 2T1 → C4S → S1 ∪ 2T2 → S2S1 ∪ 2T2 → D ∪ 4T

3) p+1 > p+2 > p−1 > p−2

D →D∪4T →S2S2∪2T1 →S2∪2T1 →C2S1 →C →C2S2 → S1∪2T2 →S2S1∪2T2 → D∪4T

6 Conclusions

In this paper three problems of motion of a heavy point on rotating surfaces under the action of dry friction force
were considered. For these problems the equations of motion were obtained and the condition of equilibrium and
its dependence on parameters of the system was studied. The evolution of relative equilibria sets was represented
graphically.

Investigation is partially supported by RFBR, grant no. 16-0-00625a.
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Comparison of Numerical Forced Response Predictions with 
Experimental Results Obtained in a Subsonic Test Turbine 
Facility 
 
A. Marn, F. Schönleitner, M. Mayr, F. Heitmeir 
 
 
In order to achieve the ACARE targets regarding reduction of emissions it is essential to reduce fuel 
consumption drastically. Reducing engine weight is supporting this target and one option to reduce weight is to 
reduce the overall engine length (shorter shafts, nacelle). However, to achieve a reduction of engine length the 
spacing between stator and rotor can be minimised, thus changing rotor blade excitation. Related to the axial 
spacing, a number of excitation mechanisms in respect to the rotor blading have to be considered already during 
the design process. Based on these facts several setups have been investigated at different engine relevant 
operating points and axial spacing between stator and rotor in the subsonic test turbine facility for aerodynamic, 
acoustic, and aeroelastic investigations (STTF-AAAI) at the Institute for Thermal Turbomachinery and Machine 
Dynamics at Graz University of Technology. In order to avoid upstream effects of supporting struts, these struts 
are far downstream of the stage which is under investigation.  
In this paper the capability to predict forced response vibrations of selected rotor blades is evaluated with 
experimental results for two different axial gaps between rotor blade and stator vane row. The investigation is 
done for engine relevant operating conditions. For rotor blade vibration measurements a novel telemetry system 
in combination with strain gauges is applied. The stage was modelled using the software package ANSYS. Flow 
fields up and downstream of the turbine stage are analysed and visualised for two axial gaps and compared to 
the forced response of the blading. Detailed structural dynamic investigations show critical modes during 
operation which are identified by the telemetry measurements as well. Finally, the influence of the axial spacing 
regarding the rotor blade excitation and vibration can be elaborated and is prepared to get a better 
understanding of basic mechanism. The paper shows that reducing axial spacing is a promising option when 
reducing engine weight. However, prediction of forced response vibrations is still challenging due to the variety 
of unknown parameters of a real life engine such as coupling stiffness, damping, blade mass, etc. 
 
 
1 Introduction 
 
Anthropogenic climate change has become more and more evident during the last decades. It is well known that 
it is primarily caused by emissions of mainly carbon dioxide. Therefore, it is essential to reduce the emissions of 
pollutants at every region where they are formed. That means that engineers have to develop techniques and/or 
strategies to reduce fuel consumption that is directly linked to the formation of carbon dioxide. In case of air 
traffic aero engines can be named as the only polluters and here it is highly necessary to set measures when 
considering that the number of passengers is growing fast. There are mainly two options to decrease fuel 
consumption of aero engines. Firstly, increase of efficiency which is indeed challenging and secondly decrease 
of engine weight. The latter one can be "easily" achieved by e.g. reducing axial spacing between blade and vane 
rows or increasing stage loading by decreasing the number of vane and blade counts. However, as simple these 
measures seem to be many new problems have to be accounted for. E.g. smaller axial gaps lead to altered blade-
vane interaction and therefore, a more reliable forced response prediction is crucial in order to ensure a safe 
design of aero engines. Aerodynamic excitation and response of the blading is dependent on the damping 
especially close to and in resonance. However, it is known that in general the available aerodynamic theories are 
less reliable for evaluating the (out-of-phase with displacement) damping forces than those forces in-phase with 
displacement (Acum, 1988). Nevertheless, the aero elastic response is essential to the analysis of fatigue of 
turbomachinery blades. The question of crack initiation, propagation and destructive failure cannot be addressed 
without giving attention to the type of excitation, damping and the parametric dependencies on the unsteady 
aerodynamic forces. In resonance (blade eigenfrequency=excitation frequency) damping is responsible for 
limiting vibration amplitudes, that means damping also limits the cyclic stresses in oscillating blades and thus 
has a direct (positive) impact on high cycle fatigue. 
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In turbomachines damping is the sum of structural damping, material damping, and aerodynamic damping, 
which is a phenomenon that occurs as a consequence of the blade vibration and its interaction with the flow. 
While structural damping is always positive and limits the vibration amplitude, and material damping is in 
general negligibly small, aerodynamic damping can become negative and instead of reducing the amplitudes it 
would induce a self-excited condition where the vibration amplitude increases rapidly and leads to failure of the 
complete engine. This is referred as flutter. (Mayorca, 2011) stated that a closer attention should be given to the 
aerodynamic damping (numerical and experimental) predictions. This implies a major challenge since it requires 
high quality test data that allows a one to one validation only accounting for the aerodynamic damping. 
However, there is only a minimal amount of published experimental data at engine conditions (Kielb et al., 
2001)). 
Within the last years a lot of literature became available dealing with numerical investigations of flutter or fluid-
structure-interaction, respectively. In the following only a few of them are cited. For example (Carstens et al., 
2001) who stated that non-linear fluid-structure-interaction may significantly influence the aerodynamic 
damping and hence shifts the stability boundaries. (Cinnella et al., 2004) presented an accurate and efficient 
numerical method for turbomachinery flutter and simulated the 11th Aeroelastic Standard Configuration, which is 
a well known test case. They same authors extended the afore mentioned numerical method to the computation 
of 3D problems. (Petrie-Repar et al., 2014) presented a flutter analysis of a long steam turbine blade. The 
logarithmic decrements of the aeroelastic modes were calculated. (Rzadkowski et al., 2006) presented numerical 
simulations of 3D viscous flutter and compared the results with the available experimental results. The 
calculations were carried out for bending oscillations of the 11th Aeroelastic Standard Configuration. Recently, 
fully coupled fluid-structure-interaction and flutter simulations were conducted as reported by (Tateishi, et al., 
2014). (Srinivasan, 1997), (Marshall et al., 1996). (Hall et al., 2005) surveyed papers investigating aeroelastic 
problems. Aerodynamic damping has been studied more carefully by (Chiang et al., 1993) and (Abhari et al., 
1997). (Li et al., 2003) conducted a parameter study numerically and showed that the rotor aerodynamic 
damping could be changed by up to 100% when varying the rotor-stator gap. (Yamaguchi et al., 2000) presented 
an analytical approach to predict flutter limits of a thin sheet in high speed flow. (Yamaguchi et al., 2000) also 
presented experimental results and made a comparison between the prediction and the experimental results. 
Compared to the amount of numerical work there have been only few experiments regarding to axial 
turbomachinery conducted. (Stepanov et al., 2014) investigated three different counter rotating fan models, 
aerodynamically and acoustically. However, the authors had the opportunity to measure blade vibrations by 
means of tip-timing measurements and strain gauges. (Gubran et al., 2014) investigated three different blade 
faults of a generic rotor and showed the influence of the faults on the spectrum. (Hentschel et al., 2014) 
presented an experimental setup for specimen specific structural damping determination in a vacuum chamber. 
Further, different clamping mechanisms, temperature, and static stress are applied and the results are compared 
to each other. Also (Kubin et al., 2013) measured structural damping for different blade couplings and compared 
the results to a new type of blading. (Vega et al., 2014) have shown the stabilizing effect of rotor blades in pairs 
experimentally and numerically. The authors stated that there is a shielding effect of the neighbouring rotor 
blade. (Heinz et al., 2010) measured mechanical and aerodynamic damping parameters for different mass flow 
densities (including vacuum). In a next step (Heinz et al., 2011) showed the influence of mistuning on the 
circumferential blade amplitude distribution at different operating points. (Glodic et al., 2011) investigated 
experimentally and numerically the effect of aerodynamic damping in an oscillating low-pressure turbine 
cascade taking mistuning into account. (Vogt et al., 2007) used the same cascade to show that the main influence 
of a vibrating blade is limited to the adjacent blades. (Petrov, 2010) and (Petrov, 2011) investigated the effect of 
mistuning on aerodynamic damping and explained the effect that for very low engine orders the amplification 
factor may become even lower than one. In the survey of (Ewins, 1991) many papers on the effect of mistuning 
on flutter are listed, also with the uniform conclusion that mistuning always raises the flutter threshold. A current 
overview of mistuning literature can be found in the review paper of (Castanier, et al., 2006), including 
intentional mistuning. (Kielb et al., 2001) presented some results of an experimental method and data analysis 
study of multiple engine relevant damping sources. The contributions of aerodynamic and structural damping for 
several vibration modes were determined. (Nowinsky et al., 2000) presented a series of experiments in an 
annular cascade to investigate torsional flutter in low-pressure turbines. They showed that relatively small 
changes to the location of the torsion axis had a dramatic effect on the stability behaviour. (Kovats, 1980) 
determined time histories of aerodynamic forces interferometrically and showed experimentally that at large 
negative flow incidence blades are becoming unstable in the twist mode. Experimental research in the field of 
forced response for a fan under engine representative conditions was performed in detail by (Manwaring et al., 
1991) and (Manwaring et al., 1990). The experiments quantified the effect of the inlet flow conditions and the 
blade pressure distribution on the vibratory response of the blades. (Chen et al., 2012) investigated the combined 
effects of both axial gap and blade count ratio numerically. They have found that the excitation of a downstream 
rotor is reduced when increasing the blade count ratio. The excitation is also reduced exponentially with 
increased axial gap. However, the response of the blades is not analysed in their paper. 
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There are a lot of papers dealing with damping, mistuning vibration suppression but there is not much about 
measured response of low pressure turbine rotor blades at engine realistic conditions. This paper focuses on that 
response of the rotor blades and compares experimental and numerical results of different axial gaps between 
rotor and stator. The aim of this paper is to show the differences one have to deal with between experiments and 
simulations due to necessary simplifications of the numerical model. 
 
 
2 Experimental Facility and Instrumentation 
 
Test Facility 
The Institute for Thermal Turbomachinery and Machine Dynamics at Graz University of Technology operates a 
3MW compressor station in order to supply a couple of test facilities continuously with pressurized air. For the 
subsonic turbine test facility the maximum pressure ratio is limited to 2. The maximum mass flow rate is 15 kg/s 
at a temperature at stage inlet of 100°C. This inlet temperature can be adjusted by coolers within a wide range. 
The pressurized air enters the facility through a spiral inlet casing where the flow turns into axial direction. 
Within this spiral inlet casing the front bearing of the overhung-type turbine shaft is mounted. The shaft is 
coupled to a water brake. 
In order to provide well defined and uniform inflow conditions a de-swirler and a perforated plate is located 
upstream of the stage inlet. Further, upstream of the stage, inlet guide vanes (IGV) can be found that should 
simulate additional wakes of other upstream low pressure turbine stages. The air leaves the rig through an 
acoustic measurement section, supporting struts, exhaust casing, and the exhaust stack to ambient. The rig is 
designed to be able to perform aerodynamic, acoustic and aeroelastic investigations (AAAI). A detailed 
description of the STTF-AAAI is given in (Moser, et al., 2007). To be able to change the distance between 
blade/vane rows interchangeable rings (rings upstream of IGV and rotor in Figure 1) are available and have been 
changed to adjust the axial gap between stator and rotor. However, the rotor was always on the same axial 
position, only IGVs and stator vanes have been moved upstream. Also, the relative position of the five-hole-
probe measurement planes A and C have been the same. 
 
Turbine Stage 
The aerodynamic design of the low pressure turbine (LPT) stage and the IGVs was performed by MTU Aero 
Engines. Considerable effort was put into the adjustment of relevant model parameters to reproduce the full scale 
LPT configuration. The turbine diameter is approximately half of that of a commercial aero engine LPT and 
therefore the rig is operated at higher rotational speeds. The blade count ratio (BCR) is chosen to fulfil an 
acoustic design intend. A meridional section of the rig is shown in Figure 1. The rig is characterised by a high 
aspect ratio unshrouded rotor. Relevant geometry parameters can be seen in the upper half of Table 1. 
For this investigation three different operating points have been chosen. Operating Point OP1 represents an 
acoustically relevant operating point ("approach"). For this investigation two additional operating points OP2 
and OP3 were chosen. With OP2 the behaviour of the turbine stage at the same pressure ratio as for OP1 but 
lower rotational speeds was investigated. Further, blade vibrations have been measured at the same lower 
rotational speed as for OP2 but at a lower stage total pressure of 1.14 (=OP3). 
 
 

 
Figure 1. Meridional section of the STTF-AAAI 

 
Operating Conditions 
Based on the intended use of the LPT rig for aeroelastic, acoustic and aerodynamic investigations, the main 
operating points are selected according to the typical noise certification points. They have been defined using an 
aero design point of the last stage LPT, derived from current LPT design practice using scaling along reduced 
speed, reduced mass flow (both referred to 288.15 K and 1013.25 mbar) and pressure ratio. For this investigation 
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the operating point approach (=OP1) was chosen. Based on that point the rotational speed was reduced to 
investigate "near-resonance" behaviour at the same stage total pressure and temperature (=OP2). A third 
operating point (OP3) was investigated with decreased total pressure at the same temperature and rotational  
speed. The lower half of Table 1 shows the operating conditions. Although, the reduced values for the rotational 
speed are given, in the experiment it was crucial to keep also the mechanical rotational speed constant for each 
operating point. Also, all vibration measurements have been performed at the same day in order to have the same 
ambient pressure. That is important to ensure that different stage pressure ratios are only related to the inlet 
pressure. 
 
Table 1. Geometry details and operating conditions 
Geometry details 
Number of blades/vanes 
IGV 83 
Stator 96 
Rotor 72 
Tip gap to blade height ratio 1.0% 
Hub to tip radius ratio ≈2/3 
Operating conditions 
Reduced mass flow OP3 6.86kg/s 
Reduced rotational speed OP2 and OP3 3000rpm 
Reduced mass flow OP1 6.94kg/s 
Reduced rotational speed OP1 3653rpm 
Stage pressure ratio OP3 1.14 
Stage pressure ratio OP1 and OP2 1.16 
Stage total inlet temperature OP1 and OP2 100°C 
  
 
Instrumentation 
Five-hole-probes (from Institute of Jet Propulsion and Turbomachinery, RWTH Aachen University) with a probe 
head of 2.5 mm diameter were applied in measurement plane C (see Figure 1). The probes are calibrated for 
Mach numbers between 0.1 and 0.8, yaw angles between –20 deg and +20 deg, pitch angles between –16 deg 
and +20 deg. Negative values of the yaw angle indicate a counter-rotating flow and negative values of the pitch 
angle indicate the flow direction towards the hub.  
The correlation between the calibration characteristics and the value to be measured is given by a multi-
parameter approximation. 
The axial positions of measurement planes can be seen in Figure 1. Plane C is located downstream of the rotor 
trailing edge (TE) in a distance of 60% of the axial rotor blade chord length. 
The grid covers two stator pitches and about 95% passage height. Traversing was done along radial lines. In each 
measurement point the probe was turned into the flow to reach the highest accuracy and to ensure to be always 
within the calibration range of the probe (with these probes it would not have been necessary, if one ensures to 
be always within the calibration range). Unfortunately, it was not possible to reliable measure in plane B 
between stator and rotor because of the very small (engine realistic) axial gap. 
The rotor blading which had to be instrumented was already characterized and results presented by 
(Schönleitner, et al., 2015). A number of numerical and experimental studies showed the optimum strain gauge 
positions for blade vibration measurements.  
Basically, the telemetry system used in the experiments provides 12 ports for strain gauge measurements. 
Therefore, 12 strain gauges were applied on different blades of the rotor and on three different blade surface 
positions near maximum strain positions for eigenmodes. Additional to that 12 ports for strain gauge 
measurements the telemetry system provides 8 ports for temperature measurements and is extendable with 
pressure sensors. The maximum sampling rate is 400 ksamples/second with a simultaneous data acquisition of 
12bit. The strain gauge data is transmitted by rotor stator principle via antenna outside of the test rig where it is 
recorded. Further information can be found in (Schönleitner, et al., 2015). The system is able to operate at 
rotational speeds up to 11000rpm and temperature ranges up to 150°C. Data is acquired for the investigations 
presented in this paper with a sampling rate of 204.8 ksamples/second.  
For this investigation only one strain gauge SG3 was evaluated. SG3 is marked in Figure 2 with a circle. 
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Figure 2. Rotor strain gauge application and FE model 

 
Measurement Uncertainties 
Instrumentation has to meet not only high demands on accuracy and repeatability but requires higher numbers of 
channels, too. Therefore, the measurement system is made up by eleven multi channel pressure transducers PSI 
9016 with a total amount of 176 channels and an accuracy of 0.05% full scale and four National Instruments 
Field Point FP-TC-120 eight-channel thermocouple input modules and one FP-RTD-122 resistance thermometer 
input module. Table 2 shows the measurement uncertainties (within a 95% confidence interval) of the five-hole-
probe measurements. From these measurements the Mach number ��, flow angle � as well as static � and total 
pressure ��  is obtained. The uncertainty of these values are positive and negative deviations and contain the error 
due to the approximation, random error and the systematic error of the PSI Modules. The difference between the 
positive and the negative direction is a result of the multiparameter approximation, because the calibration 
surface is not symmetrical. The measurement uncertainties of the static pressure and the total pressure at rig and 
stage inlet are +/- 1 mbar. 
The variation of speed is below 0.2% of the current operating speed and the measurement uncertainty of the 
temperature measurement is about +/- 0.5 K. 
The variation of the operating parameters (pressure ratio, corrected speed, speed, total pressure and temperature 
at rig inlet) between different measurement days has been below 0.5%. 
 
Table 2. Measurement uncertainties of the five-hole-probe 

Ma +0.006 -0.003 [/] � +0.5 -0.08 [deg] 
pt +3.3 -3.0 [mbar] 
p +5.3 -5.2 [mbar] 

 
3 Numerical Setup 
 
Numerical simulations have been performed using ANSYS 16.2. CFx was used for fluid dynamic simulations 
and ANSYS mechanical for the structural simulation. In order to capture the effect of the deformed blades on the 
fluid flow this deformation has to be feed back into the CFD solver and therefore  a two-way coupled fluid-
structure-interaction simulation was performed. 
For the transient CFD simulation (time step: 0.000025 [s]) 4 stator vanes and 3 rotor blades have been modelled 
for periodicity reasons, although the calculated frequencies are about 1% higher compared to a five blade model 
that also contains a solid part between two holes. The IGV's have not been modelled to reduce mesh size. As 
boundary conditions a constant backpressure at outlet was set according to measurement results. Measured total 
pressure, total temperature, pitch angle, and yaw angle distribution at inlet are given (see Figure 4) as well as 
turbulence intensity at inlet of 10% was set. 
The CFD mesh consists of approx. 6.3 million hexahedral elements. As turbulence model � − �  ��� with 
automatic wall functions ( y+~60) was applied.  
The FE mesh for the transient structural (time step 0.0002451 [s]) computation consists of approx. 75000 
elements. The blade (made of aluminium) is modelled with hexahedral elements and the disc with tetrahedral 
elements. The contact type between rotor disc and blades is set as frictional (� = 0.19) and bonded (see Figure 
3) and between the blades as frictional (� = 1.05). A study showed that the combination frictional and bonded 
with that specific standard values of � reproduces best agreement between calculation and experiment. Further, it  
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Figure 3. Contact types 

 
has to be mentioned that in that case the blade is fixed with a wedge beneath the root pressing the surfaces 
together in radial direction. Surfaces with slight contact are modelled as frictional contact. 
 
4 Excitation and Eigenfrequencies 
 
According to (Tyler, et al., 1962) following pressure patterns can occur (assuming zero swirl): 
 

 
For multiple blade/vane rows this equation can be extended to: 
 

 
Again ��,� = −∞, … ,−1,0,1, … +∞. V1 is the number of stator vanes and V2 the number of IGVs. Table 3 lists 
the main airfoil interaction modes m and the respective frequency for the easiest case of a non-spinning pressure 
pattern. The left side shows the interaction modes for n=0 and the right side for n=1. The sign indicates the sense 
of rotation of the pressure pattern. Every peak in the measured spectra in the results section belongs to one of 
these calculated values. That means that the strain gauges have been able to detect also very small excitations 
resulting in small response amplitudes at the respective frequency. Due to the large number of vanes (IGV and 
stator) and blades a lot of interaction modes are possible as can be seen in the following tables. Here it should be 
mentioned that the higher the mode number the less energy the mode carries. 
 
Table 3. Airfoil interaction modes    

OP1 OP2 and OP3 
m k1 k2 Frequency [Hz] m k1 k2 Frequency [Hz] 
116 -3 4 8004 116 -3 4 6573 

OP1 OP2 and OP3 33 -3 3 2277 33 -3 3 1870 
m k1 k2 Frequency [Hz] m k1 k2 Frequency [Hz] -50 -3 2 -3450 -50 -3 2 -2833 
140 -2 4 9660 140 -2 4 7933 -133 -3 1 -9177 -133 -3 1 -7537 

57 -2 3 3933 57 -2 3 3230 -120 -2 0 -8280 -120 -2 0 -6800 
-26 -2 2 -1794 -26 -2 2 -1473 -37 -2 1 -2553 -37 -2 1 -2097 

-109 -2 1 -7521 -109 -2 1 -6177 46 -2 2 3174 46 -2 2 2607 
-96 -1 0 -6624 -96 -1 0 -5440 129 -2 3 8901 129 -2 3 7310 
-13 -1 1 -897 -13 -1 1 -737 -107 -1 -1 -7383 -107 -1 -1 -6063 
70 -1 2 4830 70 -1 2 3967 -24 -1 0 -1656 -24 -1 0 -1360 

153 -1 3 10557 153 -1 3 8670 59 -1 1 4071 59 -1 1 3343 
-166 0 -2 -11454 -166 0 -2 -9407 142 -1 2 9798 142 -1 2 8047 

-83 0 -1 -5727 -83 0 -1 -4703 -94 0 -2 -6486 -94 0 -2 -5327 
0 0 0 0 0 0 0 0 -11 0 -1 -759 -11 0 -1 -623 

83 0 1 5727 83 0 1 4703 72 0 0 4968 72 0 0 4080 
166 0 2 11454 166 0 2 9407 155 0 1 10695 155 0 1 8783 

-153 1 -3 -10557 -153 1 -3 -8670 -164 1 -4 -11316 -164 1 -4 -9293 
-70 1 -2 -4830 -70 1 -2 -3967 -81 1 -3 -5589 -81 1 -3 -4590 
13 1 -1 897 13 1 -1 737 2 1 -2 138 2 1 -2 113 
96 1 0 6624 96 1 0 5440 85 1 -1 5865 85 1 -1 4817 

109 2 -2 7521 109 2 -2 6177 168 1 0 11592 168 1 0 9520 
26 2 -2 1794 26 2 -2 1473 -68 2 -4 -4692 -68 2 -4 -3853 

-57 2 -3 -3933 -57 2 -3 -3230 15 2 -3 1035 15 2 -3 850 
-140 2 -4 -9660 -140 2 -4 -7933 98 2 -2 6762 98 2 -2 5553 

 
 
5 Results and Discussion 
 
Figure 4 shows the measured stage inlet conditions (plane A). On the upper left hand side the total pressure 
distribution is depicted. The IGV wakes can be clearly identified. The total temperature distribution can be seen 
on the right hand side. It is quite uniform and constant with minor variations. The yaw angle distribution can be 

� = � ∙ � + � ∙ �;    � = −∞, … ,−1,0,1, … +∞ (1)  

� = � ∙ � + �� ∙ �� + �� ∙ �� (2)  
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seen at bottom on the left side and at the bottom right the pitch angle is depicted. From these four parameters the 
inlet boundary conditions for Ansys CFx have been deduced. 
Figure 6 shows measurement results obtained by one strain gauge indicated in Figure 2. The spectrum of the 
larger gap is intentionally shifted by 100 Hz for the sake of clarity. Details of that results are given in (Marn et 
al., 2016). The percentage in Figure 6 middle gives the increase in amplitudes regarding to OP3. Table 4 shows 
the predicted eigenfrequencies by means of a numerical modal analysis performed prior to the beginning of the 
test campaign. It can be seen that all peaks in the frequency spectra (Figure 6) except at 2718 Hz and 6624 Hz 
belong to blade-disc vibrations close to resonance. The highest amplitude in the spectra at 5540 Hz for OP3 and 
OP2 is due to rotor-stator interaction (engine order 96). 

 
Figure 4. Measured stage inlet condition 

 
Figure 5 shows an example of a time snap shot of the total pressure distribution in plane C downstream of the 
rotor. On the left side the numerical result is depicted and on the right side the experimental result is shown. 
Except the absolute level the simulations is able to capture the flow physics very well. It is most essential to 
capture the flow physics in order to get realistic structural dynamic results. 
 

 
Figure 5. Total pressure plane C; left: numerical result and right: experiment 
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Table 4. Predicted eigenfrequencies 
Mode Operating Point 
No. 0rpm OP1 OP2&3 
1st 923 [Hz] 955 [Hz] 939 [Hz] 
2nd 1648 [Hz] 1649 [Hz] 1648 [Hz] 
3rd 3270 [Hz] 3303 [Hz] 3274 [Hz] 
4th 5404 [Hz] 5472 [Hz] 5424 [Hz] 
5th 8180 [Hz] 8288 [Hz] 8223 [Hz] 
 

 
Figure 6. Spectra (experiment) for OP3 (top), OP2 (middle), and OP1 (bottom) 
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Figure 7. Spectra (simulation) for OP3 

 
Figure 7 shows the spectrum for OP3 of the blade vibration evaluated at the same position of the strain gauge in 
the experiment. Depicted are the spectra for all three blades. Also both axial gaps have been evaluated. Firstly, it 
can be seen that the simulation overpredicts the vibration amplitudes tremendously, especially at ~930 Hz,. 
Although, structural damping parameters have been set according to the experiment the amplitude is much too 
high. That shows clearly, that the aerodynamic damping (neglecting material damping) is not predicted in the 
right order of magnitude and/or that the excitation force is much stronger than in the experiment. The latter one 
could be due to less mixing of the IGV or stator wakes and other upstream flow features. Also the amplitude for 
the small gap is predicted to be lower than for the larger gap, but it seems only that due to the frequency step the 
amplitude is not captured. All blades show a peak at 1679 Hz, which corresponds to the 2nd mode. In the 
simulation a large amplitude at 5365 Hz is visible that is close to a excitation frequency due to a higher harmonic 
of the rotor-IGV interaction (m=-94). Although, the IGVs have not been modelled but are considered in the inlet 
boundary conditions this peak can be reproduced. However, in the measurements this peak does not appear. 
Again, this fact shows that although the flow field at the rotor exit shows a good agreement with the 
measurements the wakes of the IGVs may be stronger in the simulation and strongly excite the rotor blades. 
Further, it seems that the rotor-stator interaction (m=-96) resulting in a frequency of 5440 Hz is not resolved but 
is part of the broad band peak at 5365 Hz. This peak could be therefore a combined effect of rotor-stator as well 
as rotor-IGV interaction. The peak at 2718 Hz visible in the experiment belongs to the rotor shaft and therefore it 
is obvious that the simulation cannot predict this peak due to the necessary simplification of the simulation 
model. The simulation also predicts a peak at 4750 Hz which is close to 4703 Hz that is again due to rotor-IGV 
interaction. The experiment subsequently does not show this peak for the same reason as for the peak at 5365 
Hz. Further, the simulation does not predict any frequencies higher than approx. 6500 Hz. The experiment also 
shows clearly a peak at 8263 Hz that is close to the 5th mode. Whether the experiment nor the simulation shows 
the blade passing frequency of 4080 Hz at OP2 and OP3. 
 
6 Conclusion 
 
Blade vibration measurements and aerodynamic measurements have been conducted in the subsonic test turbine 
facility for aerodynamic, acoustic and aeroelastic investigations. Additionally, a coupled fluid structure 
interaction simulations was performed for one operating point and two different gaps. The aim of this 
investigation was to compare the numerical with experimental results. It is shown that the simulation was able to 
capture the flow physics downstream of the rotor quite well but totally failed to predict the vibration amplitudes. 
This is mainly due to the fact that some flow features such as the IGV wakes are more or less mixed out in the 
experiment while they are still dominating the flow field in the simulation. The reason is simply that some very 
important inlet boundary conditions are usually not known. Although, in this case turbulence intensity (usually it 
is also unknown) was set to the level of the experiment the turbulence length scale is unknown. Further, when 
simplifying the model for the simulation it should be always kept in mind that many excitation frequencies 
cannot be captured due to the simplifications. E.g. torsional vibrations of the shaft can be measured as blade 
bending vibrations. From that investigation it can be concluded that the overall agreement between experiment 
and simulation is poor when considering the numerical effort. 
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Design and practical Realization of an innovative Flywheel 
Concept for industrial Applications 
 
 L. Quurck, M. Richter, M. Schneider, D. Franz, S. Rinderknecht  
 
 
The joint industry project ‘ETA-Fabrik’ at TU Darmstadt demonstrates different approaches to improve the 
energy efficiency of manufacturing processes. Within this project an innovative flywheel concept was designed 
and realized in order to provide energy storage and load smoothing services. The flywheel design is an outer-
rotor setup. The rotor is a hubless hollow cylinder made of fiber reinforced plastic (FRP). All functional 
components are fully integrated into the rotor. For the radial suspension homopolar active magnetic bearings 
(AMBs) made of soft magnetic composite are used. A permanent magnetic bearing provides axial levitation. In 
order to increase the systems robustness a newly developed backup bearing system in a planetary arrangement 
with multiple independent bearing elements is integrated. The motor generator unit is a permanent magnet 
synchronous machine which is connected to the factory gird via a frequency inverter. The system is operated in 
high vacuum in order to reduce gaseous friction. Design challenges are the segmented sensor planes for the 
AMBs, the diametric enlargement of the rotor due to centrifugal forces, the anisotropic FRP as well as the 
thermal stability of the rotor in vacuum environment which leads to the demand of very low rotor losses. The 
paper describes the system and component design process and solutions which were incorporated in order to 
meet the design restrictions and challenges. 
 
 
1. Background 
 
The demand for energy storage systems in industrial applications has risen over the last years. They can fulfill 
different tasks such as peak shaving or load smoothing to improve the energy efficiency and stability of the 
supply system as well as to save power dependent cost. The joint industry project ‘ETA-Fabrik’ at TU Darmstadt 
demonstrates different approaches to improve the energy efficiency of manufacturing processes. Within this 
project an innovative kinetic energy storage system (KESS) was designed and realized in order to provide the 
mentioned services. Figure 1 shows the layout of the system as a CAD model and the KESS set up in the ‘ETA-
Fabrik’. The design is based on the first realized outer rotor type flywheel which was introduced by Schaede 
(2013) as a proof of concept. This first outer rotor flywheel was brought into operation in 2012 in the laboratory 
of the ‘Institut für Mechatronsche Systeme im Maschinenbau’ (IMS) in Darmstadt.  
Magnetically suspended flywheels provide reliable high power density with maintenance- and wear-free 
operation and without calendric and cyclic degradation. High energy conversion efficiency compensates the 
occurring standby losses particularity when dynamic load profiles with frequent high power demands have to be 
smoothed or cut. Figure 2 shows a simulation of a representative industrial load profile with and without the used 
flywheel as well as the corresponding power and state of charge of the flywheel. The used flywheel is the 1.4 
kWh, 60 kW flywheel ETA290 which will be described in this paper. Another application could be the reduction 
of diesel consumption in island grids with high shares of renewable energy production (Schaede et al. 2015). 
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       Figure 1. Left: CAD Cut-away model of the rotor mounted on the stator. Right: Photograph of the KESS in   
                      the factories utility compartment. 
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       Figure 2. Simulation results of the peak shaving operation in the factory (top: factory load profiles,  
                       bottom: storage power and state of charge) 
 
 
2. Design Goals and Design Process 
 
In order to be able to design a suitable energy storage system for a specific application the individual 
requirements have to be analyzed. For load smoothing and peak shaving applications in an industrial environment 
the storage system needs medium to high electric power and moderate energy. As can be seen in Figure 2, more 
than 1 cycle per hour can be expected. Therefore, modern flywheel systems with low conversion losses, low self-
discharge losses and a high cycle life can be an interesting alternative to other technologies. General design goals 
are minimal maintenance and wear even during continuous service, leading to the requirement of thermal 
stability. In order to be able to adapt to different industrial processes the system should be independently scalable 
in terms of output power and stored energy. The design of the flywheel should also allow for an efficient serial 
manufacturing. Due to the industrial environment liquid cooling and a connection to the 400 V AC grid can be 
assumed. 
The outer-rotor design has potentially high energy densities because every active rotor component rotates with 
the maximum radius leading to a highly integrated system. Due to the large inner rotor radius high electric output 
power is possible. A general design conflict lies in the simultaneous optimization of energy density and energetic 
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losses. High energy densities can be reached at high rotational speeds and large radii. For the electric machine 
and the magnetic bearings, high speeds lead to high remagnetization frequencies resulting in high hysteresis and 
eddy current losses. The optimization of energy density and energetic losses can also be motivated from an 
economic point of view. The energy density can be interpreted as an indicator for the material dependent initial 
costs of the storage system. The losses that are generated during operation have to be compensated by electricity 
from the grid and can thus be interpreted as operating costs. An optimal system is characterized by the minimal 
sum of both dimensions over its lifetime. 
In order to minimize the drag losses due to gaseous friction the system is operated at high vacuum levels 
(<10-4 mbar). This operation condition in combination with the magnetic levitation of the rotor, however, leads to 
a poor thermal connection between the rotor and stator. Heat exchange can only be obtained by radiation. During 
the design of the magnetic bearings and the electric machine, losses on the rotor thus have to be minimized in 
order to prevent overheating and enable high energy efficiency. 
From a methodologic point of view, a serial or independent design of the relevant system components (rotor, 
active magnetic bearings (AMB), electric drive (ED) and stator) is not promising due to the system’s high degree 
of integration. Therefore, a simultaneous initial design process is carried out by Schneider (2014) using detailed 
component models in combination with optimization algorithms. 
 
3. System Design 
 
The following subsections describe the challenges within the design process of the main components. This 
includes rotor design, electric machine design, magnetic bearing design and back-up bearing (BB) design. The 
chapter concludes with an overview of the final parameters and the integration concept into the factory. 
 
 
3.1. Rotor Design  
 
The flywheel design is an outer-rotor setup. The rotor is a thick walled, hubless hollow cylinder made out of fiber 
reinforced plastic (FRP). The FRP rotor is produced in an industrial filament winding process with mainly 
circumferential fiber orientation to encounter the tangential stress. The state of stress can be assumed as plane 
due to the axially almost constant density distribution. This circumstance generally meets the orthotropic material 
strengths and reduces shear stresses in the composite. The maximum rotational speed, and therefore the kinetic 
energy content of the rotor, is restricted by the transverse strength in radial direction which is dominated by the 
resin matrix, while the utilization of longitudinal fiber strengths is comparably low. Another restriction is the 
diametric enlargement of the rotor by the centrifugal forces. At high speed, the diametric enlargement can be up 
to 1% of the inner diameter, what is the ultimate strain of common conventional FRPs. The ETA290 flywheel 
utilized about 0,5% of strain. The resulting significant enlargement of the air gap has to be taken into account at 
the design of the magnetic bearings, the electric machine and the backup bearings.  
The allowable strain of most functional components is considerably lower than 0.5%, especially for the soft- and 
hard-magnetic components of the active and passive bearing. To avoid high stresses and failure in these 
components they are segmented circumferentially. This terminates the tangential hoop stresses under rotation. 
Further effects of this segmentation are discussed later in this paper. Despite the speed restriction due to 
maximum strain the ETA290 rotor reaches a specific energy density of 8.8 Wh/kg, while further design 
improvements will allow 14 to 20 Wh/kg by decreasing the weight of the functional components and 
simultaneously increase the maximum speed without changing the main diameters or mechanical strain. 
The lack of a hub and an inner shaft simplifies rotordynamics and control. Due to the hollow and thick walled 
design the elastic eigenfrequencies are comparably high. Figure 3 shows the Campbell diagram of a 3D FE modal 
analysis of the rotor. The first three elastic eigenfrequencies are axially symmetric modeshapes with comparably 
low gyroscopic influence. The first bending eigenfrequency is above 1011 Hz. This simplifies the control of the 
AMB and gives the opportunity to enlarge the rotors length and adapt the energy content to the specific 
applications preferences without a significant influencing on the control design. For example, increasing the rotor 
length and thereby the kinetic energy content to 140%, lowers the first elastic eigenfrequency (1st bending mode) 
to 502 Hz which is still two times the maximum rotational frequency. The rigid body eigenfrequencies are 
defined by the magnetic bearing properties. The passive magnetic bearing, which is stabilizing the axial degree of 
freedom, creates an 11 Hz eigenmode which does only change slightly due to thermal influences and due to 
diametric enlargement. Its negative stiffness in radial direction is compensated by the AMB. The four parallel 
and conical mode shapes are crossed below 50 Hz while design of the bearing and controller contains the rotor 
position within a 100 µm radius. 
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       Figure 3. Campbell diagram of the 3D-FE-modalanalysys of the ETA290 flywheel rotor in free-free 
                       configuration 
 
 
3.2. Electric Machine Design 
 
In general, different electric machine types are suitable for flywheel systems. Due to the specific requirements 
from the field of application a permanent magnet synchronous machine (PMSM) is selected. As mentioned 
before, the rotor losses have to be minimized which excludes asynchronous machines due to their power 
dependent high copper losses. Synchronous reluctance machines are suited for high frequency applications due to 
the very low drag losses during idling. But due to the high power demand of the factory with many charging and 
discharging cycles, higher conversion efficiency is desired. Even though the PMSM creates drag losses when no 
power is requested from the flywheel it is the best option considering all factors of this industrial application. 
As mentioned before, the all functional components have to be integrated into the rotor by segmentation 
considering the resulting stresses due to centrifugal forces. This circumstance leads to the requirement of a very 
thin PMSM rotor in radial direction in order to reduce the centrifugal forces applied to the FRP rotor. The goal 
can be achieved by increasing the number of pole pairs of the machine because the magnetic flux in the rotor in 
circumferential direction per pole is reduced. At the same time the active axial length of the machine decreases 
leading to shorter copper windings and thus lower copper losses. The EM rotor design uses permanent magnets 
which are embedded in electrical sheets. An ironless Halbach array would also be possible but it is much more 
expensive due to a higher magnetic volume and complex magnetization directions. 
A high number of pole pairs, however, leads to high remagnetization frequencies and thus to high core losses. 
Typically, a high number of pole pairs can be found in so-called torque motors that run at low to medium 
frequencies. A high speed motor typically has a lower number of pole pairs and can thus be operated at higher 
frequencies. In this case this results in a design of the EM with four pole pairs and a rotor speed of 250 Hz. 
Therefore, the output frequency of the inverter has to be 1000 Hz which demands switching frequencies of at 
least 8 kHz. Furthermore, the control of the inverter operates without a rotor position signal because no 
commercial encoder system is available for outer-rotor designs with time variant air gap in high vacuum 
environment. The sensor-less drive mode results in reduced dynamics of the power control compared to encoder 
drive mode. 
In order to design the EM in detail, a transient magnetic finite element analysis is carried out. The influence of 
the switching of the inverter is neglected, therefore electric currents in sine wave form are assumed. Figure 4 
shows the exemplary results for a low speed operating point of 7500 rpm and a positive (charging) electric power 
of 60 kW. From this analysis the machine losses can be estimated using material-specific loss coefficients for the 
electrical sheets and the copper windings for different operating point (specified by electrical power and 
rotational speed). 
 



 155 

 
 
       Figure 4. Results (2D magnetic flux) of the finite element simulation of the EM at 7500 rpm and +60 kW 
 
By calculating the steady state losses, given as root mean square values, for 6 rotational speeds and 9 electrical 
powers, a loss map of the system can be defined. Figure 5 shows the loss map for the electric machine including 
rotor and stator losses. Due to the poor thermal coupling of rotor and stator, the rotor losses of all components 
have to be reduced. Rotor losses of the EM lie below 50 W. For the analysis sinusoidal currents and voltages are 
assumed. In a practical application pulse width modulated inverters are used that create current and voltage 
harmonics which again lead to core losses in the rotor. These losses can be reduced by installing inductors but 
have to be taken into account for practical applications. 
 

 
 

Figure 5: Loss map of the EM (rotor and stator losses) derived by a FE simulation 
 
Analytical and numerical loss models of the AMBs and the gaseous friction losses of the rotor show that the 
flywheel’s loss structure is mainly dominated by the losses of the EM. Losses of magnetic bearings and air 
friction losses lie in the range of 140-180 W and below 10 W respectively. A loss optimization should thus focus 
on an efficient EM design. 
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3.3. Magnetic Bearing Design 
 
The goals during the design of the active magnet bearing system are stable levitation over the entire operation 
range with as low losses as possible especially with respect to rotor losses which lead to rotor heating. As a 
special design feature, the speed dependent diametric enlargement of the air gap has to be faced. In order to keep 
hysteresis and eddy current losses low, a homopolar AMB configuration is used. In Figure 6 the two axis radial 
AMB design, air gaps (magnified) magnetic flux path and the position sensors in differential arrangement are 
visualized.    
 

 
 

       Figure 6: Homopolar AMB configuration with differential sensor configuration and corresponding air gaps 
 
Despite a homopolar configuration a near constant, non changing pre-magnetization flux on the rotor is obtained 
keeping both losses low. Unfortunately, the homopolar configuration makes it hard to use thin electric sheet as 
the flux conducting material to further reduce eddy current losses. Thus soft magnetic composite is used as an 
alternative which allows isotropic 3-dimensional flux. As a result of the diametric enlargement of the rotor, the 
segmented sensor and actor planes of the rotor create tangential air gaps which increase with the rotor speed. 
When looking at the tangential air gaps one has to distinguish between those on the bearing side and those on the 
position sensor side. The first can be neglected due to the homopolar configuration as the tangential air gap does 
not lie in the path of the flux and thus does not further influence the behavior of the bearing. The latter is more 
crucial to the system. The tangential air gap has significant influence on the measured position as the air gap is 
being misinterpreted as a change in the rotor position whenever it passes the position sensor head. In Figure 7 
exemplary position signals are shown. Looking at the single sensor signals (SP and SN) high peaks can be seen. 

 
 

Figure 7: Single sensor signals (top) and differential sensor signal (bottom) 
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To overcome this undesired behavior, the mathematical difference (SP-SN) between two counter positioned 
sensors is used. Ensuring a symmetrical construction of the rotor segments, tangential gaps occur at the same time 
at both sensors and are thus not present in the difference of their signals (shown in Figure 7 at the bottom). This 
further holds for elastic axial symmetric eigenmodes of the rotor. Possible sensor errors like temperature drift and 
the speed dependent enlargement of the radial air gap between the sensor head and rotor are not present to this 
position signal anymore. 
Unfortunately, the influences of the radial air gap enlargement on the actuator part of the magnet bearing cannot 
be circumvented in a same manner. With an increasing radial air gap the magnetic force drops by the power of 
two with the air gap, resulting in a highly nonlinear magnetic force over the rotational speed range. One way to 
overcome this undesired behavior from a control point of view is to increase the initial air gap. As the absolute 
change of the air gap remains the same, the relative change of the air gap as well as the linked nonlinear magnetic 
force characteristics decrease. The enlarged initial air gap on the other hand has the drawback of an increased 
magnetic bearing size due to the higher number of coil turns which is needed to overcome the additional air gap 
reluctance. 
The rotor itself can be seen rigid from a control point of view since its first bending mode is more than 3.5 times 
higher than the highest rotational frequency, as shown in section 3.1. Due to its high moment of inertia the rigid 
body eigenfrequencies of the levitated suspended split up. Thus the highest rigid body eigenfrequency to be 
stabilized by the AMB are below 50 Hz and gives an upper limit of the desired frequency range of the AMB 
system. Despite these specific rotordynamic characteristics and the previously mentioned influences of the 
diametric enlargement of the rotor, a decentralized PID position control with a subordinated PI current control is 
sufficient to stabilize the system. 
 
 
3.4. Backup Bearing Design 
 
As most magnetically suspended rotors, the ETA290 flywheel uses rolling element bearings as backup bearings 
(BB). During regular operation the BB rests on the stator without mechanical contact to the rotor. When 
overload, malfunction or power loss of the AMB arise, the BB should prevent touching and damaging of other 
parts. Mechanical failures of the BB system can be classified as critical to the systems integrity because 
destructive whirl movements and very high bearing loads can occur as well as rapid momentum transfer from 
rotor to the stator when friction excessively rises. For high energy flywheels the preferences towards reliability 
and service times are notably challenging because of the kinetic energy density and the long spin down times 
even if high electric power braking is applied. For emergency braking during grid black out an additional passive 
brake resistor is added, spin down times are still above 2 minutes from full speed.  
The size of inner diameter of the ETA290 flywheel together with the high rotational speed complicates the use of 
conventional bearing components. The bearing speed expressed in the DN number is higher than 4e6 mm/min, 
which classifies the bearing situation as high speed application. This is aggravated by the vacuum environment 
resulting in an unfavorable lubrication and a lack of cooling. Therefore, an alternative BB design was chosen. 
First introduced by Chen et al. (1997) and similarly published by Jansen et al. (2014) the basic idea of this new 
approach is to use multiple small bearing units circumferentially distributed around the stator in each BB plain. 
This planetary arrangement of independent bearings leads to better high speed capability, lower BB inertia and 
lower friction. Further information is given by Quurck et al. (2014). In Figure 8 an illustration of the ETA290 BB 
design is given as well as a photograph of the components during built up. 
For the ETA290 flywheel, bearing units with full complement hybrid spindle bearings, mounted on a steel roller 
element are chosen. The roller element contacts the rotor’s BB plain, while the outer bearing races are placed 
into the stator. In each of the two BB plains, eight bearing units form a polygon shaped free orbit in which the 
rotor can move contact-free.   
Beside the higher speed capability of these bearing units, another advantage is given by the polygon shaped orbit. 
Due to the noncircular orbit, the rotor does not perform forward or backward whirls with high frequencies, what 
is often the case with circular BBs which are comparably stiff. Bearing loads of the polygon shaped BB are 
comparably low and plastic deformation can be prevented as long, as friction inside the bearing elements is low. 
The global behavior of a vertical and gyroscopic rotor in this kind of planetary bearing is described by Quurck et 
al. (2016). It can be described as a jumping character with a low speed, friction driven backward whirl 
component. Exemplary simulation data of a rotor drop event with a 150 kg flywheel from 12000 rpm in a 
planetary BB with six bearing elements is given in Figure 9. 



 158 

     
 
       Figure 8: Planetary BB design in schematic drawing (left), photograph of the BB system during  
                       build up (right) 
  

 
       Figure 9: Rotor drop simulation in a planetary BB with six bearing units. Simulation time is 10 seconds, 
                       displayed is data of the lower BB plain. Left: Rotor position data. Right top: Normal force applied 
                       to the rotor. Right bottom: Rotational speed of bearing unit 1, 2 and 3 in solid, rotor speed as chain 
                       dotted line. 
 
 
4. Final Design and Integration into the Factory 
 
Using synthetic load profiles from measured single machines of the ‘ETA-Fabrik’ the dimensioning of electric 
power and capacity was finished before the factory was built. To enable significant peak shaving and load 
smoothing capability the storage demand was defined by 1.4 kWh and 60 kW. The factories electric protection is 
rated by 170 kW. Minimum 60 kW are available from 7500 rpm. While the electric power is easy to achieve, the 
kinetic energy is more challenging. Derived by the first prototype the inner diameter was enlarged to 290 mm and 
the outer diameter rose to 430 mm to meet the demands. The upper speed limit was set to 15000 rpm for secure 
long time operation with low risk of rotor fatigue. The resulting surface speed is 227 m/s at the inner diameter, 
and 337 m/s at the outer dimeter of the FRP rotor. The total rotor weight is 153 kg, while the non-FRP 
components take two thirds of the weight. This ratio is responsible for the comparably low energy density of 8.9 
Wh/kg and shows a high potential for improvement. 
The nominal air gap of the BB system is 0.25 mm, the air gap of the AMB was set to 1 mm at zero rpm. Both air 
gaps enlarge radially up to 0.6 mm because of the centrifugal forces. The static load capacity of one BB unit with 
two spindle bearings is 4200 N. The lubricant of the bearing is MoS2, as it is resistant to evaporation and its dry 
friction is calculable by the theory of Birkhofer and Kümmerle (2012). The physical dry friction model provides 
information for a thermal and a wear model of the BB which enables lifetime prognosis of these components.  
The system’s first run up was performed in middle of 2015 in the laboratory of the IMS. In early 2016 the whole 
KESS was moved into the utility compartment in the basement of the ‘ETA-Fabrik’ where it is connected to the 
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factories point of common coupling in order to influence the residual load of the factory. The factories load is 
measured in the electrical main cabinet and transmitted via PROFIBUS to the programmable logic control (PLC) 
where the control strategy is implemented. A control loop running at 1 kHz can be used to control the electric 
power of the KESS.   
 
 
5. Conclusion and Outlook 
 
In the paper a novel type of flywheel was introduced for industrial applications. The high degree of integration of 
active magnetic bearings, permanent magnet synchronous machine and composite rotor together with the outer-
rotor topology lead to many challenges during practical realization. Development, construction, and assembly of 
the prototype are completed so far. Open tasks are the implementation of the KESS controller on a PLC and its 
integration into the factory’s energy management communication bus. This is going to be completed within the 
mentioned research project. 
Based on research questions that rose from this research project, follow-up projects were started. One project 
focuses on an intensive modelling and testing on component level. Here a special test rig for the experimental 
validation of back-up bearings and novel failure tolerant magnetic bearing concepts is set up. A second test rig 
focuses on the long life fatigue strength of the composite rotor. Due to the uncommon stress state in the outer-
rotor configuration induced by centrifugal forces, special test configurations have to be developed on material 
level. On component level flywheel shaped probes have to be cycled until they disintegrate to evaluate fatigue 
and failure modes of high thick walled, high speed FRP rotors. 
By implementing design improvements concerning the radial thickness of the AMB and EM the centrifugal loads 
can be reduced and the rotational speed heightened. A prototype with a maximum speed of 17500 rpm and 2.4 
kWh is currently implemented at the IMS. The specific energy of this system is 13.9 Wh/kg. Heightening the 
maximum allowable stress in the FRP to around 50% of the static ultimate strength would further raise these 
values to 4.8 kWh and 27.8 Wh/kg respectively, but the fatigue tests have to be done first and results have to 
proof these less conservative design restrictions. 
A further research project called ‘SWIVT’ focuses on a different field of application. Smart micro grids with 
decentralized generation can be stabilized using energy storage systems. For such a task an electric hybrid energy 
storage system consisting of a lithium-ion battery and a flywheel is developed. The flywheel design is based on 
the described prototype and tries to improve it further on a system level. 
In general, the main future challenges lie in the further integration of the component design on a system level. 
Also the power electronics (frequency inverter and magnetic bearing amplifiers) have to be adapted to the 
flywheel concept. The detailed knowledge about the reliability in terms of rotor fatigue and back-up bearing 
failure play a major role in order to increase the technology readiness of the design. 
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Determining a Function for the Damping Coefficient of a laminated Stack

C. Zahalka, K. Ellermann

The design of electrical machines is determined by electrical as well as mechanical requirements. Possible losses
due to eddy currents in the stator or the rotor are commonly reduced by using stacks of laminated sheet metal.
On the other hand, the design of the stator and the rotor has a significant influence on the mechanical properties:
Vibrations depend on the stiffness and the damping of the laminated stack. There are different methods to determine
the stiffness coefficient of a stack, but it is much more difficult to obtain suitable values for the damping as there
are more influencing factors.

This paper describes an experimental procedure, which determines the influence of different parameters on the
damping of a stack. The stack used during the experiments consists of 200 quadratic steel sheets with a side length
of 80 mm and a thickness of 0.5 mm. In accordance with the measurement data, a functional dependance based
on three variables is derived. The first one is the surface pressure between the steel sheets, the second one is the
frequency of the applied lateral force, and the third one is the displacement between the steel sheets.

It is the aim of this investigation to determine the influence of variations of these parameter values on the damping.
The forces are applied onto the stack with hydraulic cylinders. The mechanical deformation of the stacked metal
sheets is measured by a laser-speckle-based measurement system. This system detects the displacement of single
steel sheets. The displacement is measured on two steel sheets, but they are not side by side. The difference between
the two measurement points is equal to the displacement of the stack.

Through the synchronization of the time signal of the lateral force and the displacement of the stack, a hysteresis
loop can be calculated. This hysteresis depends on the lateral force and the displacement of the stack. The area of
the hysteresis corresponds to the dissipation energy between the two measurement points on the stack, 140 sheets
apart from each other. This area is calculated by numerical integration based on the trapezoidal rule. Through
the conservation of energy for this system, it is possible to calculate an effective damping coefficient for the stack.
Considering different influencing parameters, a function for the damping coefficient can be identified by the least
square method. This function can be used for the parameters in a numerical simulation of an electrical machine.

Nomenclature

A [m] Amplitude of the displacement of the dynamic cylinder
d [Ns

m ] Structural damping
fE [Hz] Excitation frequency
FD [N] Dynamic force
F̂D [N] Amplitude of the dynamic force
FStat [N] Static force
m [kg] Mass
p [ N

m2 ] Surface pressure
t [s] Time
x [m] Displacement
x̂ [m] Amplitude of the displacement
WDiss [Nm] Dissipation energy
η [−] Loss factor
ψ [rad] Phase shift
ω0 [ rads ] Angular eigen frequency
ωE [ rads ] Angular excitation frequency
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1 Introduction

Information about the material properties of the laminated stack is necessary to simulate the dynamics of a rotor
or a stator of an electrical machine. Due to the structure of the stack, the material properties vary in the different
directions: in radial direction, the metal of the sheets dominates the tensile stiffness. Different layers of the stack
act in parallel and the material with the highest value of Young’s modulus contributes most significantly to the
effective stiffness of the stack. In axial direction, the contact- and lamination-zone between the sheets becomes
much more important as layers act in series. In this direction, the material with the smallest value of Young’s
modulus influences the tensile stiffness much more. These zones are also considered to be highly important for
non-conservative effects: The transversal deformation of the stack due to a shearing motion between the metal
sheets contributes significantly to the overall damping of the structure. This is mainly due to the softer material in
the lamination zone.

The stiffness of a component can be determined experimentally or numerically – given the geometry and tabulated
material properties. Damping values are much harder to determine and are rarely available in literature. In this
paper, an experimental set-up is described in order to determine a function for the damping coefficient of a stack
caused by a shearing motion in transversal direction. There are many different parameters which have an influence
on the structural damping of a component. In this work, three variables are considered: The surface pressure
between the steel sheets, the frequency of the lateral force and the amplitude of the displacement of the stack. All
others, like the height of the stack or the size of the steel sheets, are being kept constant.

In practice, the displacement and the frequency vary with the operating states. The pressure on the other hand
is mostly caused by the design and by compressing the stack in the production process: In electrical machines,
the laminated sheets are – more or less loosely – stacked, then compressed and finally held in place by a welded
structure of tension elements and end plates. This design and production process make the pressure difficult to be
determined – leading possibly to significant variations in mechanical parameters of the machine.

There are different methods to determine the stiffness and the structural damping of a laminated stack. Luchschei-
der et al. (2012) describes a set-up to measure the stiffness of a lamination stack. Two plungers compress nine cir-
cular samples, cut out from a typical lamination sheet material. With two extensometers, clamped on the plungers,
and a load cell, a force-displacement diagram is created. With this diagram the stiffness in stacked direction of the
laminated stack can be derived.

Mogenier et al. (2010) predicted the modal parameters of an induction motor with an undamped finite-element
model. The minimation of the error between the predicted and the measured modal parameters with the Levenberg-
Marquardt algorithm. This leads to the equivalents constitutive properties of the laminated stack.

Clappier and Gaul (2015) and Clappier et al. (2015) determine the structural damping and the stiffness in axial
and in shear direction of a laminated stack. The measurement set-up for this evaluation consists of two laminated
stacks and three plates. The stack is axial pretensioned with a screw connection between the plates. The excitation
is effected with a shaker to one of the plates. To calculate the stiffness and the structural damping, the acceleration
of the plates and the force on the excitated plate are measured. The structural damping is calculated through the
determination of the dissipated energy. The same principle is used by Bograd et al. (2008). The difference between
these works is that Bograd determines the structural damping in shear direction from a thin layer element and not
from a laminated stack.

2 Experimental set-up

The complete test stand is placed on a foundation, which is isolated from the surrounding with an air suspension.
This is necessary to be independent from the environmental influences of the building. The measurement system
is not placed on this foundation, but the offset between the measurement system and the test bench can be removed
through an differential measurement of the displacement. The test bench consists of two hydraulic cylinders and
the clamping device for the stack (see Fig. 1). The vertical cylinder (4) applies the surface pressure on the laminated
stack. To avoid an inclined position of the pressure plate, there are four linear guides in axial directions around
the laminated stack. These guides are not shown in Fig. 1. The second cylinder (1) on the right side applies the
oscillating lateral force on the stack.
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Figure 1: Experimental set-up 1. Dynamic hydraulic cylinder 2. Load cell 3. Flexure 4. Static hydraulic cylinder
5. Ball joint 6. Upper lamination stack 7. Intermediate plate 8. Lower lamination stack 9. Pressure plate

There are two stacks, one is above the intermediate plate and the other one is below. Each of the stacks consists of
200 steel sheets with a side length of 80 mm and a thickness of 0.5 mm. Between the static hydraulic cylinder and
the pressure plate are a load cell and a ball joint. The load cell measures the force for the surface pressure in the
laminated stack and the ball joint corrects the inaccuracies of the concentricity between the pressure plate and the
cylinder. A load cell and a flexure are situated between the dynamic cylinder and the intermediate plate. The load
cell records the damping force and the flexure is used for the correction of the vertical position of the intermediate
plate. This is necessary, because the vertical position of the intermediate plate depends on the surface pressure in
the laminated stack. The static hydraulic cylinder is force controlled based on the load cell and the second one is
stroke controlled based on the magnetostrictive measurement method of the cylinder. Both systems are controlled
with one dual-channel controlling system.

The basic construction of the measurement system for the displacement of the steel sheets was described in Halder
et al. (2014) based on the laser-speckle principle. For the application in the test bench, the measurement system
has been adapted. The measurement construction is positioned so that the axes of the two high speed cameras
are orthogonal to the front site of the laminated stack, shown on the left picture of Fig. 2. This cameras record
the Regions of Interest (RoI) and the software calculates the displacement of each RoI. The displacement of the
laminated stack is the difference between the two RoI in horizontal direction. The maximum sampling rate of
the system is 150 Hz by recording two measure points at each RoI. In combination with the maximum excitation
frequency of 12.5 Hz, there are at least twelve measurement points during one vibration period. In order to get
different measurement points in the hysteresis loop, the sampling frequency is not an integral multiple of the
excitation frequency.

The position of the two RoI is shown on the right side of Fig. 2 and marked with a red rectangle. The distance
between the RoI is limited by the image of the camera in relation to the thickness of the sheets. For the setup under
consideration the RoI are separated by 140 sheets of steel. The speckle pattern is produced through a laser light
beam which is redirected with an mirror to a beam expander. This expanded beam is divided into two beams with
an splitter cube and must be projected exactly on the two RoI. The detailed description of this measurement system
is in Halder et al. (2014).
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Figure 2: Principle of the measurement system

3 Calculation of the damping coefficient

Through the structural damping in the laminated stack, the force-displacement graph is a hysteresis loop. The area
inside this hysteresis corresponds to the dissipated energy WDiss. The energy can be calculated from the damping
force FD acting over a diplacement x

WDiss =

∫
FD dx. (1)

In the considered case, WDiss determined from the horizontal displacement of FD as indicated in the right hand
side of Fig. 2.

Another definition for the dissipation energy is the approach of Kelvin-Voigt, which is described in Dresig and
Fidlin (2014). This approach uses the damping coefficient d and replaces the integration over x by an integration
over time t

WDiss =

∫ T

0

d ẋ2 dt = dω2
E

∫ T

0

x̂2 sin2(ωE t) dt. (2)

Here, the excitation is assumed to be a sinusoidal function with frequency ωE and amplitude x̂. Furthermore, the
response is assumed to have reached steady state with constant amplitude and angular frequency. As a result of
these assumptions, the damping coefficient d determined from Eq. (2) leads to

d =
WDiss

ωE π x̂2
. (3)

In addition to the structural damping, the loss factor η can be calculated. This factor is defined by the dissipation
energy divided by the maximum energy of the system. In Fig. 3, the maximum energy is shown in the dark gray
triangle and the dissipation energy is the gray area of the hysteresis loop.

On the other hand, the maximum energy can be calculated from the amplitude of the dynamic force and the
displacement. Thereby, the loss factor becomes

η =
WDiss

1/2 FD x̂
. (4)

The damping coefficient can also be evaluated from the equation of motion of a forced oscillator:

ẍ+
d

m
ẋ+ ω2

E x =
FD
m

eiωEt. (5)

164



x

FD

̂ ̂F xD,

Maximum energy

Dissipation energy

Figure 3: Maximum and dissipation energy

This essentially reduces the vibrating stack to a one-degree of freedom oscillator. The massm is the effective mass
of the stack. The fact, that parts of the experimental setup also move is accounted for in the force FD. For the
evaluation, only the steady state solution is relevant. A solution is given by the complex function

x = x̂ ei(ωE t−ψ), (6)

where ψ is the phase shift between excitation and response. Substituting Eq. (6) and its derivatives into the equation
of motion Eq. (5) leads to

ω2
0 − ω2

E + i
d

m
ωE =

FD
x̂m

eiψ. (7)

In Fig. 4, the left side of Eq. (7) is plotted in the complex plane.

Re

Im

Ψ
2 2ω  - ω0 E

Figure 4: Complex plane

From trigonometric functions applied to the rectangular triangle in the complex plane, the structural damping
becomes

d =
FD sinψ

x̂ ωE
. (8)

With this equation, it is possible to calculate the damping coefficient from the phase shift ψ between the vibration
excitement and the vibration response. This function is used for the evaluation of the calculation of the area from
the hysteresis loop.

4 Experimental evaluation

The aim of this experiment is to derive a function for the damping coefficient depending on the excitation frequency,
the displacement and the surface pressure between the steel sheets. A total of 120 measurement series were
considered: five different pressure values, four different amplitudes and six different frequencies. The pressure
was varied from 0.8 − 2.4 N/mm

2 in steps of 0.4 N/mm
2, the amplitude from 0.1 − 0.55 mm in steps of

0.15 mm. Frequencies included were 1, 2.5, 5, 7.5, 10, 12.5 Hz. Each of these 120 series was repeated ten times.
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In order to exclude systematic measurement errors, the chronological order of the measurement was randomized.
All of these measurements were considered in this study, but for the illustration of the method, we subsequently
focus on the measurement series with a pressure of 1.2 N/mm

2 as given in Table 1.

Table 1: Measurement series with p = 1.2N/mm
2

Series fE [Hz] A [mm] Series fE [Hz] A [mm]
25 1 0.1 37 7.5 0.1
26 1 0.25 38 7.5 0.25
27 1 0.4 39 7.5 0.4
28 1 0.55 40 7.5 0.55
29 2.5 0.1 41 10 0.1
30 2.5 0.25 42 10 0.25
31 2.5 0.4 43 10 0.4
32 2.5 0.55 44 10 0.55
33 5 0.1 45 12.5 0.1
34 5 0.25 46 12.5 0.25
35 5 0.4 47 12.5 0.4
36 5 0.55 48 12.5 0.55

Fig. 5 shows the dynamic force and the displacement of the laminated stack versus time. The first three seconds
of the signal include the approach of the hydraulic cylinder and the transient response. After this time, the steady
state solution is reached. For the determination of the damping coefficient, the steady state solution is significant,
see Section 3. Furthermore, only the measurement points after five seconds will be considered. After the tran-
sient response, the amplitude of the displacement and the dynamic force is nearly constant. The reason for small
fluctuations lies in the stroke control of the hydraulic cylinder.

The comparison of the plotted measurement data and the parameter of the measurement series (see Table 1) shows
a difference in the amplitude of the displacement. This difference is caused by the elastic deflection of the flexure
(see Fig. 1). The hydraulic cylinder is stroke controlled, which is measured inside the piston. So, on one side there
is the displacement of the piston and, on the other side, the displacement of the laminated stack. Consequently, the
difference between these two displacements is the elastic deformation of the flexure.

Figure 5: Measurement signal from the measurement number 417 (series 38)

The signal of the dynamic force and the displacement includes a phase-shift. This results from the structural
damping in the laminated stack. To get a graph (see Fig. 6) with the dynamic force over the displacement, the
two signals must be equal. In order to remove fluctuations from the measurements, several points are grouped
into one by averaging. With this operation, there is a minor error from the calculation of the area. The area is
calculated with a numerical integration, based on the trapezoidal rule. A linear connection between the points is
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satisfactory exact, because the error from the measurement is higher than the error through the linearization. Such
linear connections are shown in the right graph of Fig. 6.

Figure 6: Hysteresis loop left: measurement data; right: linearized data

Fig. 7 shows the boxplots of the measurement series with a surface pressure of 1.2N/mm
2. All measurements

which are in one marked rectangle have the same excitation frequency and from left to right an increasing amplitude
(see Table 1). The damping coefficient decreases with an ascending amplitude and by an ascending frequency.
Both of these connections have a similar behavior and can be approximated through an exponential function with a
negativ exponent. Another detail is shown in Fig. 7: Lower amplitudes and frequencies lead to a larger difference
between the first and the third quartile. The reason for this lies in the absolut measurement and calculation error
which is in all cases roughly the same, but through the smaller measurement values the relative error is much
bigger.

Figure 7: Boxplot of the measurement series with a surface pressure of 1.2 N/mm
2

Corresponding to the five different pressure values, five different functions for the damping coefficient are deter-
mined. These functions depend on the frequency and the displacement of the laminated stack and are assumed to
take the form

d(f,A) =
C1

f
+
C2

A
+
C3

f A
. (9)

Parameters C1, C2 and C3 are calculated from a least squares approximation separately for each pressure value:
For each variation of the parameters (C1, C2, C3) the sum of all squared differences between each measurement
point and the function value is calculated. The best approximation of the function is found when the sum reaches
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a minimum. In order to control the quality of the solution, the coefficient of determination (R2) is calculated. It is
defined in Birkes and Dodge (1993) as

R2 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

. (10)

The range of R2 is from 0 to 1, whereby 1 correspondents to the best approximation of the data values.

As an example, the function for a constant surface pressure of 1.2 N/mm
2 is found to be

d(f,A) =
386.64

f
+

3 · 10−3

A
+

5.15 · 10−3

f A

[
Ns

m

]
. (11)

Figure 8: Damping coefficient for a surface pressure of 1.2 N/mm
2 and an excitation frequency of 7.5 Hz

Fig. 8 illustrates Eq. (11) using a frequency of 7.5 Hz and the results of the corresponding measurements. Inserting
the value of the frequency into eq. (11) gives

d(A) =
3.69 · 10−3

A
+ 51.552

[
Ns

m

]
. (12)

Again, as an example, the function for the damping coefficient at a surface pressure of 1.2 N/mm
2 in Fig. 9 is

shown. The measurement points are marked with red crosses in this figure. The two-sided 95 % confidence interval
is built from all 120 measurement series. The calculation of the confidence interval is described in Mittag (2015).
The complete function is inside most of the confidence intervals.

Comparing the results from the different pressure values, only the parameterC1 is found to differ significantly. The
correlation between the parameter values and the associated pressures is nearly linear. With a linear regression, the
complete function for the damping coefficient can be derived and this function is

d(f,A, p) =
0.3072 · 10−3 p+ 18

f
+

3 · 10−3

A
+

5.15 · 10−3

f A

[
Ns

m

]
. (13)
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Figure 9: Damping coefficient for a surface pressure of 1.2N/mm
2

5 Conclusion

This paper describes a method to identify a parametric model for a damping coefficient of a stack of sheet metal.
This function depends on the surface pressure, the excitation frequency and the displacement of the stack. A
test stand was developed and 120 measurement series were recorded. From this measurement data, the damping
coefficient was determined by means of the dissipated energy. In order to control the obtained coefficients, a
second approach was used. All the calculated damping coefficients were fitted into a global function. The best
approximating function was derived by the least square method. At last, the function was compared with the
confidence interval of the measurement data.

The function reveals a significant dependance of the damping on the different parameters for the considered test
case. The results may be used for multibody simulation analyses of a stack, which is loaded by an oscillated force
with a constant excitation frequency.
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Calculation of Torsional Vibrations and Prediction of Print Quality in
Sheetfed Offset Printing Presses

N. Norrick, S. Neeb

In sheetfed offset printing presses the synchronous drive of the paper-carrying cylinders is achieved by a contin-
uous geared drive train. Due to the mechanical compliance of the drive train, the system is capable of torsional
oscillations, which are excited by a multiplicity of phenomena. The oscillations of the gear train have a direct
effect on print quality. The color register must not fluctuate from sheet to sheet, since fluctuations on the order of
a few µm lead to unacceptable printing results. The excitation frequencies or orders in the printing press lead to
register errors with corresponding orders on the printed sheets. Using a mechanical model of the printing press,
the effects of the excitations on the system can be simulated and, thus, predictions of register variation can be made
using a sheet-tracking algorithm. In a practical example, it is shown how due to a harmonic disturbance acting
on the main drive motor, register variations occur with a corresponding rhythm. By compensating the excitation
(feed-forward control), the torsional vibrations of the machine can be suppressed and the print quality can thus be
ensured. This is shown both in the simulation and on the basis of measured data. It is thus possible to predict the
effect of mechanical or control-related changes in the design of the printing machine, which ultimately saves time
and money during machine development and manufacturing.

1 Introduction

Sheetfed offset printing presses offer high print quality due to the exact hand-over of sheets from one inking unit to
the next (Kipphan, 2000). The exact hand-over of sheets at high speeds of up to 18000 sheets/hour (corresponding
to five sheets/s or 7.6 m/s sheet velocity for the machine type discussed in this paper) is attained by using cam-
driven grippers. A continuous geared drive drain connects the paper-carrying cylinders. This drive train is powered
by a single electric main drive motor. In this way, sheets can be transported through machines with lengths of 30 m
or more with errors on the order of 10 µm. The cutaway view in Figure 1 shows the cylinder layout as well as
important components of a modern large format printing press (sheet format up to 1210 mm × 1620 mm) with six
inking units and one varnishing unit (Heidelberg Speedmaster XL162-6+L). The sheets are taken from a paper pile
in the feeder (on the right) and accelerated to machine speed, then transported through the machine via grippers,
printed with multiple colors on the way, and dried and piled in the delivery (on the left).

delivery inking unitsvarnishing unit feeder

Figure 1. Cutaway view of a Heidelberg Speedmaster XL162-6+L sheetfed offset printing press with six inking
units (marked A to F), one varnishing unit and 15 degrees of freedom (marked 1 to 15). The degrees of freedom
of the main drive motor and the intermediate gear are not shown. Paper feed direction is from right to left.

Due to the mechanical compliance of the gear coupling, the printing machine is a system capable of torsional oscil-
lation, which is excited by a multiplicity of phenomena. In addition to the reaction torques of the aforementioned
gripper mechanisms, examples of predominant excitations are the drive belt (Langer, 2013; Messer, 2013), the
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vibrating roller for ink transport (Hummel et al., 1998; Heiler and Hieronymus, 2009), and the rotary encoder of
the main drive. In the following, these three excitation mechanisms are briefly described:

a) Drive belt: Due to the manufacturing process of the drive belt, the transmission ratio fluctuates during one belt
circumference as described by Langer (2013). This results in an oscillation of the driving torque. The excita-
tion is periodic with respect to the belt loop, allowing it to be divided into harmonic parts using Fourier analysis.
These harmonics correspond to non-integer machine orders when calculated in machine coordinates due to the
non-integer transmission ratio.

b) Vibrating roller for ink transport: The vibrating roller is an integral part of each inking unit and responsible for
the transport of ink from the ink supply fountain into the inking unit. The roller oscillates back and forth between
the ductor roller, where it receives ink, and the first ink roller, where it expends ink into the inking unit. It is not
driven so that it must be re-accelerated to machine speed at every stroke. This provides a shock-like excitation for
the machine, which responds with harmonic vibrations at non-integer machine orders.

c) Rotary encoder of the main drive motor: The errors of the rotary encoder mounted to the shaft of the main drive
motor are passed on to the machine via the motor control. The excitation mechanism will be explained in detail in
section 4.

The excited torsional vibrations have a direct effect on the printing quality, since the individual colors are trans-
ferred successively to the sheet during multicolor printing, but the positions of the colors must match exactly. The
correlation of the independently printed colors is called color registration or register. Only minimal variations of
the color register from sheet to sheet are tolerable, whereby fluctuation amplitudes of a few µm lead to unacceptable
printing results. The excitation frequencies or orders in the printing press can be found as register variations with
corresponding orders on the printed sheets. It is a prime example of (inevitable) undersampling: High frequency
vibrations of the machine, e.g. the effect of the vibrating roller with an excitation order fo =2.3 are sampled with
one sheet per machine revolution (sampling frequency fs =1). After a Fast-Fourier-Transform (FFT) into the order
domain aliasing leaves us with an amplitude error at the order 0.x because of the formula

falias,principal = min |fo −Nfs| N ∈ N , (1)

which yields an order of 0.3 in the current example. Figure 2 shows the connection between the machine vibration,
the sampling with one sheet per machine revolution and the transformation of the signal into the order domain.
Although an error is made due to undersampling, important information can be obtained from the analysis of the
register data.

vi
br

at
io

n
in

µm

vi
br

at
io

n
am

pl
itu

de
in

µm

10

−10

sheet1 16 order
0

0 0.5

10a) b)

Figure 2. a) High-frequency vibrations of the machine (thin gray curve, machine order 2.3) are sampled with one
sheet per machine revolution (black dots). b) Sheet signal transformed into the order domain.

In this context it is important to note that vibrations at integer orders do not result in register variation since they
are always sampled at the same phase angle. This is the case, for example, for the reaction torques of the gripper
systems. Vibrations with non-integer orders, on the other hand, such as the aforementioned mechanisms, produce
disturbances in the printed image.
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In the case of web printing machines, a large number of publications dealing with the modeling of the printing
machine and the prediction of registration values can be found. A comprehensive process model for web printing
was derived for the first time in the 1970s in the groundbreaking works of Brandenburg (1971, 1976) . Publications
from various research groups followed. This trend has continued up to the present day, as shown by more current
research papers (Wolfermann, 1995; Zitt, 2001; Galle, 2007; Schnabel, 2009; Brandenburg, 2011). The overall
aim is always dynamic and precise control of print quality in order to increase productivity while at the same time
minimizing energy and raw material use. In the case of sheetfed printing presses, this broad basis of publications
is missing, although the objectives are fundamentally the same. This paper is one building block in the filling of
this gap.

Using a mechanical model of the printing press, the effects of the excitations on the system can be simulated
and, with a suitable post-processing algorithm, predictions of register variation can be calculated. The mechanical
model and the post-processing algorithm for the prediction of register variation are explained in detail in the
following two sections.

2 Mechanical Modeling

Torsional vibration models of the complete printing press have been used for many years to aid in the understanding
and design of sheetfed offset printing press dynamics (Buck et al., 2005; Wiese, 1998; Norrick, 2015). Naturally,
the necessary modeling depth and complexity are different depending on the questions that need to be answered.

For this work, a discrete torsional degree of freedom (DoF) qn is assigned for each paper-carrying cylinder. In
addition, degrees of freedom are assigned to the drive motor and the intermediate gear. The moments of inertia can
be calculated from CAD models of the assembled components. The moments of inertia of the other cylinders and
rollers in each printing unit are added to the corresponding printing cylinder. The coupling of the DoF is attained
by discrete spring-damper elements which also include the nonlinearity due to gear tooth clearance (backlash).
Because of this, the spring-damper elements are dependent on the relative angular position of adjacent cylinders
∆q. A schematic of the discrete modeling incorporating backlash is shown in Figure 3. Stiffness and damping
values can be evaluated by model updating using measured machine natural frequencies and modal damping.

backlash

k

b

k

b

m1 m2 mn

q1 q2 qn

Figure 3. Schematic of the discrete modeling incorporating backlash.

The system equations in matrix form are

Mq̈ + B(∆q) q̇ + K(∆q) q = T , (2)

with M being the mass matrix, B being the damping matrix and K being the stiffness matrix. The vector of
excitation torques T is described by

T = TA(q, q̇) + TG(q, q̇)− TR(q̇) . (3)

TA is the torque from the main motor control, which is only applied to the DoF of the motor. Input values for the
motor feedback control are machine angle and machine angular velocity. The control strategy is a cascade control
with a proportional (P-) position control and a PI-velocity control. The filtering of the input signals and the signal
delay times are accounted for, since these influence the system behavior.

TG are the reaction torques of the gripper cams which are dependent on machine angle and angular velocity. The
torque values are gained from kinetostatic analysis or detailed multibody simulations, e.g. MSC/ADAMS.

TR is the speed-dependent friction torque which is known from many measurements and distributed on the DoF
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according to the machine configuration. For example, a printing unit and a varnishing unit have different friction
torque values.

The calculation is carried out in the time domain utilizing Matlab/Simulink. To manage the large number of
possible machine configurations it is of the utmost importance to ensure a well-structured and automated design of
the models.

For the case that the machine behavior is linear, i.e. no backlash occurs during operation, the complex transfer
function between the torque of the main drive motor and the relative cylinder rotation

H(Ω) =
q12−q2

TA
(4)

can be measured as well as calculated from the model. Figure 4 shows the amplitude and phase curves of measured
transfer functions for seven printing presses of the same configuration and the comparison with the simulated
transfer function for the same configuration. The coherence function γ2 (as defined by Markert (2013)) gives
us information about the reproducibility of the system’s behavior. Where the transfer function amplitudes are
significant, the coherence is near 1, making it obvious that the system behavior from one machine to the next is
reproducible. In addition it is evident that the natural frequencies and modal damping of the mechanical model fit
the measured values very well.
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Figure 4. Comparison of measured transfer functions for seven printing presses of the same configuration and
simulated transfer function (amplitude (a) and phase (b)) as well as the coherence function γ2 (reproduced from
Norrick, 2015).

3 Post-Processing: Sheet-tracking Algorithm

To predict print quality, starting point is the calculated machine vibration for the operating point of interest. To
calculate print quality during stationary operation it is sufficient to simulate the steady state vibrations at a constant
printing speed. The algorithm presented here is not limited to steady state operation though, but also suited for
transient operation such as emergency stop scenarios.

Preliminary results are rotation angle data for all paper-carrying cylinders at simulation time points (qn(t)). The
handover angles, i. e. the nominal cylinder angles at which the sheet transfer takes place, are part of the machine
design and known for a certain machine. To track a sheet through the machine, the following steps must be taken:
First, for n paper-carrying cylinders the points in time are calculated at which the cylinder angles are equal to the
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handover angles. If necessary, interpolation between simulation time points yields more exact results. Next, from
this matrix of handover times, the points in time are extracted that correspond to a certain sheet moving through
the machine. Then, for each of the n−1 handovers, the difference between the rotation angle of the "giving"
cylinder n−1 and the "receiving" cylinder n is calculated. The receiving cylinder is used as a reference. The
giving cylinder hands the sheet over too early or too late, depending on the state of vibration of the machine. The
angle-based handover errors multiplied by the cylinder radius r are converted into circumferential handover errors
u. Finally, the cumulative handover error can be calculated which is equal to the color register from one printing
unit to the next. The color register values can be specified relative to the first printing unit or as a register difference
between neighboring units.

As an example, the machine model can be subjected to an excitation with the machine order 2.3. The simulation
is carried out during steady state at printing speeds from 10000 to 14000 sheets/hour for time spans corresponding
to 100 sheets. The time domain data are transferred to the sheet-tracking algorithm. Figure 5 shows the simulated
machine vibrations at 12000 sheets/hour (relative vibration at the cylinder circumference between the first printing
cylinder q2 und the sixth printing cylinder q12) as a time signal as well as the calculated register variation between
printing unit one (DoF 2) and printing unit six (DoF 12) as a sheet signal as well as the values transformed into the
order domain.

a)

r
(q

2
−
q 1

2
)

[µ
m

]

250

−250
0 18machine revolutions

b)
|F

(r
(q

2
−
q 1

2
))
|[

µm
]

50

0
0 10

or
de

r2
.3

machine order

re
gi

st
er

1-
6

[µ
m

]

3

−3
0 18sheet

c)

re
gi

st
er

am
pl

itu
de

1-
6

[µ
m

]

0

3

0 0.5order

d)

Figure 5. a) Calculated machine vibrations r (q2−q12) in µm at a printing speed of 12000 sheets/hour, b) am-
plitude spectrum of the machine vibrations |F(r (q2− q12))| in the order domain in µm at a printing speed of
12000 sheets/hour, c) Calculated color register variation in µm at a printing speed of 12000 sheets/hour, d) Order
spectrum of the color register variation in µm at a printing speed of 12000 sheets/hour.

From the plots it is evident that the machine vibrations do not translate directly into register variations. The
relative circumferential vibration of the printing cylinders is around ±250 µm, but this results in only about ±3 µm
of register variation. This has two reasons. First, only the non-integer machine order 2.3 is visible in the register
variation, since integer machine orders have no effect on the register as detailed in section 1. Second, the sheets
are not handed over at the vibration peaks (in general), but rather at various points of one oscillation. Depending
on the mode shape or shapes being excited and the offset angle from one printing unit to the next, a superposition
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takes place which can be positive or negative.

Figure 6 shows a summary of the results for the order 2.3 and 0.3, respectively, over printing speed. It is ap-
parent that the vibration amplitudes of the machine and the register variation exhibit a maximum value around
12300 sheets/hour. This is due to resonance of the first elastic mode of the machine at 8 Hz, excited by the
machine order 2.3 (12300 sheets/hour =̂ 3.42 Hz; 3.42 Hz ×2.3 = 8 Hz). Because the damping matrix is not
diagonalizable, the mode shape is complex. The motions of the DoF are not in phase with each other, mean-
ing the mode reaches its maximum value at different times for every location. The mode shape is visualized in
Figure 7. The S-shape is characteristic of oscillator chains, as Dresig and Holzweißig (2009) have shown. The
three-dimensional plot emphasizes the mode shape’s twist in the complex plane.
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Figure 6. Calculated amplitude of the machine vibrations r (q2−q12) at order 2.3 in µm for printing speeds from
10000 to 14000 sheets/hour, b) Calculated amplitude of the register variation at order 0.3 in µm for printing speeds
from 10000 to 14000 sheets/hour.
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Figure 7. First elastic mode shape of the printing press at 8 Hz. The degrees of freedom of the main drive motor
and the intermediate gear are not shown.

4 Example: Disturbance at the Main Drive Motor

A rotary encoder mounted to the shaft of the main drive motor of the printing press is used to generate the speed
input signal for the motor control. Internal errors of the rotary encoder as well as external errors due to eccentric
mounting of the encoder are responsible for modulating the encoder signal at constant speed with a harmonic error
function. A pointer diagram (Figure 8a) shows the vector addition of internal and external encoder errors to a total
error vector.

The frequency of this error function is visible in a motor torque variation, which in turn excites high-frequency
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Figure 8. a) Summation of internal and external encoder errors to a total error vector. b) Remaining error after
addition of the compensation signal.

vibrations of the printing press. Finally, these vibrations cause register variations with a corresponding rhythm on
the printed sheets, leading to unacceptable print quality.

Measurements carried out on a Heidelberg Speedmaster XL162-6+L at a printing speed of 14200 sheets/hour show
a variation in the motor torque TA at machine order 10.06 – a non-integer value. On the printed sheets a register
variation at the order 0.06 is visible, corresponding to the value calculated from equation (1). The register variation
is mainly visible between printing units one and two. The measurement of the color register is done via optical
acquisition of special measurement fields on the printed sheets. When observing the measurement instructions and
good print quality in the single colors is given, the measurement uncertainty of this process reaches < 2 µm as
detailed by the Polygraphische innovative Technik Leipzig GmbH (2016).

If the amplitude and phase values of the systematic error of the rotary encoder can be determined, the excitation can
be compensated. In this way, the control does not "see" the eccentricity of the rotary encoder, so that the machine
vibrations are not excited in the first place. Ideally, a signal with the exact amplitude and a phase angle shifted by
π is added the the encoder signal. This would result in perfect compensation. Figure 8b shows a pointer diagram
of the effect of the addition of a non-ideal compensation value, which corresponds to an error in the determined
values of amplitude and phase angle.

The effectiveness of the compensation method can be demonstrated through simulation. In the model the encoder
signal is superimposed by a sinusoidal disturbance with known amplitude and phase. Figure 9 shows the simulated
amplitude spectra of the drive torque and the register variation without and with compensation of the encoder
error. Naturally, when applying an ideal compensation in the model, there is no remaining error. Therefore, for
the simulation results shown here, it was assumed that the value for the phase angle of the encoder error was
incorrectly entered with ∆ϕ= 10°, so that only an incomplete compensation of the error takes place. Since

|1− ei∆ϕ| ≈ 0.83 (5)

we expect a reduction of the motor torque vibration as well as the register variation of 83%, which is verified by
the simulation.

With the help of the machine model, it is clear why the register error develops mainly between the first and second
printing units: The order 10.06 excites a frequency of 40 Hz at 14200 sheets/hour. At this frequency, a mode shape
of the machine is excited in which mainly the main drive motor and the first cylinders (degrees of freedom one to
four) of the machine are involved. The eigenvector has hardly any deflections in the rear part of the machine, as
shown in Figure 10.

The simulated behavior without and with compensation was tested on a real machine. The driving torque was
recorded parallel to the printing of test sheets. After a first run without compensation, the compensation algorithm
was activated in the main drive control and a second run with compensation was performed. In the measurements,
a reduction of the driving torque fluctuation of 94% and a reduction of the register variation of 93% were achieved,
as shown in Figure 11. In the amplitude spectrum of the drive torque it is evident that only the 10.06 is affected
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Figure 9. a) Calculated amplitude spectrum of the motor torque in machine coordinates [Nm] without and with
compensation of the rotary encoder error. b) Calculated amplitude spectrum of the register variation from 100
consecutive sheets [µm] without and with compensation of the rotary encoder error.
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Figure 10. Elastic mode shape of the printing press at 40 Hz. The degrees of freedom of the main drive motor and
the intermediate gear are not shown.

by the compensation algorithm, as was the case in the simulation. The amplitudes of the other orders remain the
same. This is also the case for the measured register variation where only the order 0.06 is influenced by the
compensation.

Table 1 shows a summary of the results for direct comparison. The erroneous torque on the order of magnitude
of 100 Nm generates a register variation of several µm in the measurement as well as in the simulation. Both
simulation and measurement show the proportional relationship between torque and register variation.

amplitude motor torque amplitude register variation
order 10.06 order 0.06

simulation
without compensation 97.2 Nm 5.4 µm
with compensation 17.0 Nm 0.9 µm
reduction 83% 83%

measurement
without compensation 92.2 Nm 7.1 µm
with compensation 5.6 Nm 0.4 µm
reduction 94% 93%

Table 1. Summary of the simulation and measurement results.
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Figure 11. a) Measured amplitude spectrum of the motor torque in machine coordinates [Nm] without and with
compensation of the rotary encoder error. b) Measured amplitude spectrum of the register variation from 100
consecutive sheets [µm] without and with compensation of the rotary encoder error.

5 Summary and Conclusions

Using the presented mechanical model in conjunction with the post-processing sheet-tracking algorithm, it is
possible to predict the effect of mechanical or control-related changes on the sheetfed offset printing press directly
with regard to print quality. The method is suitable for steady-state printing at constant printing speed but also
for transient processes such as emergency stop. The comparison of simulation and measurement in a case study
shows a good agreement. In the range of a few µm, the effects of vibration excitations on the printed image can be
predicted. These predictions can ultimately save time and money in machine development and production.
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Dynamic Behaviour of EHD-contacts using a regularised, mass conserving
Cavitation Algorithm

S. Nitzschke, E. Woschke, C. Daniel

The paper deals with the holistic simulation of systems supported in journal bearings, which is demonstrated using
the example of a conrod’s big end bearing. For that purpose, primarily the interactions of multibody-, structure-
and hydrodynamics have to be described. Based on the time integration of the global equations of motions, the
non-linear bearing forces in the fluid film and the elastic deformation of the bearings surfaces have to be modelled
adequately concerning their mutual influence. The implementation of the elastic structure is carried out by means
of a hierarchised, IRS–based1modal reduction in order to represent its eigenbehaviour as realistic as possible and
to fulfil the requirement of low computational costs by reducing the number of degree of freedoms. Additionally, the
journal bearing is considered by an online solution of the Reynolds equation, whereat the cavitation is handled by
a transient acting, mass-conserving algorithm. This is based on the classical Elrod algorithm, but was extended by
a regularisation, which enables a faster and more stable solution. Due to the general approach, both mechanical
and tribological output quantities are accessible. This provides the possibility to draw a comparison with simpler
approaches and to emphasize the benefit of the described procedure.

1 Introduction

The transient simulation of systems supported in journal bearings and exposed to high dynamic loads requires the
description of the interaction between different field problems to determine the vibrations of the structure.

Firstly, the global behaviour due to the external loads has to be modelled including the elastic deformations. Taking
large non-linear rigid body motions with superimposed small elastic deformations into account, an elastic MBS2

approach based on the SID-formulation3 is state of the art. To assure an adequate description of the transient
behaviour, the hydrodynamic properties have to be considered.

In transient rotor-dynamics often a look-up table approach, which involves a stepwise linearisation of the bearing
forces w.r.t. the displacements, is used in order to keep the numerical effort at a low level. Here it is not possible to
represent the transient elastic deformations, which result from high dynamic forces. In contrast, a direct solution of
the Reynolds equation is necessary yielding the actual hydrodynamic pressure in the fluid film. Whereas compres-
sive loads are unproblematic for fluids, tensile loads lead to cavitational effects in the form of fluid vaporisation
and emission of dissolved air. To consider these phenomena in the numerical scheme of EHL4 analyses, several
approaches exist. A pragmatical way is to postulate all negative pressure values to become zero, which is known as
Half-Sommerfeld or Gümbel condition. The resulting drawback is the violation of the mass conservation, which
was used to derive the Reynolds equation. Furthermore, differences concerning the minimal film thickness, the
maximum pressure and especially the damping property can be expected.

Sophisticated approaches, which fulfil the mass conservation are given by Elrod’s algorithm (Elrod and Adams
(1974); Elrod (1981); Kumar and Booker(1991); Shi and Paranjpe(2002); Ausas et al.(2009)), the bi-phase
model (Feng and Hahn(1986); Zeidan and Vance(1989); Tao et al.(2000); Glienicke et al.(2000)) as well as
the ALE-approach5 (Hu and Liu(1993); Martinet and Chabrand(2000); Boman and Ponthot(2004); Schweizer
(2008)).

1Improved Reduction System
2Multibody System
3Standard Input Data
4Elasto-Hydrodynamic Lubrication
5Augmented-Lagrangian-Eulerian approach
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The first one is widely-used also in EHL applications (Boedo et al.(1995); Shi and Paranjpe(2002); Rho and
Kim (2003); Hajjam and Bonneau(2007)), whereat often the rotating structure is oversimplified to a mass point.
Nevertheless – due to the necessarily fine discretisation of the cavitation boundary and the elastic structure on the
bearing surface – high computational efforts arise. Aiming for stationary results, good solutions are achievable,
whereas under dynamic conditions (depending on position, velocity, deformation and the numerical discretisation)
cyclic repetitions of non-convergent iteration states during the solution of the Reynolds equation occur preventing
a convergent pressure distribution in the fluid film.

As a consequence the time integration would fail, unless the solution strategy is able to assure a valid pressure dis-
tribution under all kinematic conditions. For that purpose a regularised variant of Elrod’s algorithm was developed,
which solves the problem by the introduction of a fuzzy cavitation state (Nitzschke et al.(2016)).

Using the example of a crank-drive and the support of the conrod’s big end bearing, the differences between the
Gümbel and the modified Elrod algorithm are discussed in the context of the numerical results and the necessary
cpu-time. Beside the hydrodynamic properties, the increased level of detail concerning the film-fraction is also
relevant for the interaction with further field problems, e.g. thermodynamics of the bearing and its surrounding.

2 Theoretical Principles

The main part of the presented approach is the implementation of the non-linear stiffness and damping properties
of the bearing into the overall transient simulation. Starting with the numerical solution of the Reynolds equation
using a regularised Elrod algorithm, the bearing reaction forces and torques are derived. Afterwards, the elastic
behaviour of the bearing elements is taken into account via FEM6. Additionally, the global movement of the
deformable components is modelled by an E-MBS7 approach, which involves a model-reduction due to simulation
time issues.

2.1 Hydrodynamics

2.1.1 Regularised Cavitation Approach

The pressure distribution in the fluid film of journal bearings due to the movement of shell and pin is described by
the Reynolds PDE8, which can be derived from Navier-Stokes equations and conservation of mass regarding the
geometrical relations in the fluid gap. Elrod and Adams transformed this equation leading to the density relation
θ = %/%c as universal unknown, which depends on the compression modulusβ

∂

∂x

(
h3

12η
g(θ) β

∂θ

∂x

)

+
∂

∂y

(
h3

12η
g(θ) β

∂θ

∂y

)

︸ ︷︷ ︸
Poiseuille-flow

=
US+UJ

2
∂(θ h)

∂x︸ ︷︷ ︸
Couette-flow

+
∂(θ h)

∂t︸ ︷︷ ︸
squeeze-flow

. (1)

As a result, the conservation of mass is ensured even in cavitating regions – i.e. in regions with divergent film
height. This involves the implementation of a switch-functiong(θ), which suppresses the Poiseuille-flow in these
regions. The disadvantage of the resulting formulation is the calculation of the pressure from the film-fraction.
Due to the magnitude of the compression modulus(β ≈ 109Pa), restrictive error tolerances for the film-fraction
are needed to assure sufficient accuracy of pressure and thereby bearing forces as well as torques.

Utilising the fact that in the cavitation region a mixture of fluid and air occurs, Kumar and Booker introduced the ap-
plication of the following approaches for density% and viscosityη of the mixture depending on the film-fractionϑ

% = ϑ %liq + (1 − ϑ) %gas≈ ϑ %liq and η = ϑ ηliq + (1 − ϑ) ηgas≈ ϑ ηliq (2)

6Finite Element Method
7Elastic Multibody System
8Partial Differential Equation
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leading to a modified form of Eq. (1)

∂

∂x

(
%liq h3

12ηliq

∂p

∂x

)

+
∂

∂y

(
%liq h3

12ηliq

∂p

∂y

)

=
US+UJ

2
∂(ϑ %liq h)

∂x
+

∂(ϑ %liq h)
∂t

. (3)

This form is now depending on the pressurep as well as the film-fractionϑ, which show a complementary relation.
To obtain a solution, firstly the following relations are introduced in order to get a dimensionless formulation

H =
h

Δr∗
, X =

x

r∗
, Y =

y

r∗
, η̄=

ηliq

η∗
, um =

US+UJ

2
, P =

p (Δr∗)2

η∗ |um| r∗
, T =

t |um|
r∗

. (4)

Furthermore, the definition of a common variableΠ is useful

Π(x, y)
!
=

{
ϑ(x, y)−1 (x, y) ∈ Ωϑ

P (x, y) (x, y) ∈ Ωp

, (5)

which has to be interpreted depending on its actual value: In the pressure regionΩp it correlates with the dimen-
sionless pressureP , whereas in the cavitation regionΩϑ it contains the film-fraction. Defining a switch-function
in analogy to Eq. (1)

g(Π)
!
=

{
0 ∀ Π < 0

1 ∀ Π ≥ 0
, (6)

the equivalents to Eq. (5) and Eq. (6) read by reversal conclusions

ϑ(x, y) = (1−g) (Π(x, y)+1) + g and (7)

P (x, y) = g Π(x, y) , (8)

which can be inserted in Eq. (3)

[
∂

∂X

(
H3

12η̄

∂(gΠ)
∂X

)

+
∂

∂Y

(
H3

12η̄

∂(gΠ)
∂Y

)

−sgn (um)
∂H

∂X
−

∂H

∂T

]

+

[

sgn (um)
∂ ((g−1)ΠH)

∂X
+

∂ ((g−1)ΠH)
∂T

]

= 0 .

(9)

In order to solve Eq. (9) numerically, the bearing surface is dicretised using a FVM9 approach. Therefore, in the
pressure region central differences replace the differential quotient, whereas in the cavitation region due to the
transport character of Couette-flow backward differences are applied. Finally, this leads to the non-linear system
of equations

A(g)p = r(g) , (10)

with a sparse, unsymmetric matrixA and a vectorp, which contains the unknown values ofΠ. The partition of
the regionsΩp andΩϑ is initially unknown. Hence, Eq. (10) has to be solved by a fix-point iteration of the form

p(i+1) = A(g(i))−1 r(g(i)) . (11)

A convergent state of iteration is found, if the values of the switch-function remain constant. Under transient
loads the described algorithm tends to poor convergence, whereat cyclic repetitions in the solution of Eq. (11)
occur. This behaviour complicates the application within rotor- or structuredynamic models. Obviously, in these
cases the cavitational boundary is represented insufficiently, as its discretisation is coupled to the numerical grid.
Therefore, a finer mesh is able to improve the situation, but the computational costs increase and the general
problem remains: A given finite volume is either associated to the pressureor to the cavitation region. A re-
definition of the Heaviside-like switch-function Eq. (6), e.g. by

g(Π) =
1
π

arctan

(
Π

1 − Π∗

)

+
1
2

, (12)

9Finite Volume Method
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Figure 1: Influence of regularisation parameterΠ∗ on the smoothed switch-function Eq. (12).

allows a finite volume to be part of both regions. The stepwise respectivly discrete non-linearity of Eq. (10) is
thereby regularised. Additionally, by the smooth transition a Newton-Raphson algorithm is applicable to solve the
non-linear system of equations. For that purpose, Eq. (10) is to be seen as a function ofp

f(p) 7→ r(p) −A(p) = 0 , (13)

whereof using a Taylor series interrupted after the first term yields

p(i+1) = p(i) − J(p(i))−1 f(p(i)) (14)

with the Jacobian

J(p(i)) =
∂f

∂p

∣
∣
∣
∣
p(i)

=
∂r

∂p

∣
∣
∣
∣
p(i)

−

(

A(p(i)) +
∂A

∂p

∣
∣
∣
∣
p(i)

p(i)

)

. (15)

The partial derivatives ofr andA can be expressed analytically and in addition only the derivative of Eq. (12) is
required

∂g

∂Π
=

(

π (1 − Π∗)

[

1 +

(
Π

1 − Π∗

)2
])−1

. (16)

2.1.2 Validation of Hydrodynamics

The described approach was benchmarked inNitzschke et al.(2016) against simulation results published in the
literatureVijayaraghavan and Keith(1989) under static conditions. Furthermore, a convergence study was per-
formed concerning the meshsize and the influence of the regularisation parameterΠ∗. It was found, that from
approximately 1000 unknowns and in the region ofΠ∗ = 0.9 . . . 0.95 the influences on the pressure distribution
and the bearing force as well as its direction can be neglected.

Concerning dynamic loads, another example stated inAusas et al.(2009) was used. Therein, a transient calculation
of a single journal bearing under a load as it occurs in a main bearing of a crank-drive is examined. The equations
of motion are restricted to a planar motion of the pin, which was modelled as a point mass. The shell features

Figure 2: Scheme of half bearing surface with boundary conditions as stated inAusas et al.(2009).
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Figure 3: Orbit of the pin under transient conditions during one working cycle: comparison of the regularised
algorithm against the classic algorithm of referenceAusas et al.(2009) with variation of the reference
meshsize.

an axially centred circumferential groove ensuring the oil supply. Hence, only one bearing half is modelled, cf.
Fig. 2.

As the reference solution and the corresponding source code is publicly available, the present approach can be
opposed to the reference. The calculated orbits of the pin are displayed in Fig.3 for one working cycle. In
general, using an equal meshsize of 200x20, a good correlation between both approaches can be stated, whereat
the reference tends to show the smaller orbit. It is interesting that, a refinement of thereference meshleads to
convergence against the 200x20 solution of the approach presented here. In reverse it can be concluded, that the
latter shows a better solution quality even on a coarse mesh. This is caused by the property of Eq. (9) respectively
Eq. (14) to allow grid point to be part of pressure as well as the cavitation region: The boundary between both is
not longer restricted to run on the grid lines, but in contrast is able to cross a finite volume, cf. Fig.4.

Figure 4: Representation of the boundary between pressure and cavitation region with the classic algorithm of
reference (left) and the regularised algorithm (right) (Nitzschke et al.(2016)). The pressure region is
indicated by light and the cavitation region by dark gray.
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Table 1: Comparison of cpu-time under otherwise identical conditions concerning the results shown in Fig.3.

regularised algorithm classic algorithm
meshsize cpu-time [s] meshsize cpu-time[s]

200 × 20 254 200 × 20 480
400 × 40 5790
800 × 80 ≈ 70000

Supplementary, due to the application of the Newton-Raphson algorithm the cpu-time is reduced by a factor of two
under otherwise identical conditions. If the achieved accuracy is taken into account, the finest reference mesh has
to be used for the comparison leading to a remarkable benefit of the regularised algorithm, cf. Tab.1.

2.2 Elastic Deformations and Modal Reduction

Within the hydrodynamic contact in a crank shaft, the deformations in a conrod bearing show the same magnitude
as the clearance. Hence, the elastic deformation of the bearing contour due to the mechanical loads and the
appropriate surface velocity have to be taken into account. A proper method to provide the elastic behaviour
during simulation is the FEM.

2.3 Structural Dynamics

2.3.1 FEM-approach of non-moving Structures

Starting from the Hamiltonian principle, according to discretisation and formulation of suitable shape functions of
the variational function, a linear system of equations can be derived

Mü+Du̇+Ku = f , (17)

in whichM represents the mass-,D the damping- andK the stiffness matrix. The vectorf represents the external
forces andu the displacements of nodal degrees of freedom. To minimise the numerical effort in the context
of time integration algorithms, a reduction of the degree of freedoms is mandatory. This can be achieved by a
reduction based on the master-slave concept or by a modal reduction.

2.3.2 Master-Slave Reduction

Firstly, the degrees of freedom of the overall structure are subdivided in master- and slave-degrees of freedom and
sorted according to the following scheme

[
MMM MMS

MSM MSS

] [
üM

üS

]

+

[
DMM DMS

DSM DSS

] [
u̇M

u̇S

]

+

[
KMM KMS

KSM KSS

] [
uM

uS

]

=

[
fM
fS

]

, (18)

whereat the master-group is still present after the reduction and the slave-group will be expressed as a function of
the master degrees of freedom using a suitable transformation matrixQred

[
uM

uS

]

= QreduM . (19)

Different variants with specific advantages and disadvantages exist: The simplest form of reduction dates back to
Guyan(1965) and neglects all dynamic effects of the slave structure, which is widely known as static condensation

[
uM

uS

]

=

[
I

−K−1
SS K

T
MS

]

uM = QGuM . (20)
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The application of the transformation matrix to all system matrices and the subsequent symmetrisation

SG = QT
G SQG with S = M, D, K (21)

leads to the differential equation of the reduced system

MG üM +DG u̇M +KGuM = fG . (22)

However, as the excitation frequency rises, increasing deviations occur compared to the dynamic behaviour of the
unreduced structure. An improvement can be made by consideration of the dynamic behaviour of the slave degrees
of freedom. A popular method of improvement without the usage of additional modal degrees of freedom (as
done in the Craig-Bampton- (Craig(2000)) or the SEREP-reduction (O’Callahan(1989b)) ) is the IRS-method by
O’Callahan(1989a). Therein, the Guyan approach is extended with pseudostatic inertial forces, which leads after
some conversions to the following transformation matrix

[
uM

uS

]

= QIRSuM = (QG +PMQGM
−1
G KG)uM with P=

[
0 0
0 K−1

SS

]

. (23)

The procedure can be extended iteratively (O’Callahan(1989b)), whereby the eigenfrequencies of the reduced
system are converging to that of the unreduced system

QIRS,i+1 = QG +PMQIRS,iM
−1
IRS,iKIRS,i . (24)

However, the drawback of this iteration is an increasing condition of the system matrices. Hence, it has to be
terminated after reaching a sufficient accuracy or exceeding a critical condition number.

2.3.3 Modal Reduction

Alternatively, the reduction can be based on the eigenvectors. The homogeneous solution of the boundary value
problem consists of thenk eigenfrequenciesωk and the corresponding eigenvectorsûk

[
Kred− (ωk)2Mred

]
ûk = 0 . (25)

This results in a transition from the physical coordinatesu to the modal coordinatesq = [q1 . . . qk]

Mred ü+Dred u̇+Kredu = fred ⇒ (26)

Mmod q̈+Dmod q̇+Kmodq = fmod (27)

using the transformation

u = Qmodq = Û q with Û = [û1 . . . ûk] . (28)

This transformation is initially exact and it can be shown that each deformation state can be represented as the
superposition of different eigenvectors.

The reduction is achieved by eliminating those eigenvectorsûj of the modal matrixÛ which – due to the fre-
quency spectrum of the external loads – result in modal amplitudesqj with insignificant magnitude (Dietz (1999)).
These are predominantly high-frequency components of the deformation, which in addition usually show a strong
damping.

2.4 Elastic Multi Body Dynamics

For the application example of the crank drive, the individual components are subject to large rigid body move-
ments, on which small elastic deformations are superimposed. With this background, the use of a FEM description,
which would inevitably have to be geometrically non-linear, is numerically very complex. For this reason, elastic
multi-body algorithms are preferred which have been specifically developed with this focus using the floating-
frame-of-reference approach.
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Figure 5: Representation of the position vectorr in initial- and deformed configuration and its segmentation in
rigid body partc as well as the elastic deformationu according toWoschke(2013).

As a starting point for their description, the integral over the difference of the variations of the internal and the
kinetic energy can be used, which must be in equilibrium with the virtual work of the external loads, consisting of
volume- and single-forces

0 ≡
∫ t2

t1

(δEkin − δEin + δW ) dt (29)

=
∫ t2

t1

(∫

V

δṙT ṙ ρ dV −
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V

δεT σ dV +
∫

V s

δrT sv dV +
∑

i

(
δrT

i Fi

)
)

dt .

Using the fundamental lemma and the fact that the variation vanishes at the timest1 andt2 yields

0 ≡
∫

V

δrT r̈ ρ dV
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inertia effects

+
∫

V

δε(u)T
σ(u) dV
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−
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V s

δrT sv dV +
∑

i

(
δrT

i fi
)
]

︸ ︷︷ ︸
external loads

. (30)

The equation of motion now contains volume integrals with non-linear dependence on location and time. If, at the
same time, the elastic deformationu is replaced by the modal coordinatesq by utilising the described reduction
methods, the following relationships according to Fig.5 are obtained

r = QIK K(rA + c+ u) = QIK K

(
rA + c+ Ûq

)
,

r̈ = QIK K

(

r̈A +
(
c+ Ûq

)T

× ẇ + Ûq̈+ 2w × Ûq̇+w ×
(
w × (c+ Ûq)

))

,

δr = QIK K

(
δrA + δw × rA +

(
c+ Ûq

)
× δw + Ûδq

)
. (31)

Thereby, all terms are expressed as a function of the angular velocityw as well as the modal coordinatesq and
their derivativeṡq, which leads to a formulation of Eq. (30) in the form of

MMBS(q)a + hω(w,q, q̇) + hel(q, q̇) = ho(q) mit a =




r̈A

ẇ
q̈



 . (32)

The modal reduction is an integral part of the implementation of elastic bodies into MBS applications. Due to the
orthogonality properties, they allow a decoupling of the equation of motions inton linearly independent differential
equations. At the same time, a master-slave reduction can be pre-set to the modal reduction, in order to limit the
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Figure 6: Model of the crankdrive with elastic crankshaft and elastic conrod on cylinder 1 (C1) shortly after
TDC10of C1. The dots indicate the markers resulting from the master degree of freedoms. In addition,
the lubrication film pressures are visualised on the main bearings and on the conrod’s big end bearings.
The arrows on the pistons represent the forces due to the gas pressure in the cylinders.

eigenvectors to the information essential for the deformation description. This results in the following substitution

u = QIRSuM = QIRSÛq , (33)

which can be applied in Eq. (31) instead of the straight modal reduction.

3 Model

The combination of the described approaches with regard to hydrodynamics and elastic multi-body simulation is
demonstrated by means of a conrod big end bearing of a crankdrive, cf. Fig.6.

Conrod For this purpose, the conrod is first discretised by finite elements and then reduced to 1503 degrees of
freedom using the described IRS-based master-slave approach. The master nodes are arranged on the one hand
uniformly over the shank of the conrod and, on the other hand, are concentrated in the bearing shell in order to be

10Top Dead Centre
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able to accurately represent the deformation in the fluid gap. The distribution of the nodes is coupled to the mesh
required for the hydrodynamics, in order to avoid interpolation of the deformations and the associated velocities.
Subsequently, a modal reduction is used, in order to achieve decoupling of the equations of motion. The eigenforms
to be considered depend primarily on the excitation frequency spectrum. But in addition, special eigenforms have
to be taken into account to inclose the local deformations in the bearing shell. These deformations are described
by eigenforms whose natural frequency is clearly above each frequency contained in the load spectrum. In this
case, the influence of the deformation on the pressure build-up in the journal bearing and thus in the loads is
decisive, whereat a renouncement of the corresponding eigenforms results in exaggerated hydrodynamic pressures.
The decisive point of the modal reduction is thus given by the selection of the eigenforms used to describe the
deformation.

Neglecting the effect of all inertia forces and influences from damping compared to those from stiffness, the
equation of motion of a modal reduced elastic body Eq. (26) can be formulated by

Mmod q̈+Dmod q̇� Kmodq  Kmodq = fmod . (34)

This assumption applies formally only to slowly moving elastic bodies, taking into account a low attenuation as
well as a low rate of change concerning the external loads. However, the results obtained are also applicable to
dynamically loaded systems in the context of journal bearing simulation because the local deformations primarily
result from the acting external loads and the deformation rate remains moderate.

Assuming that the forces acting on the structure are known, the modal deformationsqi can be determined. If they
are weighted with regard to their share in the overall deformation state using the modal participation factor

MPFi =
|qi|∑

i

|qi|
∙ 100% , (35)

an explicit selection of significant eigenforms can be achieved. Also a set of load collectives – e.g. obtained from
dynamic simulations – can be considered by superposition of significant eigenforms of each load step.

For the knowledge of the external loads of the deformed model, formally a complete simulation with a high number
of modal state variables is necessary. However, it could be shown that the general trend of hydrodynamic loads
using a simulation with a rigid bearing shell is similar to an elastic one. Hence, the hydrodynamic loads of a rigid
calculation – wich are obtainable with a lower numerical effort – can be used as input data for the selection of the
participating eigenvectors.

The minimal percentage contribution to the deformation, which must be taken into account, is not comprehensively
algorithmic, but is always associated with the actual load case. Further details concerning the choice of eigenforms
are shown inWoschke(2013), Woschke et al.(2007) andWallrapp(1999). For the conrod considered here, 74
suitable eigenforms from the first 200 eigenforms were selected and taken into account for the calculation.

Depending on the algorithm used for the master-slave reduction, deviations of the eigenfrequencies between re-
duced and unreduced structure result. These are summarised in Tab.2 using the example of the lowest and highest
natural frequency selected for the deformation. The reduction methods consistently predicate a stiffer behavior
than is represented by the unreduced structure, whereat the differences increase as the order of the eigenfrequen-
cies increases. The deviations are greatest in the Guyan reduction due to the disregarded dynamic properties of
the slave structure. The IRS reduction converges with increasing number of iterations monotonously against the
values of the unreduced model. The highest eigenfrequency to be considered defines the numerical stiffness of the
resulting differential equation system and thus represents an important indicator for time integration with respect
to the maximum step size.

Table 2: Influence on the conrod’s eigenfrequencies due to the master-slave-reduction method

method 1st EF [Hz] . . . 188th EF [kHz] rel. deviation to unreduced [%]

unreduced 2058 . . . 120.9 -
Guyan 2063 . . . 262.1 117
IRS ( 5 iterations) 2063 . . . 134.7 11
IRS (10 iterations) 2063 . . . 123.0 2
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Crank shaft The local deformations at the bearing area in radial direction are negligibly small on the crankshaft
due to the solidly designed pins on the main and conrod bearings. However, in the course of the ignition sequence
of the individual cylinders, a time delay concerning the introduction of the gas forces occurs leading to a global
deformation. Subsequently, the crankshaft is also reduced by the described methods. The selection of the master
nodes was made with a restriction on the degrees of freedom required for the force application into the bearing
points. For this purpose, the bearing pin surfaces were assumed to be non-deformable and rigidly connected to a
master node, which is central with respect to the pin – nine nodes remain after reduction. According to the highest
frequency contained in the excitation, the consideration of the 13 first eigenforms is sufficient here.

4 Results

In this section, the results concerning the big end bearing of the conrod are discussed depending on different
modelling approaches of MBS and hydrodynamics, cf. Tab.3.

Table 3: Modelling approaches

variant label description MBS description hydrodynamics

a) CRel + HDreg/reg conrod as well as crankshaft elastic conrod bearing and main bearings
with regularised cavitation algorithm

b) CRel + HDreg/spring conrod as well as crankshaft elastic conrod bearing with regularised cav-
itation algorithm, main bearings with
isotropic spring-damper elements

c) CRel + HDgue/spring conrod as well as crankshaft elastic conrod bearing with Gümbel cavita-
tion algorithm, main bearings with
isotropic spring-damper elements

d) CRrig + HDreg/spring conrod rigid, crankshaft elastic conrod bearing with regularised cav-
itation algorithm, main bearings with
isotropic spring-damper elements

e) CRrig + HDgue/spring conrod rigid, crankshaft elastic conrod bearing with Gümbel cavita-
tion algorithm, main bearings with
isotropic spring-damperelements

Due to the transient load, the elastic deformation and the associated surface velocity are varying during the work-
ing cycle and influence the hydrodynamic film thickness and its derivative w.r.t. time, further details can be found
in Daniel (2013). As a consequence of the online approach for solving the Reynolds equation, the pressure dis-
tribution and the resulting bearing reactions can be analysed. Additionally, due to the mass-conserving cavitation
algorithm, the transient development of the film-fractionϑ is accessible. The mentioned quantities are displayed
exemplarily at the TDC in Fig.7: The radial deformation of the bearing surface is dominated by a global ovalisa-
tion due to inertia forces, which is superimposed by local deformations in the region of maximum hydrodynamic
pressure. The gap function consist of the radial deformation plus the gap due to the rigid body kinematics. As a
consequence, the maximum pressure arises in the region with minimal gap. The pressure build-up is also influ-
enced by the transient film-fraction – only in regions with sufficient fluid filling pressure values above the cavitation
pressure can occur. Furthermore, in the visualisation of the film-fraction the oil-supply is noticeable.

The evaluation of these quantities for every time step of a complete working cycle is not practicable at this point,
therefore integral quantities like the orbit of the crankpin w.r.t. the conrod’s big end as well as the maximum
pressure and the minimal film thickness are discussed in correlation to the modelling approaches, cf. Tab.3.

The orbit is displayed normalised relative to the bearing clearance. Firstly, in Fig.8 the different parts of the orbit
are assigned to the four strokes of cylinder 1. In particular, during compression and power stroke sharp peaks occur
in the orbit, which result from the changing gas force due to the pressure in the combustion chamber. Basically,
Fig. 9 shows the evident difference between the elastic and the rigid modelling of the conrod. Due to the elastic

deformation values of the normalised total displacementvtotal =
√

v2
x + v2

y > 1 occur.

Both, the elastic as well as the rigid results show a significant deviation in the utilisation of the clearance concerning
the modelling of the cavitation algorithm. The regularised Elrod algorithm tends to larger displacements caused
by the delayed pressure build-up as a result of the film-fraction’s transient development. In contrast, the Gümbel
approach leads, apparently due to the violation of mass conservation, to larger reserves before solid contact occurs.
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Figure 7: Input and result field-quantities of Reynolds equation at TDC: gap function (top left), radial deformation
of bearing surface (top right), pressure (bottom left), film-fraction (bottom right).
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Figure 8: Orbit of crank pin w.r.t. the conrod’s big end: correlation to the four strokes of the working cycle.
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Figure 9: Orbit of crank pin w.r.t. the conrod’s big end using different modelling approaches: elastic conrod (left),
rigid conrod (right). Additionally, the nominal clearance is displayed as a bold line, which visualises the
undeformed contour.

0 120 240 360 480 600 720
0

50

100

150

200

250

Figure 10: Tribological quantities during a working cycle: minimal film thickness (left) and maximum pressure
(right).

With regard to the influence of the main bearings and the remaining conrod bearings on the crankpin orbit, only
slightly differences occur, which hardly legitimate the extended effort.

Concluding, the minimal film thickness and the maximum hydrodynamic pressure are investigated as tribological
indicators of the bearing’s operating grade, cf. Fig.10 left. Contrarily to the crankpin orbit, which is meaningful
only at the bearing mid, here the film thickness is evaluated in the whole bearing, whereby potential wear on the
bearing’s edges due to tilting of the bearing surfaces can be identified. But coinciding with the results obtained on
the crankpin orbit, the influence of tilting is negligeble in the present case.

The maximum pressure in the fluid film shows in wide ranges of the working cycle only minor differences between
the modelling approaches, cf. Fig.10right. Merely on TDC a decrease can be observed with increasing modelling
grade. This behaviour is caused by the increasing compliance due to elasticity of the conrod, which results in an
enlargement of the load zone. This trend is amplified by the cavitation as the partly filled fluid gap leads to a softer
bearing reaction resulting in lower pressure values.

Referring to the tribological quantities, the modelling of the remaining bearings is also of minor importance.
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5 Summary and Outlook

The paper at hand shows exemplarily the implementation of dynamic loaded components or systems supported in
journal bearings into a holistic MBS-based simulation. Therein, the level of detail concerning the hydrodynamics
is extended by introducing a regularised Elrod–algorithm, which is compared to existing simplified approaches.
Firstly, a significant deviation from these assumptions can be shown, which e.g. results in smaller minimal film
thickness preventing an overestimation of carrying reserves. Furthermore, a significant advantage in cpu-time of
the new approach appeared compared to the classic Elrod–algorithm. It can also be concluded, that the modelling
depth of adjacent bearings has only a small impact on the bearing on the investigated conrod.

The presented approach can be transferred in a similar manner to other tribological contacts (axial or floating
ring bearings) and cavitation models (bi-phase-model). Regarding the floating ring bearing appropriate results
are published inNitzschke(2016). In addition to the improved model quality, a basis for the integration of the
thermal field problem is given through the mass-preserving cavitation algorithm, because the transient gap filling
is required as an input of the energy equation, as mentioned inWoschke(2013).
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On the Influence of a Five-Hole-Probe on the Vibration 
Characteristics of a Low Pressure Turbine Rotor while 
Performing Aerodynamic Measurements 
 
F. Schönleitner, T. Selic, M. Zenz, F. Heitmeir, A. Marn 
 
 
For many reasons it is essential to know and assess the flow field and its characteristics up- and downstream of 
a turbine stage. For these purpose measurements are conducted in test rigs such as the STTF-AAAI (subsonic 
test turbine facility for aerodynamic, acoustic, and aeroelastic investigations) at the Institute for Thermal 
Turbomachinery and Machine Dynamics at Graz University of Technology. A low pressure turbine is operated 
in engine relevant operating conditions. The turbine is experienced high mechanical loads and is excited to 
vibrate (forced response). In the rotor design process forced response predictions and structural assessments 
are performed. However, it is not common to include instrumentation (e.g. total pressure and temperature rakes, 
five-hole-probes, fast response aerodynamic pressure probes) in these forced response predictions. But, these 
measurement devices are essential and therefore this paper investigates the influence of such an instrumentation 
onto the vibrational behaviour of a low pressure turbine rotor of the STTF-AAAI. Several vibration 
measurements at distinct circumferential and radial positions of the five-hole-probe in the flow channel are 
conducted. These measurement results are compared to measurements performed without a five-hole-probe in 
the flow channel. A clear influence of the five-hole-probe on the vibration level is shown. 
 
 
1 Introduction 
 
Aerodynamic investigations of turbine stages are the main part of every turbomachinery research. After the 
design and numerical predictions of the flow through turbine stages and its mechanical and dynamical behaviour 
it is indispensable to perform measurements in test rigs especially if the design is at the limits of the known and 
established design space. Since many years the Institute for Thermal Turbomachinery and Machine Dynamics at 
Graz University of Technology has been operating a test rig to investigate sound propagation and blade 
vibrations. For sure, instrumentation is a necessary and essential part of the test rig. The influence of the 
instrumentation and measurement devices should be as less as possible, but it is still there. This is true for the 
flow itself but also for the excitation of blade vibrations. Within a national funded project AdMoNt a sensor 
telemetry system is used in the subsonic test turbine facility for aerodynamic, acoustic and aeroelastic 
investigations (STTF-AAAI) in order to measure blade vibrations by means of strain gauges on the blade 
surfaces in the rotating frame of reference. These investigations have been conducted under engine 
representative conditions. (Schönleitner, 2016) investigated blade vibrations due to the potential effect of 
different turbine exit casings (TEC) and due to the downstream effect of the upstream low pressure turbine stator 
vane row. He has shown a clear evidence of both effects. Also, due to blade-vane interaction the vibrational 
characteristics of the rotor is affected. This is true for the rotor blades and rotor disc. 
Because of the small axial distance between rotor and TEC and hence a small distance between the  
five-hole-probe (shaft diameter 7mm) and the rotor blades the influence of this probe onto the blade vibrations is 
determined. Blade vibrations have been measured for different circumferential and radial positions of the probe.  
 
2 Literature Survey 
 
Public experimental data of vibrations of low pressure turbine blades under engine relevant operating conditions 
are limited. A lot of numerical data can be found in literature, also analytical data and literature about the 
development of methodology is available. Also, a lot of theoretical work dealing with flutter, forced response 
and mistuning can be found. Experimental data is mostly obtained in cascades due to the simpler test set up and 
easier measurements. These tests however neglect essential 3D phenomena and effects that occur. Thus they 
cannot be simulated in linear cascades. 
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(Bell, et al., 2000) show the influence of the tip leakage onto the blade vibration of a oscillating blade in a linear 
cascade. (Huang, et al., 2006) investigated the effect of the tip leakage vortex onto the flutter behaviour of 
turbine blades. The authors conducted their experiments also in a linear cascade. Shock induced vibrations has 
been investigated by (Urban, et al., 2000) in a linear cascade utilising flexible supported blades. (Nowinski, et 
al., 2000) did experiments with low pressure turbine blades and showed some aspects of flutter occurrence in an 
annular cascade. (Vogt, et al., 2007) reported the influence of negative incidence on the mode shape of 
oscillating blades. Also these authors conducted their experiments in an annular cascade. The influence of 
mistuning on aerodynamic damping of an oscillating low pressure turbine blade was shown by (Glodic, et al., 
2011). In the same cascade (Vogt, et al., 2007) showed that the influence of a vibrating blade is limited to the 
adjacent blades. (Kielb, et al., 2001) give detailed insight into the effect of damping of a turbine. The authors 
showed that aerodynamic damping is inversely proportional to the square of the rotational speed. 
There have been no publications found in open literature dealing with low pressure turbine blade vibration 
measurements in the rotating frame of reference under engine representative operating conditions. Also, there is 
no literature available that shows the influence of the upstream stator vane row (downstream effect) on the blade 
vibration excitation and the influence of the downstream turbine exit casing (upstream effect). Therefore, within 
the project AdMoNt (Schönleitner, 2016) created a novel database with data obtained in the rotating frame of 
reference under engine representative conditions in order to support the development of future innovative low 
pressure turbine stages. Main focus was on the upstream effect of different turbine exit casings on the forced 
response of low pressure turbine blading combined with the downstream effect of the stator vanes. 
Also investigations in order to identify and clarify the influence of a five-hole-probe on the blade vibrations 
during a measurement campaign has been conducted and are reported in this paper. 
 
3 Experimental Facility and Instrumentation 
 
3.1 Subsonic Test Turbine Facility for Aerodynamic, Acoustic and Aeroelastic Investigations  
       (STTF-AAAI) 
Figure 1 shows the meridional section of the subsonic test turbine facility. Figure 1 a) illustrates the leaned TEC 
configuration while in b) the measurement plane is depicted. Air, delivered by a 3 MW compressor station, 
enters the open loop test facility through a spiral casing. There, the tangential inlet flow is turned into axial 
direction. The remaining swirl is further reduced by a de-swirler that is also located in the inlet casing. In order 
to ensure a uniform and homogeneous inflow of the turbine stage a perforated plate is located downstream of the 
de-swirler. Upstream of the turbine stage an additional inlet guide vane (IGV) can be found. With that IGV 
different inlet flow angles for the turbine stage can be realised in order to be able to test different stages and/or 
different operating conditions. The IGVs are followed by the low pressure turbine stator and rotor. Downstream 
of the rotor the turbine exit casing (TEC) with the turbine exit guide vanes (TEGV) is located. 
Additional design details of the test rig are summarised in (Moser, et al., 2007). Due to the design of the test rig 
it is possible to easily adopt all parts. Inlet guide vanes, stator, rotor, and turbine exit casing can be changed fast 
and different designs can be integrated in the test rig. 
Within this paper the influence of a five-hole-probe during a measurement campaign in plane C between rotor 
and turbine exit casing will be determined and its effect on the rotor blade vibrations are reported. 
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Figure 1. Meridional section of the STTF-AAAI; a) leaned TEC, b) measurement locations 

 
3.2 Turbine Exit Casing 

 
For this investigation the leaned TEC is used. It is an acoustically modified state-of-the-art TEC. The 
optimisation of the TEC was done by MTU Aero Engines and is reported in (Broszat, et al., 2010). In a 
parameter study the number of TEGV as well as the angle of the stagger line in circumferential direction  
(=lean angle) was optimised in order to obtain lowest sound power levels. A strong dependency of the sound 
power level on the rotor wakes have been observed. Figure 2 left shows a picture of the entire TEC and on the 
right side a close up view of the TEGV leading edge can be seen as well as a lean angle of 20 deg. 
 

 
Figure 2. Lean TEC 

 
Table 1 lists the most important technical details. Reynolds number is calculated using inlet flow velocity and 
chord length of the turbine exit guide vanes. 
 
Table 1. Technical details of the leaned TEC and the turbine stage 
No. of TEGV/stator/IGV - 15/96/83 
No. of rotor blades - 72 
Axial Chord Length TEGV mm 100 
Aspect ratio TEGV - 0.8 
Diffusion No. TEGV @ADP - 0.5 
   
Reynolds No. TEGV@ADP - 375000 
 
 

TEGV 
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3.3 Five-Hole-Probe 
 

Steady flow field measurements are usually performed by means of five-hole-probes in the measurement 
locations given in Figure 1 b). Measurements have been performed over one TEGV pitch. The five-hole-probe 
used for this investigation was manufactured and calibrated at the Institute of Jet Propulsion and 
Turbomachinery, RWTH Aachen University and is a state-of-the-art probe commonly in use for turbomachinery 
experiments. In general, five-hole-probes are pneumatic probes to measure the time averaged (steady) flow 
quantities, total pressure, static pressure, Mach number, and flow angles. Geometrical dimensions of this probe 
can be seen in Figure 3. 

 
Figure 3.Geometrical details of the five-hole-probe 

 
3.4 Sensor Telemetry System 

 
Blade vibration measurements have been performed by means of strain gauges on different blades at different 
positions on the blade surfaces and a sensor telemetry system. Details of the strain gauge applications can be 
found in (Schönleitner, et al., 2015). The sensor telemetry system has a modular design, therefore not only strain 
gauge signals can be read but also temperature and unsteady pressure signals. For this work at hand 12 channels 
for strain gauge measurements have been used and 8 for temperature measurements. Technical data can be found 
below. 

• Sensor telemetry system with radial antenna (air gap 2 mm) 
• Optimised for turbine rig applications 
• Simultaneous data acquisition with 12 bit resolution 
• Max. sampling frequency 400 kSamples/s 
• Strain gauge resistant 300 Ω 
• Quarter-bridge circuit 
• Vibration analysis up to 100kHz 
• Max. rotational speed 11.000 rpm 
• Temperature range -10 °C to +125 °C 

 

  
Figure 4. Sensor telemetry system 
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3.5 Operating Point 
 

The operating point parameters for operating point ADP (aerodynamic design point) are given in Table 2. Due to 
the fact that the STTF-AAAI is an open loop test facility it is important to adjust the reduced operating 
parameters in order to have the same comparable operating conditions.  
 
For this investigation the operating point ADP which is the aero design point was chosen. 
 
 
Table 2 Operating point parameters  

ADP 
Total Temperature Inlet Tt,IN °C 100 
Stage Pressure Ratio pt,IN/pt,OUT - 1.131 
Mass Flow Rate �̇ kg/s 7.07 
Reduced Mass Flow mred kg/s 6.86 
Speed n min-1 3400 
Reduced Speed nred min-1 2997 
Rotor Reynolds No.  - - 165000 

    

 
3.6 Measurement Uncertainties 

 
Within this work vibration frequency up to 10 kHz are analysed. With a chosen sampling frequency of  
204.8 kSample/s the Shannon-Nyquist criteria is maintained. Simultaneously with the strain gauge signals, 
temperatures of the applied thermo couples and rig operating parameters are recorded. A trigger signal is 
provided by the Bentley Nevada shaft monitoring system of the test rig und is also simultaneously recorded. 
Additionally, the signal of a reference microphone is recorded in order to be able (at a later stage) to perform 
additional data reduction and evaluation for e.g. trigger on non-synchronous vibrations. The reference 
microphone (1/4" G.R.A.S. 40BD as in (Selic, 2016)) is located in the TEC close to the trailing edge of the 
TEGV. For the investigation channels 0 to 11 are used for strain gauge data, channel 14 for trigger data and 
channel 15 for reference microphone data, respectively.  
Strain gauges have a resistant of 350 Ω (+/-0.30%). The k-factor is 2.05 (+/-1.0%) and a temperature coefficient 
of the k-factor of 101 [10-6/K] (+/-10). 
The signal amplifier of type MSV_M_1#2_PCM12 of the telemetry system has a zero drift and amplification 
drift of 0.02 %/°C. The amplification was set to 0.4 mV/V according to the expected vibration amplitude. The 
bandwidth of the signal is 0 to 100 kHz (-3dB). 
The signal amplifier of type MSV_M_8_PCM12 for the temperature data acquisition has a zero drift and 
amplification drift of 0.02 %/°C (linearity <0.1%) and a bandwidth of 0 to 5 Hz. 
The reference microphone can be used for measurements of sound pressure levels up to 174 dB and frequencies 
of up to 70 kHz. In a range between 10 Hz and 25 kHz the frequency response is linear (+/- 1 dB). The 
preamplifier (type 26AC) has a dynamic frequency range between 2 Hz and 200 kHz (+/- 0.2 dB). For the 
acoustic measurement chain a measurement uncertainty of 1 dB can be assumed. 
 
4 Rotor Characteristics 
 
The low pressure turbine rotor used for this investigation is optimised for highest stage loading. The reference 
configuration was acoustically investigated within the EU project VITAL. Knowledge of the system properties is 
essential for the assessment of the operational behaviour. Different numerical and experimental methods are 
available for system identification. The modal parameter of the rotor have been reported in (Schönleitner, 2016), 
and (Schönleitner, et al., 2015). Figure 5 shows the rotor with all applied strain gauges 1-12 and thermo couples 
T1 and T2 (left) and one blade with strain gauge no. 3 (right). 
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Figure 5. Instrumented rotor (left) and blade with strain gauge #3 (right) 

 
Data of strain gauge no. 3 was used for this paper and is representative for all measurement positions 
(Schönleitner, 2016). 
Campbell diagrams are shown in Figure 6 for the blades (left) and for the rotor disc (right). For the sake of 
clarity it was decided to draw separate diagrams for the rotor disc and blades. Also, the dashed line indicates the 
operating rotational speed for this investigation at 3400 rpm. Engine order (EO) lines according to blade-vane-
row interactions are also indicated in the diagrams. These lines are dependent of the number of blades and vanes. 
The origin of the excitation is additionally marked, either with D or U. D represents all effects from upstream 
vane rows such as stator and inlet guide vane wakes and denotes downstream effects. U represents effects from 
downstream components such as the turbine exit guide vanes and denotes upstream effects. Modes can also have 
an upstream and a downstream effect and will be then marked with D/U. 

  
Figure 6. Campbell diagrams; blade (left) and rotor disc (right) 

 
There are 15 turbine exit guide vanes and therefore an EO15 excitation of the first eigenfrequency can be seen. 
The second harmonic of EO15 excites the second blade eigenfrequency (left diagram). Further, EO45 and EO75 
excite rotor disc eigenfrequencies (right diagram). Also EO83 (IGV excitation) and EO96 (stator excitation) are 
depicted in the diagrams. The operating point was chosen that an excitation of mode 9 due to the stator wakes 
can be measured. This is one of the most important excitation mechanism in a turbomachine. Also (Tyler, et al., 
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1962) reported the importance of vane-blade interaction modes originally for acoustics but these modes are also 
relevant for forced response. 
 
5 Five-Hole-Probe Measurement Positions 
 
The influence of a five-hole-probe downstream of a low pressure turbine rotor (plane C in Figure 1 b)) onto the 
rotor and disc vibration was measured. Plane C is important to evaluate the flow field downstream of the rotor 
and is crucial for aerodynamic investigations of the turbine stage and the turbine exit casing. Usually a turbine 
exit guide vane pitch is measured in that plane. 
For this investigation three typical circumferential and three typical radial positions of the probe are chosen for 
vibration measurements, see Figure 7. The worst position is expected to be in the middle of the pitch between to 
turbine exit guide vanes and radial at the most inner position (see Figure 7, bottom right). 
 

 
Figure 7. Probe positions for blade vibration measurements 

 
The probe positions where vibration measurements have been performed are shown in Figure 7 at the top and are 
marked with dots. 
 
6 Blade Vibration Measurements 
 
For the evaluation of the blade vibrations all amplitudes of the respective mode of the different configurations 
are used. By means of numerical simulations the peaks in the spectra can be clearly identified and assigned to a 
specific blade or disc mode. These modes can be evaluated separately or together and compared to other 
configurations. By means of an amplitude weighting a quantitative comparison is possible. For a better 
representation of the results a net diagram is used.  
Figure 8 shows the results of the experimental investigation of the lean TEC compared with the reference 
configuration (state-of-the-art TEC) presented in (Schönleitner, 2016). The weighted amplitudes for each mode 
is depicted in the net diagram (Figure 8 left). Amplitudes for the lean TEC as solid line and in amplitudes of the 
reference configuration as dotted line is shown. A lower vibration level can be seen for the leaned TEC 
configuration. In Figure 8 on the right side it is distinguished between disc modes and blade modes. Depicted is 
the sum of all excited modes. It can be seen that 66% of the modes belong to disc modes and 34% to blade 
modes. The dominant disc modes are a result of the excitation of EO96, EO94, and EO93, where mode 9 show a 
crossing in the Campbell diagram. For the following discussion mode 1 (blade vibration) and mode 9 (disc 
vibration) will be analysed in more detail. 
 
Figure 9 shows the spectra without five-hole-probe on the left side and for the worst probe position 
(circumferential position U2, radial position MP1) on the right side. The influence can be clearly seen when 
comparing both spectra. Mode 1 (ca. 1000 Hz) and mode 9 (ca. 5400 Hz) show clearly higher amplitudes. 
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Figure 8. Amplitude levels; net diagram (left) and amplitude distribution of the lean TEC (right) 

 

  
 

Figure 9. Spectra of strain gauge #3, ADP, without probe (left) and probe position U2/MP1 (right) 
 
7 Results and Discussion 
 
7.1 Amplitude Weighting 

 
For a better comparison of the spectra the amplitudes are weighted based on the amplitudes of the blade 
vibrations without a probe. The procedure is as follows. All max. amplitudes of the single modes ai are summed 
up and give an equivalent amplitude Aequivalent independent from the frequency. Related to the equivalent 
amplitude of a state-of-the-art TEC (standard TEC) a weighting factor is calculated. For other TEC 
configurations a weighted amplitude Aϕi can be determined. With that amplitude a quantitative comparison is 
possible. 
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The procedure was already introduced and applied to compare different TEC configurations in (Schönleitner, 
2016) and in (Schönleitner, et al., 2016). This weighting does not take into account if amplitudes of higher 
frequency are more harmful than amplitudes of lower frequency. For a further lifetime prediction modern 
methods of durability analysis under consideration of the number of load cycles have to be used.  
 
7.2 Influence of Circumferential Position 

 
The influence of the five-hole-probe onto the blade vibrations changes with the circumferential position of the 
probe relative to the TEGV downstream of the rotor. Figure 10 shows the weighted amplitudes for blade mode 1 
(left) and disc mode 9 (right). The dashed line indicates the blade vibrations without a probe. This vibration level 
is set as reference value. It can be clearly seen that the vibration level is dependent on the circumferential 
position as well as on the radial position. In Figure 10 the radial positions are also drawn. The amplitudes are 
increasing dependent on the radial position. That means that the more the probe is inserted into the channel the 
higher is the vibration amplitude of the rotor. This is a clear evidence of the negative influence of the probe onto 
the vibrations of the rotor blades and the rotor disc.  
The dependency of the amplitudes on the circumferential positions shows different characteristics for blades and 
disc. Blade mode 1 is more affected if the probe is in line with the trailing edge of the TEGV (circumferential 
position U1).  
 

 
Figure 10. Influence of the circumferential position of the five-hole-probe 

 
The amplitudes decrease if the probe is moved towards the middle of the flow channel between suction and 
pressure side of TEGVs. These higher amplitudes for circumferential position U1 may be caused by an 
amplification of the potential effect of the turbine exit guide vanes or it is the sum of the effect of the probe. 
Looking at the disc mode it is seen that the strongest influence and highest amplitudes occur at circumferential 
position U2 in the middle of the flow channel. The stronger excitation could be caused by additional blockage 
effects of the probe and hence a changed flow field through the machine. Contrary to that, the additional 
blockage effect is less pronounced in circumferential position U1, because the TEGV still produces some 
blockage. 
 
7.3 Influence of Radial Position 

 
For circumferential position U2 the increase of blade vibrations (left) and the increase of disc vibrations (right) 
(compared to the vibrations without a probe) for three radial probe positions are plotted in Figure 11. The rotor 
vibration amplitudes increase the more the probe is inserted into the flow channel. The change is almost linear 
for the blade vibrations as well as for the disc vibrations. The influence of the probe leads to an increase of blade 
vibration amplitudes up to 45%. Further, it can be seen, that also in MP3 where only the small probe head of 2.5 
mm is in the flow channel, the vibration amplitudes are increased. 
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Figure 11. Radial distribution of amplitude variation; blade mode (left), disc mode (right) 

 
7.4 Overall Vibration Levels 

 
To get a better overall view on the vibration amplitudes the data is depicted in net diagrams. Figure 12 shows the 
amplitudes of all blade modes (left) and disc modes (right) in a frequency range up to 10 kHz. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Weighted amplitudes for circumferential position U2 and radial position MP1; blade modes (left) and 
disc modes (right) 
 
The solid line indicates the case without a probe as a reference with 0% amplitude. Compared to the solid line 
the amplitudes can be higher, lower or equal. It was shown in previous chapters that the probe position U2/MP1 
was the worst one regarding vibration excitation. Therefore Figure 12 shows the amplitudes for that specific 
probe position. From that figure it can be seen that the influence of the probe is up to 15%. For almost every 
blade and disc mode an increase of the vibration amplitudes can be seen.  
Figure 13 shows the non-weighted amplitudes for all blade and disc modes. Again a large influence of the five-
hole-probe is seen clearly. Further, it can be seen that an amplitude increases of up to 80% is measured. 
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Figure 13. Non-weighted amplitudes of blades and disc at circumferential position U2 and radial position MP1 
 
8 Conclusion 
 
In this paper the influence of a five-hole-probe onto the blade vibrations of a low pressure turbine rotor under 
engine relevant operating conditions was shown. Further, the dependency on radial and circumferential probe 
position was reported. For blade and disc modes large vibration amplitude amplifications dependent on the probe 
position was measured. As expected, the worst probe position was identified if the probe is fully in the flow 
channel and therefore the largest potential effect and influence of the flow field is assumed, thus increasing the 
vibration amplitudes of the rotor. In circumferential direction the largest influence has been found if the probe is 
directly upstream of the TEGV leading edge. Here, the upstream potential effect of the probe and the TEGV are 
assumed to sum up. Considering the disc modes, the largest influence was found if the probe is in the middle of 
the flow channel. Here the blockage effect of the vane passage is assumed to play a major role. Amplitude 
amplification of single modes up to 80% have been measured and shows the importance of considering probes 
and instrumentation and their position in the design process of rotors intended to be used in test rigs for flow 
measurements. 
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Enhanced Utilization of structural Damping of rotating Machines using
impulsively shaped torsional Moments

T. Pumhössel, B. Hopfner, H. Ecker

The reduction of torsional vibrations of rotating machines is an important issue, as they may lead to a decrease of
the performance, or in the worst case, to a damage of the machinery. In particular, self-excited vibrations have to
be suppressed in any case due to their hazardous nature.
In this contribution, a method is proposed, which allows utilizing the structural damping inherent to every rotating
machine much more effectively by introducing impulsively shaped torsional moments, resulting in repeated modal
transfers of vibration energy. Depending on the chosen impulsive strength, the energy transfers are accompanied
by feeding external energy to, or extracting energy from the mechanical system. It is shown theoretically by ap-
proximating the impulses by Dirac-delta functions that an impulsive strength exists, where no energy crosses the
system boundary, i.e. energy extracted from one mode is fed entirely to another mode of vibration. In the case
of a conservative system, a repeated application of such impulses induces a periodic exchange of energy between
lower and higher modes. Taking into account the structural damping reveals the advantages of transferring energy
across modes. As higher modes possess higher damping ratios than lower ones, the structural damping of the
rotating machine can be utilized much more effectively, which leads to a significant reduction of torsional vibra-
tions. The underlying equations of motion of the impulsively excited system can be written as recursive difference
equations with constant coefficients. Hence, the stability properties of the system can be investigated according to
the Floquet theory. It is shown that the proposed concept is capable of suppressing self-excited vibrations. Stability
charts are presented which allow to identify stable areas of operation. Finally, some numerical results of a test-rig
are shown, underlining the effectivity of the proposed method.

1 Introduction

Torsional vibrations of rotating machines have been investigated for a long time. This is founded in the fact that
they may decrease the performance of such machines, or in the worst case, result in a damage or breakdown. Es-
pecially, self-excited vibrations, due to several mechanisms, have led to catastrophic failures of rotating machines.
Therefore, a lot of measures have been developed to suppress or at least to reduce such vibrations.
Reduction of vibrations of mechanical systems means to reduce the energy content. A natural approach is to in-
troduce additional devices which allow a rapid dissipation of vibration energy. Within this context, an interesting
concept are nonlinear energy sinks (NES), see Vakakis et al. (2009). They consist of a lightweight vibrating sys-
tem which is coupled in an essential nonlinear manner to the primary structure. It is shown that, under certain
conditions, an unidirectional energy flow from the primary structure to the NES occurs, where energy is dissipated
effectively. Another method is the modal redistribution of energy. As higher modes usually possess enhanced
damping properties compared to lower ones, it is beneficial to shift vibration energy to higher modes, where it can
be dissipated more effectively. This is demonstrated in Al-Shudeifat et al. (2015), where vibro-impact NES are
used to achieve a modal redistribution of energy of mechanical structures to utilize the damping properties of the
structure more efficiently. Hence, transient vibrations decay much faster compared to the case where no NES is
used. Methods for tracking energy flows in dynamical systems can be found in Quinn et al. (2012), for example.
A continuous and repeated transfer of energy from low to high modes and vice versa can also be achieved by a
periodic variation of system stiffness parameters at certain frequencies, see Tondl (1998). To induce the modal
energy transfer, external energy has to be fed to the system and energy has to be extracted from the system in a
periodic manner. In the following years, a variety of investigations focused on this effect, see Ecker (2005); Tondl
(2000); Dohnal (2008); Ecker and Pumhössel (2012), for example.
Dynamical systems subjected to periodic impulsive parametric excitation were investigated in Hsu (1972), wherein
the question of stability of such systems has been addressed extensively. In Pumhössel et al. (2013) and Pumhössel
(2016a), the effect of stiffness variation of impulsive type on the energy content of mechanical systems was inves-
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tigated. It was shown that stiffness impulses, whose strength depends in a nonlinear manner on the state-vector,
allow to transfer discrete amounts of energy from pre-defined low-modes, to a target set of higher modes. The
existence of energy-neutral transfers, i.e. energy transfers where neither external energy is fed to the mechanical
system, nor energy is extracted from the system while energy is transferred across modes, was discovered and
reported. In Pumhössel (2016b), the general case of modal energy transfers using impulsive forcing of mechanical
systems was investigated.
The present contribution addresses targeted modal energy transfers in rotor systems, induced by applying impulsive
torsional moments. It is shown that energy can be transferred periodically from low to high modes and vice versa.
In a further development of the work presented in Pumhössel (2016b), the stability of a rotor system subjected to
self-excitation is addressed in a comprehensive manner. The proposed approach allows to write the equations of
motion of the impulsively excited system as a set of difference equations with constant coefficients. Hence, the
stability properties can be investigated easily. Stability charts demonstrate which combinations of system parame-
ters allow to stabilize the self-excited rotor system. Finally, some numerical results of a test-rig under construction
are shown.

2 Modal Energy Transfers - analytical Investigations

The n-dimensional equations of motion of a rotor system consisting of flexible shafts with isotropic properties,
and rigid disks with zero unbalance eccentricity may be written as

Iq̈ + Cq̇ + Kq =
N∑

k=1

εkδ(t− tk)f , (1)

where q = [q1, q2, . . . qn]T represents the vector of rotational degrees of freedom, and I = diag(I1, I2, . . . In)
and K denote the constant and symmetric mass-, and stiffness-matrices. The damping matrix C is assumed to be
decomposable in a damping and a self-excitation part, according to C = Cdamp+Cself , where Cdamp is assumed
to be stiffness-proportional, i.e. Cdamp = βK holds. The rotor system is subjected to a sequence of N torsional
moments of impulsive type, see right hand side of Eq. (1), where δ(t − tk) represents the Dirac-delta function,
and f = [f1, f2, . . . fn]T , fi = 1 ∨ 0, i = 1, . . . n denotes the constant vector, which allows to select specific
disks. The scalar εk, which will be state-dependent, as described later, represents the strength of the impulses.
To investigate the effect of the impulsive excitation to the rotor system, especially discrete modal energy transfer
effects, the equations of motion are transformed to modal coordinates u according to q = Φu, where Φ represents
the modal matrix of the undamped rotor system. This yields to the equations of motion in the modal form

Īü + (βK̄ + C̄self )u̇ + K̄u =

N∑
k=1

εkδ(t− tk)f̄ . (2)

In the case of no self-excitation, i.e. C̄self = 0, the left hand side of Eq. (2) is decoupled. Hence, modal energy
transfers can occur only at the instants of time tk, where an impulse is applied. In the following, it is assumed
that the instants of time t1, t2, . . . where impulses are applied, are equidistant in time, i.e. tk+1 − tk = TP ,
k = 1, . . . N − 1, TP = const. holds. This assumption allows to relate the state-vector of the system at an instant
of time t, to the state-vector at t+TP using a constant matrix-mapping. Therefore, the equations of motion (1) are
written in first order form according to

ẋ =

[
0 E

−I−1K −I−1C

]
︸ ︷︷ ︸

A

x +

[
0∑N

k=1 εkδ(t− tk)I−1f

]
, (3)

where the state-vector is given by x = [q1, q2, q̇1, q̇2]T , and E denotes the unity-matrix. The solution of the
autonomous set of differential equations ẋ = Ax is of the well-known form

x(t) = eA(t−t0)x0, (4)

with an initial state-vector x0. Hence, the state-vectors at the beginning and at the end of an autonomous timespan
TP are related to each other by

x(tk+1)− = eATP x(tk)+ = Dx(tk)+, (5)

where the ± signs indicates instants of time just after and just before an impulse. At this point, the question about
the effect of a force impulse to the state-vector arises. This was investigated extensively in the past, see Angeles
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(2012), for example. Therefore, only a brief description is given in the following. The momentum balance for a
single impulse is given by

I[q̇(tk)+ − q̇(tk)−] = εkf , (6)

which can be written in the form
q̇(tk)+ = q̇(tk)− + εkI−1f , (7)

and hence, provides a relation of the velocities q̇ just before and just after an impulse. From Eq. (7) one can easily
see that the velocities exhibit a jump at the instant of time the impulse is applied. By contrast, the displacements
remain continuous, see Angeles (2012), for example, i.e.

q(tk)+ = q(tk)−. (8)

Summarizing Eqs. (7) and (8) yields to[
q(tk)+

q̇(tk)+

]
=

[
E 0
0 E

] [
q(tk)−
q̇(tk)−

]
+

[
0

εkI−1f

]
. (9)

The equation above holds for any arbitrary impulsive strength εk. In the following, the special case, where an
impulse neither extracts energy from the mechanical system, nor adds external energy to the system, which means
that the variation of the kinetic energy ∆Tk is equal to zero, i.e. ∆Tk = Tk+ − Tk− = 0, is investigated. With
Eq. (7) the total kinetic energy of the mechanical system after an impulse is given by

Tk+ =
1

2

[
ε2
kfT I−1f + 2εkfT q̇(tk)−

]
︸ ︷︷ ︸

∆Tk

+
1

2
q̇T (tk)−Iq̇(tk)−︸ ︷︷ ︸

Tk−

, (10)

which leads to the variation ∆Tk in the form

∆Tk =
1

2
εk
[
εkfT I−1f + 2fT q̇(tk)−

]
. (11)

The zeros of the equation ∆Tk = 0 are

εk,1 = 0 and εk,2 = −2
fT

fT I−1f
q̇(tk)−. (12)

If an impulse with εk = εk,2 is applied, the overall energy content of the mechanical system remains unchanged.
However, this does not prevent energy transfers from one mode to another. It has to be pointed out that εk,2 remains
bounded, as the denominator of εk,2 in Eq. (12) is positive definite. For the following investigations, the impulsive
strength εk is rewritten in the form εk = ϑεk,2, with the scalar ϑ. Therewith, ∆Tk is given by

∆Tk(ϑ) = 2ϑ(ϑ− 1)
(fT q̇)2

fT I−1f
=


< 0 if 0 < ϑ < 1

= 0 if ϑ = 0 ∨ ϑ = 1

> 0 if ϑ < 0 ∨ ϑ > 1

. (13)

The sign of ∆Tk depends only on the selected value for ϑ, as the fraction in Eq. (13) is always positive. If
0 < ϑ < 1, ∆Tk is negative, which means that kinetic energy is extracted from the mechanical system by the
impulse. Energy is fed into the mechanical system, i.e. ∆Tk is positive, if ϑ < 0 or ϑ > 1 holds. No energy
crosses the system boundary, if ϑ = 1, denoted as the energy-neutral case introduced in Pumhössel (2016a).
Inserting εk = ϑεk,2 into the expression for the velocity just after an impulse, Eq. (7) leads to

q̇(tk)+ = q̇(tk)− − 2ϑ
I−1f fT

fT I−1f︸ ︷︷ ︸
G

q̇(tk)− = q̇(tk)− − 2ϑGq̇(tk)− = [E− 2ϑG]q̇(tk)−. (14)

The relation between the state-vector just before and just after an impulse can now be written in the form[
q(tk)+

q̇(tk)+

]
=

[
E 0
0 E− 2ϑG

]
︸ ︷︷ ︸

J

[
q(tk)−
q̇(tk)−

]
, (15)

where the matrix J is denoted as jump transfer matrix, according to the notation introduced by C.S. Hsu, see Hsu
(1972). With Eqs. (5) and (15) the state-vector after one period TP is given by[

q(tk+1)+

q̇(tk+1)+

]
= J

[
q(tk+1)−
q̇(tk+1)−

]
= JD

[
q(tk)+

q̇(tk)+

]
, (16)
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which is a set of linear difference equations with constant coefficients. For the following investigations, the
abbreviation Q = JD is used. Equation (16) allows to easily calculate the state-vector at instants of time
. . . tk−1, tk, tk+1 . . ., and hence, the matrix Q describes the growth of the state-vector. For this reason, the eigen-
values of Q decide about the stability of the trivial solution of Eq. (3) for N → ∞. The trivial solution is
asymptotically stable if for all eigenvalues Λi, i = 1 . . . n, of Q holds

|Λi| = |eig(Q)| < 1. (17)

3 Example - 2 DOF System

A schematic of the investigated mechanical system is depicted in Fig. (1). It consists of two disks with inertias I1
and I2 as well as rotary degrees of freedom q1 and q2. The disks are connected to each other and to the inertial

k , c01 01 k , c12 12

I1 I2

cse

q1 q2

p (t)1

Figure 1: Schematic of the investigated mechanical system.

frame by shafts with stiffness k01 and k12 and damping coefficients c01 and c12. A self-excitation mechanism is
modelled by an element connected to disk two, which is capable of possessing a negative damping coefficient. Disk
one is subjected to a sequence of impulsively shaped torsional moments p1(t). The following system-parameters
are used for the numerical simulations I1 = I2 = 1 kgm2, k01 = k12 = 1 Nm, β = 0.01 s, cse = −0.02 Nsm.
The periods of first and second mode vibration are T1 = 10.1664 s and T2 = 3.3882 s. Two different initial
conditions (ICs) are used for the numerical investigations, the scaled first eigenvector (IC 1) and an initial velocity
of disk two (IC 2), representing a shock load, see Eq. (18).

x0 =

{
[0.6180, 1, 0, 0]T IC 1
[0, 0, 0, 1]T IC 2

(18)

Figure (2) depicts first numerical results of the undamped system without self-excitation to show the basic mech-
anism of modal energy transfer in the energy-neutral case, i.e. ϑ = 1. As initial condition, a first mode deflection
according to IC1 is used. Impulses are applied to disk one. By contrast to the physical coordinates q1 and q2

(see left column), the modal coordinates u1 and u2 (right column) clearly indicate the occurring modal energy
transfer. A (local) minimum of u1 is accompanied by a (local) maximum of u2 and vice versa. Correspondingly,
the energy content E1 of the first mode minimizes, when the energy content E2 of the second mode peaks. It has
to be pointed out that the overall energy content Etot of the mechanical system remains unchanged, i.e. neither
energy is extracted from the system, nor external energy is fed to the system by the impulsive excitation, as the
energy-neutral case ϑ = 1 is investigated and natural damping is neglected.

Exemplary time-series for extracting energy from, or feeding external energy into the mechanical system are
depicted in Fig. (3). Also in these cases, natural damping as well as self-excitation are switched off. In the left
column, ϑ = 0.8 and hence, the torsional moments of impulsive type extract energy from the mechanical system.
The modal energy transfer is accompanied by a decreasing of the overall energy content Etot. The right column
shows results for ϑ = 1.02, which means that external energy is fed into the system by the impulsively shaped
torsional moments. As a consequence, the overall energy Etot of the system increases beyond all limits, hence, the
mechanical system becomes unstable.
The advantages of transferring energy across modes in a recurring manner becomes clear if natural damping is
introduced. Figure (4) shows some corresponding results for ϑ = 1, where as initial condition IC2 is used. Re-
sults, where no impulsive excitation is present, are depicted grey-colored. One clearly observes that the modal
energy transfer induced by the impulsive excitation leads to a faster decrease of torsional vibrations q1 and q2.
The envelope of the modal coordinate u1 is much smaller and that of u2 is larger compared to the case, where no
impulsive excitation is present. This means that impulsive excitation in the proposed manner decreases/increases
the level of first/second mode vibrations. Hence, the damping properties, inherent to the mechanical structure due
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to the natural damping are utilized in a more efficient way. This is underlined by the time-series of the total energy
content Etot, which decreases much faster with impulsive excitation than without.
Figure (5) depicts the maximum absolute value of the eigenvalues of the matrix Q, max|Λ|, which decides about

the stability of the trivial solution of the impulsively excited system. For the sake of comparison, the maximum
absolute eigenvalue of the matrix D, max|ρ|, describing the system without impulsive excitation is shown as well.
The dotted lines represent the case, where no self-excitation is present. With increasing pulse-pause TP , max|ρ|
decreases linearly and is always below the stability threshold. By contrast, max|Λ| of the system with impulsive
excitation shows some minima and maxima and is below max|ρ|, i.e. has a larger distance from the stability limit.
Two of the maxima of max|Λ| coincide with max|ρ| at a pulse-pause of TP = 0.5T1 and TP = T1. If self-
excitation is introduced, i.e. cse = −0.02, the system without impulsive excitation becomes unstable, see solid,
grey-colored line in Fig. (5). For almost all values of TP , also max|Λ| is above the stability limit. However, there
exist some small intervals around TP = 5.5/8.785/10.98/14.29 where the impulsively excited system is asymp-
totically stable. Hence, the modal energy transfer induced by the impulsive excitation is capable of stabilizing the
otherwise unstable system.
In the following, the effect of a variation of system parameters on the stability is investigated. It has to be pointed

out that for all values of system parameters, the mechanical system without impulsive excitation is unstable. Fig-
ure (6) depicts max|Λ| for different values of the pulse-pause TP and the inertia I1 of disk one. The stability
threshold max|Λ| = 1 is indicated by a black, solid line. A variety of areas is observed, where max|Λ| < 1, and
hence, the trivial solution is asymptotically stable for the corresponding values of TP and I1. Besides, characteris-
tic resonances occur if the pulse-pause TP is close to TP = nT1/2, n ∈ N, see Fig. (7) (left). Therein, grey/white
colored areas denote unstable/asymptotically stable trivial solutions. Moreover, the values for nT1/2 (red dashed
line) and nT1 (red solid line), n ∈ N, indicating resonance areas, are depicted as well. One notes that the stable
areas are located close to nT1/2 and nT1. Moreover, a kind of self-similarity with increasing TP is observed. The
effect of a variation of the inertia I2 of disk two is shown in Fig. (7) (right). Large areas of stability are observed
with increasing I2. As previously shown, they are mainly located near nT1/2 and nT1. The results for a variation
of the stiffness k01 are shown in Fig. (8) (left). Only small tongues of stability are observed. By contrast, the
stiffness k12, see Fig. (8) (right), has a large effect on the stability. For almost all values of k12 >≈ 2.3, the trivial
solution is asymptotically stable, except for small areas near nT1/2 and nT1. The previous results were based on
using impulsive excitation of Dirac-delta type, which allows to give a clear insight into the physical mechanism
behind modal energy transfer effects.
In the following, some numerical results of a test rig are presented using half-sine shaped impulses. A sketch of
the designed test-rig consisting of two connected disks is shown in Fig. (9). Impulsively shaped torsional moments
are applied to the disks using permanent excited synchronous electrical engines (PSM 1 and PSM 2), where the
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Figure 2: Time-series of physical coordinates q1 and q1, impulsive strength εk (left column), modal coordinates
u1 and u2, modal energy contents E1 (solid), E2 (dashed-dotted) and overall energy content Etot (dotted), (right
column). Undamped system without self-excitation. Impulses applied to disk one. Initial condition: IC1. Energy-
neutral case ϑ = 1.
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Figure 3: Modal coordinates u1 and u2, modal energy contents E1 (solid), E2 (dashed-dotted) and overall energy
content Etot (dotted), for extracting energy from the system, ϑ = 0.8, (left column) and feeding energy to the
system, ϑ = 1.02, (right column). Undamped system without self-excitation. Impulses applied to disk one. Initial
condition: IC1.
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Figure 4: Time-series of physical coordinates q1 and q1, impulsive strength εk (left column), modal coordinates
u1 and u2, modal energy contents E1 (solid), E2 (dashed-dotted) and overall energy content Etot (dotted), (right
column). Damped system without self-excitation. Impulses applied to disk one. Comparison with results where
no impulsive excitation is present (grey colored). Energy-neutral case ϑ = 1. Initial condition: IC2.

shaft of the first engine connects the part of the rotor to the left and to the right. In the general case, where impulses
are applied to both disks, PSM1 and PSM2 require the actual values of the velocities q̇1 and q̇2 to apply impulses
with the correct strength. The impulses are chosen to be of half-sine shape with a duration of 36 ms, which is equal
to about 10% of the period of the second mode. Contrary to the previous investigations, the damping matrix is
assumed to be of the form Cdamp = αI + βK. The mass-proportional part allows to take the absolute damping,
introduced by the electrical engines, into account. The following parameters are used for the numerical investiga-
tions: I1 = I2 = 0.0065 kgm2, k01 = k12 = 0.75 Nm, α = 0.02, β = 0.0002.
Figure (10) depicts the physical coordinates q1 and q2, the torsional moment M (applied to disk 1), the modal
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(solid, black) self-excitation for different values of the timespan TP between impulses. Grey-colored lines depict
the maximum absolute eigenvalue max|ρ| of the matrix D. Energy-neutral case ϑ = 1.

Figure 6: Maximum absolute value max|Λ| of the eigenvalues of the matrix Q of the damped system with im-
pulsive excitation for different values of the pulse-pause TP and the moment of inertia I1. Energy-neutral case
ϑ = 1.
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Figure 7: Stability chart for variation of system parameters I1 (left) and I2 (right) and TP . Grey/white colored
areas denote unstable/asymptotically stable trivial solutions. Energy-neutral case ϑ = 1.

energy contents E1 (solid) and E2 (dashed-dotted) and the overall energy content Etot (dotted). The selected
pulse-pause TP = 2.30 s corresponds to a local minimum of the maximum absolute value of the eigenvalues of the
matrix Q. One clearly observes the modal energy exchange between first and second mode. The overall energy
content of the mechanical system Etot decreases faster than the energy content of the corresponding system with-
out impulsive excitation (see grey-colored line). The maximum required torque is about Mmax ≈ 0.1 Nm.
Some results of the self-excited case are shown in Fig. (11). Therein, a self-excitation mechanism is introduced by
a negative damping coefficient cse = −0.0005 Nsm between disk two and the inertial frame, where cse is tuned
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Figure 9: Test rig for investigating modal energy transfer effects in rotor systems.
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Figure 10: Physical coordinates q1 and q2 (left column), torsional moment M , modal energy contents E1 (solid),
E2 (dashed-dotted) and overall energy content Etot (dotted), (right column). Damped system without self-
excitation. Etot of corresponding system without impulsive excitation (grey-colored). Initial condition: IC 1.
Sine-shaped impulses applied to disk one. Pulse-pause TP = 2.30 s. Energy-neutral case ϑ = 1.

in a way that the absence of impulsive excitation results in an unstable system. Introducing impulsive excitation
to disk one according to the proposed approach causes a repeated modal energy exchange between modes one and
two and, hence, allows to stabilize the mechanical system.

4 Conclusion

It was shown in this contribution that impulsively shaped torsional moments are capable of introducing modal
energy transfers between low and high modes of vibration in a recurring manner. This allows to utilize the damping
properties of the mechanical structure more efficiently and results in a faster decrease of transient vibrations.
Moreover, it was shown that the proposed concept is capable of suppressing self-excited vibrations of rotor systems.
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Pumhössel, T.; Hehenberger, P.; Zeman, K.: On the effect of impulsive parametric excitation to the modal energy
content of hamiltonian systems. In: Proc. of the 11th Int. Conf. on Vibration Problems (ICOVP) (2013), Lisbon,
Portugal.

Quinn, D. D.; Hubbard, S.; Wierschem, N.; Al-Shudeifat, M. A.; Ott, R. J.; Luo, J.; Spencer, B. F.; McFarland,
D. M.; Vakakis, A. F.; Bergman, L. A.: Equivalent modal damping, stiffening and energy exchanges in multi-
degree-of-freedom systems with strongly nonlinear attachements. Proc. Inst. Mech. Eng., Part K, 226(2), (2012),
122 – 146.

Tondl, A.: To the problem of quenching self-excited vibrations. Acta Technica CSAV , 43, (1998), 109 – 116.

Tondl, A.: Self-excited vibration quenching in a rotor system by means of parametric excitation. Acta Technica
CSAV , 45, (2000), 199 – 211.

216



Vakakis, A. F.; Gendelman, O. V.; Bergman, L. A.; McFarland, D. M.; Kerschen, G.; Lee, Y. S.: Nonlinear
Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Netherlands (2009).

Address:
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Development and analysis of radial force waves in electrical rotating
machines

S. Haas, K. Ellermann

Vibrations in electrical machines lead to undesired operating conditions and noise. The reasons lie in the design of
the machine and the lack of precision in manufacturing. In order to avoid excessive vibrations, complex numerical
analyses are carried out. This work deals with the development and analysis of electromechanical excitations in
asynchronous machines with a short circuit rotor. The time-dependent electromagnetic forces acting on the stator
bore are simulated with the method of finite elements. Subsequently, the force waves with respect to the frequencies
and amplitudes are analyzed.

1 Introduction

Asynchronous machines are used as drive units in many industrial applications and therefore have great practical
importance. The increasing electromobility also leads to an increase in production of electrical motors and to
changes in the specifications regarding vibration and sound emission. Numerical tools based on a physical model
are often used in order to predict the dynamic behavior of a machine during the development. For the calculation of
velocities of surface structures in the context of a vibration analysis, detailed information about eigenfrequencies
and eigenforms of the structure is necessary. This information is derived from structural stiffness, damping and
mass distribution. For the asynchronous machine, the main focus is set on the stator structure. However, there
are vibration modes, which are very different, especially in terms of their form, see e. g. Haas et al. (2016). The
different excitation forces and moments have different effects on these modes. The excitation of the structure is
important for numerical calculations, as eigenmodes become especially important when excited externally.

This article discusses the magnetic force excitation in asynchronous motors with squirrel cage rotor. It focuses on
the radial forces acting in the interface between air gap and the laminated stator core stack. An overview about
excitation in induction machines as well as their analytical and numerical calculations are given by Seinsch (1992)
and Seinsch (1993). A technique for calculating forces in electromagnetic fields is the finite element method. An
essential contribution to the formulation of this method for electromagnetic application can be found in the articles
Biro and Preis (1989), Biro et al. (1991) and Biro et al. (1992). This method was implemented in commercial
software. One application to electric drives is described in the books Aschendorf (2014a) and Aschendorf (2014b).

Details about the analysis of resulting force waves can be found in the articles by Van der Giet et al. (2008) and
Weilharter et al. (2012).

2 Forces in asynchronous squirrel-cage induction motors

One of the most important effect of forces in electrical machines is generating a torque. This desired force compo-
nent is due to a current-carrying conductor in a magnetic airspace field. It is calculated via the Lorentz force

~f = i ∙
∫

l

d~s × ~B (1)

where, in electrical machines, the currenti flows in the axial direction and thus the force solely has a tangential
component, which results from the magnetic flux density~B along the lengthl of the rotor. A tangential vibration
component has no influence on sound radiation of the surface of a stator core. Since the air gap torque is constant
along the circumference of the stator bore and along the axial length, there is also no excitation through torsional
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vibration. In machines with skewed stator or rotor slots, axial forces can occur. However, they have only a small
technical significance, since the rotor itself adjusts to his axial mean and the axial load on the bearing is very small.

Forces at the interface are much more important for vibrations in electrical machines. These occur in the transitions
of materials with very different permeability values. In the case of electrical machines, this transition area is
located in the air gap between stator and rotor. The field lines emerge almost perpendicularly from the iron surface
(permeability≈ μ0). Therefore, these interfacial stresses are mainly directed radially. They are determined from
the relations

σn =
B2

n − B2
t

2μ0
, (2)

σt =
Bn ∙ Bt

μ0
. (3)

The indicesn andt represent the normal and tangential component of the surface. In order to calculate these forces
for an asynchronous machine, a finite element model is created. As mainly radial force waves are considered, a
two-dimensional model of the electrical machine is sufficient.

3 Simulation model

Figure 1 shows schematically the structure of an asynchronous machine in a sectional view. In the stator plate,
slots are punched out for the coils. The stator consists of two layers of short-pitched coils, where the end turns are
connected to a triangular circuit. The squirrel-cage rotor consists of oval bars distributed symmetrically along the
circumference. The ends are connected with a short-circuit ring. The air gap is located at the interface between
stator and rotor. At the boundary surfaces between the iron and the air gap, Maxwell forces occur. For a numerical

Figure 1: Sectional view of an asynchronous machine.

example, we assumed a parameter set for a machine, which is summarized in Table 1.

The geometry is meshed with a slice finite element for magnetic field calculations (see Figure 2). The element
is defined by 8 nodes and has up to 3 degrees of freedom per node. It is based on a vector potential formulation
with a magnetic vector potentialAz for each node. It can also be used for electrostatic field calculations with a
scalar potentialV or coupled to the magnetic field. The third degree of freedomEMF provides the coupling with
electronic components, in order to be able and realize oscillating circuits or to interconnect the elements. These
components were used for interconnecting the rotor.

The stator current is imposed onto the coils of the upper and lower rod by the specification of current densities.
In the case of coils with several strands, a constant distribution of the current over the cross-section is assumed.
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Table 1: Machine parameters of an asynchronousmachine.

Symbol Value Unit Description
m 3 number ofstrands
p 2 number of polepairs
q 5 number of slots per pole andphase
fn 50 Hz mains frequency
J 1e6 A/m2 currentdensity

Qs 60 number of statorslots
Qr 50 number of rotorslots
das 0.85 m outside diameter ofstator
Δ 0.003 m air gap

Figure 2: Mesh of the asynchronous machine− Partial segment of rotor and stator.

A suppression of the current can be expected in the massive conductor of the rotor. For verification of the model,
static and harmonic analysis are carried out. In both analyses, the influence of the rotating rotor is neglected. In
the static analysis, no current is induced in the short-circuit conductors. According to the induction law

ui =
dΦ
dt

=
d( ~B ∙ ~A)

dt
= ~B

d ~A

dt
+ ~A

d ~B

dt
(4)

an induced voltageui is generated in a coil when a magnetic fluxΦ changes in time. In this case, the cause of the
flux changes has no influence: It can be either due to a moving coil in a stationary field that is equivalent to a shape
change, or due to a time-changing magnetic fielddB. Both are not present in a static analysis. In the case of a
harmonic analysis, the magnetic field changes with time due to the supply frequency. Here, the massive conductor
in the rotor is assumed not to change its position. This means, that the analysis refers to a steady state, where the
rotor is not rotating. The frequency of the current, which flows in the rotor conductors, is the same as the supply
frequencyfn. The rotor conductors are short-circuited in rings. Due to the Lorentz force according to Eq. (1), the
so-called short-circuit torque acts on the rotor.

4 Transient analysis

In order to detect the influence of the rotating rotor field in an operating point of the machine, a transient analysis
is performed. The difficulty is, that the finite elements for magnetic field calculations have no degrees of freedom
for displacement and so they do not allow a time dependent rotation of the elements. This problem is solved by
turning the elements of the rotating system into position in each time step and taking the conditions of the last time
step into account. Therefore, the system matrices are rebuilt for the finite element formulation at every stage. As a
result of the rotation of the elements, the mesh between the stator and the rotor does not coincide. At the interface
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in the air gap, coupling equations are formulated at the nodes located there. These equations ensure the correct
transfer of the node results from the stator side to the rotor side. They must also be calculated for each step in the
iteration.

In order to avoid excitations of all system eigenfrequencies, the external loads of the current densities to the stator
coils are starting from zero and increase exponentially to their maximum amplitude. The time sequences of the
load is shown in Figure 3. The current densities reach their maximum values after a mains period.

Figure 3: Chronological sequence of the current density.

4.1 Force calculation

The calculation of the force in the finite element method can be carried out in two ways: the first possibility is the
calculation by means of a stress tensor

T =




HxBx − 1

2 |H B| HxBy HxBz

HyBx HyBy − 1
2 |H B| HyBz

HzBx HzBy HzBz − 1
2 |H B|



 (5)

which is also called Maxwell’s stress tensor. The force calculation can be applied to any area which is enclosed by
a surfaceΓ and is determined from the equation

~f =
∫

Ω

∇ ∙ T ∙ dΩ =
∮

Γ

T ∙ dΓ. (6)

Another method of calculating the force is developed from the principle of virtual work. The external work of
a small element, which is moved in an electromagnetic field, has to equal the internal work. This formulation is
based on the law of conservation of energy,

~f ∙ d~s + dW = 0 ⇒ ~f = −grad( ~W ). (7)

Both methods are integrated in the FEM software ”ANSYSc©”. The calculation of the force is activated by setting
a flag. The relevant areas for electrical machines are the closed curves along the stator iron and the rotor. In the
case of the rotor, the focus of interest is mainly in the calculation of the effective torque, while on the stator side
the radial force wave is important for the oscillation excitation.
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4.2 Results of transient analysis

In the investigation, the rotor speed is set and kept constant. Due to the supply frequencyfn and the number of
pole pairsp of the machine, the synchronous speed of the rotor is obtained from

n1 =
fn ∙ 60

p
=

50 ∙ 60
2

= 1500rpm. (8)

The slip

s =
n1 − n

n1
(9)

is used as the deviation from synchronous speed.

The calculations for the transient behavior were carried out without slippage. As a first plausibility test and for a
qualitative result of the numerical simulation, the time profile of the rotor currents in Figure 4 is considered. When
synchronized, the rotor rotates at the same frequency as the magnetic rotating field. According to the induction
law in Equation 4, only a voltage in a conductor is induced, when the conductor moves in a stationary field or
the magnetic field changes in time. Both conditions are not met by synchronous speed. Therefore, no voltage is
induced in the conductors and for this reason no current can flow into them. The decay of the current is also evident
in the simulation results. The fluctuations are attributed to the counter-induction on the conductors. In order to
validate this statement, studies on the model itself still have to be carried out. When the rotor is not turning, the
same frequency of the winding currents is imposed onto the rotor rods by the stator field. This frequency is also
clearly visible in the harmonic analysis.

Figure 4: Chronological sequence of the rotor currents.

The consideration of the flux lines in the left part of Figure 5 ensures the functionality of the coupling equations
for the interface at the air gap. The lines spread over the entire cross-section of the stator plate and the rotor
plate. In addition, the number of poles is clearly shown by the closed curves. The right part of the figure shows the
magnitude of the magnetic flux density. It provides information on the validity of the assumption of a linear model.
The relationship between the magnetic field strengthH and the flux densityB is given by the material constant of
the permeabilityμ

~B = μ ∙ ~H. (10)
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For dynamo sheets, the iron is saturated from a certain value of the flux density and the initial linear slope in the
BH characteristic falls off. This area cannot be expected to be linear. The increased peak values in the sharp
corners of the windings are due to constriction effects conditions.

Figure 5: Results of a transient field calculation at stationary speed. Left: flux lines, right: magnetic flux density.

5 Analysis of force waves

The calculated forces are spatially distributed on the stator inner contour. Figure 6 shows the radial forces as vector
plots and as quantities developed over the circumference. The force is directed radially inwards. The effect of the
forces on the stator therefore corresponds to that of a tensile component. The discontinuity of the course of forces
is due to the slots of the stator plate, since forces can only occur at the sudden transitions of strongly changing
material properties. This condition is strongly present in electrical machines, especially at the boundary layers
between air and iron. The force profile also rotates with the rotating field of the machine.

Figure 6: Radial force wave on the stator lamination stack.

A common method for analyzing the force waves is based on the conversion of the signal from time domain to a
representation in the frequency domain, performed by a Fast Fourier Transformation. In this way, the temporally
harmonic components of the signal are visualized in the form of amplitudes and frequencies (see Figure 7, left
picture). This method is applied once more along the circumferential direction to the obtained Fourier spectrum.
The result is a spatially harmonic ordinal number. It indicates the order of the occurring force wave for a certain
frequency. The force wave is determined from equation

Fν = F̄ν cos(ν ∙ ϕ − ωνt − ψn) (11)
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and is composed of the magnitude of the forceF̄ν , the ordinal numberν, the spatial angleϕ, the phase angleψν

and the local angular frequencyων .

From the graphs in Figure 7, it is to be recognized that the dominant forces occur at a frequency off = 100Hz.
This corresponds to the double of the mains frequencyfn. The spectrum also clearly shows an equal proportion.
This acts constantly as a pulling force. The harmonic components oscillate around this force component. The force
wave at this frequency has a dominant spatial order number ofν = −4. This reflects the number of poles of the
machine. The negative sign of the order means that the force wave rotates in the opposite direction to the magnetic
rotating field. The other dominant orders occur at a distance ofΔν = 60. This number coincides with the number
of slots of the statorQs. The fundamental wave occurs with approximately twice the amplitudeF̄−4 ≈ 2 ∙ F̄−64,56

opposite to the other two force waves.

Figure 7: Frequency range and order number of the force wave. Left: the spectrum, right: the spatial order number.

6 Summary

By using the finite element method on an asynchronous machine, its electromagnetic rotating field was calculated
at synchronous speed. Subsequently, the results were validated and a force calculation was carried out in the area
of interest. These forces were analyzed with regard to their temporal as well as spatial development.
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Experimental Analysis of the nonlinear Vibrations of a rigid Rotor in Gas
Foil Bearings
Robert Hoffmann, Cédric Kayo, Robert Liebich

Air bearings and gas foil bearings (GFBs) in particular are characterized by a low-loss operation at high rotational
speeds and temperatures, because of their adequate and relatively low lubrication viscosity. Further advantages
are the simple design of the bearing and the omission of an oil system. A disadvantage is the low fluid viscosity,
which limits the load capacity and damping capacity of the bearing. Even though the bearing wall, which is elastic
and sensitive to friction, compensates the mentioned disadvantages by self-regulating the lubrication film and
providing external damping. GFBs always show a tendency for nonlinear subharmonic vibrations. In this paper, the
nonlinear vibration behavior of a rigid rotor in gas foil bearings is investigated. The rotor is accelerated to approx.
60 000 rpm by means of an impulse turbine. Waterfall charts for a variation of static and dynamic unbalance
are recorded using transient coast-downs. The experiments show a variety of nonlinear effects. Their causes are
analyzed experimentally. In addition to self-excitation by the fluid film, the rotor is sensitive to high unbalances
and the resulting forced vibrations. The nonlinear, progressive system behavior results in excitation orders of 1/2Ω,
1/3Ω, and 1/4Ω that modulate additional frequencies.

1 Introduction

Gas foil bearings (GFBs) are based on a fluid dynamic lubrication principle and possess a variety of benefits. Due
to the use of ambient air, a conventional oil system is not necessary. At the same time, losses in the lubrication
film are relatively low and high temperature applications are possible, which can be explained by the relatively
low viscosity and the thermal behavior of gases. Nonetheless, a low viscosity results in low load capacity and
poor damping properties. Apart from the external damping caused by friction in the foils, the elastic structure
forms a self-regulating lubrication film, cf. Heshmat (1994). The latter particularly increases the load capacity
when compared to rigid gas bearings, cf. DellaCorte and Valco (2000). However, systems with GFB-supported
systems often manifest nonlinear subharmonic vibrations, cf. Heshmat (1994, 2000); Kim et al. (2010); Kim
(2007); Sim et al. (2012); Larsen (2015). If the damping of the system is sufficiently large there are stable limit
cycles, Kim (2007); Heshmat (1994). Moreover, the unbalance of the system significantly influences the nonlinear
vibration behavior, Heshmat et al. (1982); San Andrés et al. (2007); Kim (2007); San Andrés and Kim (2008);
Balducchi (2013); Larsen (2015). Despite the large number of experimental rotordynamic investigations, no
detailed classification of the vibration is available. In 2007, San Andrés and Kim (2008) labeled the nonlinear
behavior as Forced Nonlinearity, which is influenced by the unbalance, whereby self-excitation has been completely
excluded. Instead, Hoffmann et al. (2014) proved numerically the possibility of self-excitation in a nonlinear
stability analysis. Consequently, in well balanced systems the subharmonic vibration starts at the rotational speed
nOSSV (Onset Speed of Subharmonic V ibration) and vibrates synchronously with the eigenfrequency of the
system. The onset of subharmonic vibration is characterized by a Hopf-bifurcation resulting from a fluid film
induced self-excitation. A possible classification of the nonlinear vibrations of a rotor in a GFB is displayed in
Figure 1. The system behavior can take one of two paths: forced vibration and self-excited vibration.
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1.1 Path 1: Forced Vibration

Rotor in operation

Low balancing
quality

High balancing
quality

Forced vibrations
Fluid film

(self-excitation)

Nonlinear vibrations

Path 1 Path 2

Large bearing journal
displacement

Progressive force-displacement-
behavior of the elastic structure

Figure 1: Classification of the vibration characteristic of a GFB mounted system

The generation of nonlinear vibration in path 1 is due to forced vibrations caused by poor balancing quality. Due
to the progressive force-displacement-behavior of a gas foil bearing, the system behaves similarly to a Duffing-
oscillator, cf. Yamamoto and Ishida (2001); Kovacic and Brennan (2011); Dresig et al. (2011); Magnus et al. (2013).
The Duffing equation (Equation 1) is a differential equation for a damped elastic structure subjected to a large
deformation, where m is the mass of the system, Ω the rotor speed, δ the damping coefficient and r(x) the nonlinear
elastic restoring forces.

ẍ+ 2δẋ+ r(x) = F cos(Ωt) (1)

The nonlinear forces are induced by the elastic structure of the GFB and the gas film. The large displacement of the
shaft in the bearing makes nonlinear elastic effects significant (Figure 2). Figure 3 shows the response amplitude of
the Duffing equation by applying the harmonic balance method and assuming a solution of the form (Equation 2).

x1(t) = C sin(Ωt+ ϕ) (2)

One particularity of the duffing oscillator is the jump phenomenon in the resonance peak of the frequency response
function, which occurs when the system is excited by a harmonic force (Figure 3). When the frequency of excitation
increases, there appears suddenly a jump down from point (A) to (B). If the frequency decreases, the amplitude
jumps up from point (C) to (D). This phenomenon can be observed during the experiment (chapter 3). Jump
phenomena, subharmonic resonances of the 1/2Ω, 1/3Ω and 1/4Ω etc. order and frequency modulations are
characteristics of such an oscillator, cf Yamamoto and Ishida (2001); Kovacic and Brennan (2011).

1.2 Path 2: Self-excited Vibration

Nevertheless, a very well balanced rotor can also exhibit nonlinear vibrations during operation. The cause is
fluid-induced, self-excited vibrations by the air lubrication (Whirl-vibration). At the OSSV-point, subharmonic
fractions rise and vibrate synchronously with a system eigenfrequency. Due to the large displacements of the shaft,
the progressive behavior of the bearing comes into effect, so that ultimately a mixture of path 1 and 2 occurs.
The purpose of this work is the experimental rotordynamic analysis of a rotor supported by GFBs focusing on its
nonlinear vibration and the classification of the same according to the scheme from Figure 1.
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2 Experimental Setup

Figure 4 (a)-(d) presents the experimental setup for the rotordynamic analysis in a section view (a) and in two
further views (c) and (d). The cylindrical casing consists of precision turned components, so that a coaxial bearing
seat is provided for the front (F) and rear (R), see Figure 4 (a). Two identically constructed radial GFBs of the
1st generation are investigated whose technical data are listed in Table 1. The mounting position of the bearing
allows the rigid clamping of the foils (WP) to be at the 12 o’clock position and the bearing shaft to rotate from
the free foil ending to the rigid clamp. The chassis is tightly connected to a vibration-isolated machine bed by
means of a bracket. A numerical FE based modal analysis of the chassis structure shows no eigenfrequencies below
110 000 rpm, therefore no influence from the chassis at the operation range (nmax ≈ 60 000 rpm) is to be expected.
The rigid rotor is driven by an impulse turbine (3) supplied with pressurized air, see Figure 4 (a) and (b), whose
technical data can be found in Table 2. The rotor including the turbine is built symmetrically around the center of
gravity (SP). Thus, similar radial loads are generated and axial thrust from the turbine is minimized in operation.
If, however, axial forces occur during operation, these are absorbed via two axial start-up linings (4), see Figure 4
(a), (c) and (d). For this purpose, pressure pieces with a spring-loaded ceramic ball are used to keep the friction
as well as the damping of vibrations low. At the same time, this allows for a small heat input into the shaft. The
turbine is supplied via the pressure line (5), see Figure 4 (c) and (d). The control of the test rig, i.e. the turbine, is
achieved with a proportional pressure control valve, which is steplessly electronically controlled by means of a PC.
Furthermore, M2 x 6 x 60◦ thread holes are provided at the front sides of the bearing shaft for the attachment of
unbalance weights.

3 Experimental Analysis

3.1 Measurement Instrumentation

Referring to Figure 4 (a) and (b), for the rotordynamic analysis the vibration behavior at the front (F) and rear (R)
bearing positions is measured in vertical and horizontal directions by means of two fiber- optic displacement sensors.
The rotational speed is detected simultaneously by an infrared sensor (7). A black and white marking is therefore
placed next to the turbine, see Figure 4 (b). Furthermore, the temperature at the bearing seat is measured by means
of thermocouples of the type T, see Figure 4 (a).
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Figure 4: Experimental setup: cross-sectional (a) view, (b) shaft, (c) view 1 and (d) view 2.

Table 1: Geometrical data of a GFB of the 1st generation (Manufacturer MSI.Inc).

Parameter Value
Bearing radius R 19.050 mm
Bearing length l 38.100 mm
Bump-height hb 0.50 mm
Bump-thickness tb 0.1 mm
Bump-range sb 4.572 mm
Number of bumps Nb 26
Half the length of a bump lb 1.778 mm
Foil cover thickness tf 0.1 mm
Elastic modulus E 2.07× 1011 N/m2

Poisson’s ratio ν 0.3
Foil material Inconel X-750

The sensors and the measurement instruments are listed in Table 3.

3.2 Test Procedure and Signal Processing

Two different experiments are carried out: first, the influence of the self-excitation is analyzed, see Figure 1, path 2.
Hereto, the rotor is in the initial unbalanced state, i.e. no additional masses are attached to the balancing planes.
According to DIN ISO 21940, a balance quality grade of G 0,4 is available. Second, the influence of the forced
vibrations is investigated by different unbalance mass settings by means of static and couple unbalances. The
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unbalance masses are listed in Table 4. This study is based on path 1 from Figure 1. Both studies are to demonstrate
the classification shown in Figure 1. The tests are based on transient runs. For this purpose, the rotor is accelerated
to its maximum rotational speed (nmax ≈ 60 000 rpm) . This state is held until stationary operation is established.
Thereafter the pressurization of the turbine is switched off, the rotor decelerates and the measurement takes place.
Excitations due to the flow through the turbine are thereby minimized. This procedure is performed more than 10
times to verify the reproducibility of the results. The reproducibility of experimental results is very good, so that an
averaging of the results is not performed. The results of the transient rotordynamic analyses are shown in waterfall
charts. Hereby, the magnitude of the pointer |r| =

√
u2 + v2 of the displacement in x- and y-direction is plotted

over the frequency component f and rotational speed n.

1 Application field: tool spindle machines and propulsion of precision machines.

Table 2: Design data of the solid shaft

Bearing RBearing F
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Parameter Solid shaft
Material 42CrMo4 (1.7225)
Mass mr 2.148 kg
Inertia Jz 568.425 mm2kg
Inertia Jx, Jy 6775.878 mm2kg
Rotor length lr 212 mm
Bearing distance ∆lSP,F/R 72.5 mm
Shaft diameter (nominal) Da 38 mm
Nominal gap bearing F c0,F 55 µm±6 µm
Nominal gap bearing R c0,R 50 µm±6 µm

Table 3: Measurement instrumentation of the rotordynamic experiment.

Sensor Manufacturer Type Sensitivity/specification Quantity
Rotational speed Monarch IRS- Infrared Sensor 1-999 999 min−1 1
Displacement Philltec INC RC 62 2.8 mV/µm 4
Temperature Omega 5TC-TT-KI-24-2M Type T, max. 300 ◦C 10

PC-measurement electronics NI 9215 AD-converter 16 Bit, ±10 V 3
PC-measurement electronics NI 9213 16 channel thermocouple module 16 Bit 1
PC-measurement electronics NI cDAQ 9127 Measurement Chassis 1
PC-measurement electronics NI 9162 Measurement Chassis 1

Table 4: Unbalance values of the rotor.

Rotor Type of unbalance Unbalance UF Unbalance UR

Solid shaft

static
0 gmm 0 gmm
6 gmm 6 gmm
12 gmm 12 gmm

couple
0 gmm 0 gmm
9 gmm 9 gmm
12 gmm 12 gmm

For this purpose, the time signals of the displacement sensors are sampled with 40 kHz and converted into the
frequency domain by means of a Fast Fourier Transform (FFT). A digital Butterworth low-pass filter (cutoff
frequency: 20 kHz) and a Hanning window are also used for frequency analysis. Possible amplitude damping,
caused by signal processing, in particular resulting from the choice of the window, have been neglected, since the
absolute values of the vibration amplitude are less of interest than their frequency characteristics. Due to the low
temporal variance of the temperature, the sampling frequency of the thermocouples has been set to 100 Hz. The
temperature of the bearing relative to the environment Ta is not expected to vary much during the study, since the
bearing load is relatively low.

230



3.3 Experimental Results

3.3.1 Assessment of the Self-excitation
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Figure 5: Waterfall charts of the solid shaft, measurement position: front bearing, (a) Run-up and (b)
Coast-down

In Figure 5 the waterfall charts display the shaft displacement in forward and backward directions at the front
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bearing (F) during (a) run-up and (b) coast-down. No additional unbalance is attached to the rotor. As a result, the
nonlinear vibration behavior can be evaluated by means of a possible self-excitation by the gas film, see Figure 1
path 2. Figure 5 basically underlines that subharmonic vibrations start at the onset speed nOSSV with the frequency
fOSSV. The results of the OSSV-point are summarized for the different measurements in Table 5. They reflect
very well the behavior of the Duffing oscillator. During coast-down the OSSV is lower than during run-up. That
reflects the Jump frequencies (C)-(D) respectively (A)-(B) in Figure 3. With the delayed onset of the subharmonic
vibrations at higher rotational speeds of the run-up, a system with a positive feedback can be identified.

Table 5: OSSV at run-up and coast-down.

Measurement cycle fOSSV nOSSV Displacement amplitude |r|

Solid shaft Coast-down 136.72 Hz 17 754 rpm 2.698 µm
Run-up 136.7 Hz 19 992 rpm 4.804 µm

3.3.2 Assessment of the nonlinear Vibrations

The waterfall chart in Figure 5 displays a variety of nonlinear vibrations as soon as the onset speed nOSSV has
been surpassed. In accordance with Figure 1, this is explained by the increased bearing shaft displacement due
to the self-excitation. Thus, subharmonic vibrations are excited because of the existence of a positive feedback
resulting from the progressive force-displacement-behavior. In Figure 5 (a), the frequency orders in forward and
backward direction for ±1/3Ω (indicated by dashed lines) induce the subharmonic resonance of the 1/3Ω order at
the points (4) and (9). Behind the OSSV-point, the system oscillates in a self-excited manner synchronously with
the first eigenfrequency f1. This slightly detunes the system so that a slight jump close to point (4) towards lower
frequencies occurs. The system is strongly dominated by the first eigenfrequency f1(1st mode, cylindrical shape).
At higher speeds, a further subharmonic resonance of the 1/3Ω-order occurs at point (9), which leads to a jump
of the eigenfrequency f2 (2nd mode, cone shape). Furthermore, after the self-excitation and the nonlinear system
behavior, a variety of combination frequencies, also known as frequency modulation, appears. For this purpose,
Figure 6 (a) serves as an exemplary waterfall chart. In the case considered, self-excitation starts at the OSSV-point
with the rotational speed nOSSV and the frequency fOSSV. Furthermore, the cylindrical mode f1 is strongly excited
up from the point (4) by these nonlinear vibrations. If the frequency f1 up from point (4) is split between forward
and backward motions and the half difference between backward and forward component is considered as the
module frequency of action fM = f1 (Equation 5). The value of half of the sum of the forward and backward
component is considered as the carrier frequency fc (Equation 5), the so-called side bands vibrate next to the main
vibration components f1 due to the nonlinear feedback of the system. If a random frequency f is assumed, it may
have higher and lower frequency side bands (index USB: upper side bands, index LSB: lower side bands). Kinetic
energy will then be transferred from the basic vibration to the side bands. These side bands can, in combination
with other frequencies, generate new frequencies according to the same scheme, see Figure 6 (a) and (b). The
cascade-like modulation according to Figure 6 (b) can be calculated using Equation 3 and 4 for the side bands cf.
Nguyen-Schäfer (2012).

fLSB =


f1 − 2fM = fc − fM = f2
f1 − 4fM = fc − 3fM = 2f2 − f1
f1 − 6fM = fc − 5fM = 3f2 − 2f1
. . .

(3)

fUSB =


f1 + 0fM = fc + fM = f1
f1 + 2fM = fc + 3fM = 2f1 − f2
f1 + 4fM = fc + 5fM = 3f1 − 2f2
f1 + 6fM = fc + 7fM = 4f1 − 3f2
. . .

(4)

fM =
1

2
(f1 − f2) fc =

1

2
(f1 + f2) (5)

Referring to the waterfall diagram of Figure 5 (b), combined frequency points (2-8) result. These points are
summarized in Table 6. By applying Eq. (3) and (4) with the modulation frequency fM = 117.19 Hz of the point
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Figure 6: Diagram of a frequency modulation: (a) in waterfall chart and (b) frequency spectrum with
cascade-like frequency modulation.

(6) of Figure 5 (b), identical frequencies are calculated. This comparison further underlines the nonlinear system
behavior, which is initiated by the onset of self-excitation at the OSSV point.

Table 6: Side band modulation of the waterfall chart of Figure 5 (b), solid shaft, coast-down with
fM = 117.19 Hz.

Position 8 7 6 5 4 3 2
fi −351.56 Hz −234.34 Hz −117.19 Hz 0 Hz 117.18 Hz 234.375 Hz 351.56 Hz

3.3.3 Impact of Unbalance on the nonlinear Vibration Behavior

Path 1 is analyzed according to Figure 1 in order to prove the above hypothesis experimentally. The reason of
nonlinear vibrations lies within forced vibrations due to a generally poorer balancing quality, so that nonlinear
vibrations are generated even below the OSSV point. The unbalance values used are based on the data in Table 4.
The results are plotted in the waterfall diagrams in Figures 7 and 8 for the cases of a static and couple unbalance.
In principle, it can be stated: the higher the unbalance is, the more distinct a nonlinear rotor behavior due to the
progressive force-displacement behavior of the bearing becomes. With exception of the 6 gmm measurement
with static unbalance, see Figure 8 (a), subharmonic vibrations of the 1/2Ω-order occur as a result of the forced
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unbalance excitation already below the abovementioned OSSV point. The original unbalance state of the rotor
has undergone little change by introducing this test mass, which is why the OSSV at 6 gmm is still present as a
result of self-excitation. Subsequently, ±1/3Ω and ±1/4Ω orders are excited, which again implies the presence
of a nonlinear system behavior due to the positive feedback and thus supports the hypothesis of the first path.
Furthermore, the waterfall diagrams show that the second mode (cone shape) is strongly excited by the nonlinear
oscillations ±1/3Ω or ±1/4Ω by means of the subharmonic resonances. The second mode oscillates with the
frequency f2.
In addition to the side bands, continuous spectral components are clearly visible in the case of the couple unbalance
with Ui = 12 gmm (i=F,R). These can be chaotic, stochastic or non-steady-state vibrations, cf. Magnus et al. (2013).
Above all, the latter effect is to be assumed, since the coast-down runs were very short in the experiments. This
resulted in a heavily unsteady state regime. A detailed investigation of this effect was not carried out within the
framework of the work, since these are not of great importance for the purpose of the work. Moreover, it can
be observed, that the mass of the couple unbalance causes a stronger nonlinear behavior with higher vibration
amplitudes compared to the static unbalance, see Figures 7 and 8. As a result of the couple unbalance and its
kinematic effect on the rotor, the displacements close to the front (F) and rear (R) bearings are larger in comparison
to those obtained in the static unbalance case. This is due to the conical mode, which is dominated by a forced
vibration particularly in the operational range and it is sensitive to the present unbalance mass, according to the
analysis in the Campbell diagram, see Figure 9. Unfortunately, the results for the higher couple unbalance case do
not show the high conical mode vibrations. It was not possible to run the rotor in the relevant speed range due to the
extremely high vibration level, see Figure 7 (b). A possible reason for this is the strong excitation of the rotor due
to the unbalance and the subharmonic resonance, which excite the cone mode, thereby transferring the rotational
kinetic energy of the drive into the translational vibrations. The drive power of the turbine is not sufficient in this
case to accelerate the rotor to higher speeds.
Based on the experimental results shown here, the path 1 of the classification of vibrations caused by driven vibration
by a nonlinear progressive system is proven, whereby nonlinear vibrations occur before the self-excitation by the
gas film, see Figure 1.

4 Summary

In order to confirm the claimed vibration classification of this work a rigid rotor supported by two gas foil bearings
is tested experimentally. The following results can be summarized: According to path 2, self-excited vibrations by
the fluid film occur as a subharmonic Whirl-vibration at the OSSV-point. After the onset of subharmonic vibration,
which developed synchronously with the 1st mode (cylindrical shape), a variety of subharmonic resonances of the
±1/3Ω and ±1/4Ω orders occurs due to the progressive force-displacement behavior. In addition to the unstable
cylindrical mode (1st mode), these also excite the conical mode (2nd mode). According to path 1, the unbalance has
a great influence on the nonlinear vibrations. A variety of subharmonic resonances and vibrations of the ±1/2Ω,
±1/3Ω and ±1/4Ω orders were identified as a result of the nonlinear progressive force-displacement behavior of
the bearing. Even before self-excitation, ±1/2Ω orders occur due to nonlinear behavior. In addition, a variety of
frequencies are modulated by the nonlinear behavior.

234



1Ω
-1Ω

S0 vollwelle Messung runter 2 Front, dyn 9gmm

-f1
1/4Ω

1/3Ω
-1/3Ω

f1

f2

1/2Ω
-1/2Ω

R
o

to
r 

S
p

ee
d

 [
rp

m
]

Frequency [Hz]

D
is

p
la

ce
m

en
t

[µ
m

]

UF UR

(a) Ui = 9 gmm (i = F,R)

1Ω-1Ω

S0 Hohlwelle Messung runter Front, dyn 12gmm

1/2Ω

-f1

-1/2Ω

f11/3Ω-1/3Ω

R
o

to
r 

S
p

ee
d

 [
rp

m
]

Frequency [Hz]

D
is

p
la

ce
m

en
t

[µ
m

]

UF UR

(b) Ui = 12 gmm (i = F,R)

Figure 7: Couple unbalance on the solid shaft: waterfall charts (a) and (b) (measurement location: front
bearing, coast-down).

235



1Ω
-1Ω

S0 Vollwelle Messung runter 2 Front, stat 6gmm

-f1 1/4Ω

1/3Ω-1/3Ω

f1

f2

1/4Ω

UF UR

R
o

to
r 

S
p

ee
d

 [
rp

m
]

Frequency [Hz]

D
is

p
la

ce
m

en
t

[µ
m

]

(a) Ui = 6 gmm (i = F,R)

1Ω
-1Ω

S0 Hohlwelle Messung runter 1 Front, stat 12gmm

1/2Ω

1/4Ω

1/3Ω

-1/2Ω

-1/3Ω

-1/4Ω

f2

f1

UF UR

R
o

to
r 

S
p

ee
d

 [
rp

m
]

Frequency [Hz]

D
is

p
la

ce
m

en
t

[µ
m

]

(b) Ui = 12 gmm (i = F,R)

Figure 8: Static unbalance on the solid shaft: waterfall charts (a) and (b) (measurement location: front
bearing, coast-down).
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5 Appendix

Eigenbehavior of the test rig in operation.
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Figure 9: Campbell diagram of the solid shaft.

The following results are based on a rotordynamic model, which takes into account gyroscopic effects of the
rotor as well as speed-dependent linearized stiffness and damping for the GFBs. The method for determining the
linearized bearing parameters is given in Hoffmann et al. (2016); Hoffmann (2016). The forward and backward
components of the two first modes in the operation range (nmax = 60 000 rpm) are displayed. Due to the very
high-frequency bending modes, their critical speeds are not reached. In operation, according to this linear view,
critical speeds n2 occur when there is a point of intersection between the spin speed line and the eigenfrequency
of the 2nd mode (cone mode). This means that the rotationally synchronous excitation 1Ω is equal to the forward
mode eigenfrequency f2 of the rotor. Backward whirls are neglected. The low-frequency cylindrical mode has no
resonance for a synchronous excitation with 1Ω in operation above n = 7500 rpm.
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Influence of electromagnetic Field Damping on the Vibration 
Stability of soft mounted Induction Motors with Sleeve Bearings, 
based on a Multibody Model 
 
 U. Werner 
 
 
The paper shows an analytical vibration model for stability analysis of soft mounted induction motors with 
sleeve bearings, especially focusing on the influence of electromagnetic field damping on the limit of vibration 
stability. The model is a multibody model, considering the electromagnetic influence – including the 
electromagnetic field damping effect –, stiffness and internal material damping of the rotor structure, stiffness 
and damping of the bearing housings and end shields, stiffness and damping of the foundation elements and 
stiffness and damping of the oil film of the sleeve bearings. The aim of the paper is to unite all these influences in 
a model and to derive a procedure for calculating the limit of vibration stability, with considering the 
electromagnetic field damping effect. Additionally, a numerical example is presented, where the influence of 
electromagnetic field damping on the limit of vibration stability is shown, as well as the influence of the 
foundation elements and of the internal damping of the rotor. The procedure and conclusions can also be 
adopted into finite-element analysis. 
 
 
1 Introduction 
 
For analyzing rotating machinery, it is important to know the limit of vibration instability, which is e.g. 
influenced by the oil film of the sleeve bearings and internal material damping of the rotor (rotating damping), 
described by Rao (1996), Gasch (2002) and Genta (2005). In electrical machines, also electromagnetic fields 
occur, which couple the rotor to the stator and influences the vibration behavior, described by Schuisky (1972), 
Früchtenicht et al. (1982), Seinsch (1992), Smith et al. (1996), Arkkio et al. (2000), Holopainen (2004) and 
Werner (2006). Especially in induction motors an electromagnetic field damping effect occurs, which itself 
influences the electromagnetic forces and therefore the vibration behavior, shown by Früchtenicht et al. (1982), 
Seinsch (1992), Arkkio et al. (2000), Holopainen (2004), Werner (2006) and Werner (2016). Sometimes large 
induction motors (1MW-10MW) with sleeve bearings and high speeds (3000 rpm-6000 rpm) are mounted on 
soft foundation elements (rubber elements) to decouple the motor from the foundation (Fig.1). However, a soft 
mounting influences the vibration behavior of the machine clearly, which is demonstrated by Kirk at al. (1974), 
Gasch et al. (1984) and Werner (2008). 

 
Figure 1. Soft mounted induction motor with sleeve bearings 

Up to now, electromagnetic field damping of induction motors is often not considered for vibration analysis in 
the industry. Therefore the aim of the paper is now to present an analytical vibration model of a soft mounted 
induction motor with sleeve bearings and to derive a practicable method to consider the influence of 
electromagnetic field damping on the limit of vibration stability. 
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2 Electromagnetic Field Damping 
 
An eccentricity �̂ between the shaft centre point W of the rotor and the centre of the stator bore leads to 
additionally electromagnetic eccentricity fields, which cause a radial magnetic force ��mr in direction of the 
smallest air gap (Fig. 2a). If the rotor angular frequency Ω is different to the angular frequencies of the 
eccentricity fields, these fields induce voltage into the rotor cage, which reduces the magnitude of origin 
eccentricity fields. Therefore, the radial magnetic force ��mr will be reduced and an additional magnetic force ��mt 
in tangential direction is caused (Fig. 2a).  

 
Figure 2. a) Electromagnetic forces; b) Magnetic spring and magnetic damper  

The following equations are fundamentally based on the investigations of  Früchtenicht et al. (1982) and Seinsch 
(1992). The radial magnetic force can be described by an electromagnetic spring element �md (Fig. 2b):                                   � > 1:     �md = �m� ∙ ��p+1 + �p-1� ;               � = 1:       �md = �m ∙ �p+1                                  (1) 

Where p is the number of pole pairs of the motor, �� electromagnetic spring element without electromagnetic 
field damping, and �p+1 and �p-1 are the real parts of the complex field damping value. Without electromagnetic 
field damping, the real parts of the field damping coefficients get �p+1 = �p-1 = 1. For 2-pole motors (p =1) the 
component �p-1 gets zero, neglecting the homopolar flux. 

                             � > 1:  �m = �∙�∙��∙��∙��� ∙ ��p� ;                                  � = 1:          �m = �� ∙ �∙�∙��∙��∙��� ∙ ��p�        (2) 

Where � is the radius of the stator bore, � is the length of the core, �� is the permeability of air, ��� is the 
equivalent magnetic air gap width – depending on mechanical air gap, saturation effects and CARTER-factors, 
described by Seinsch (1992) –, ��p is the amplitude of fundamental air gap field. The tangential magnetic force 
can be described by the electromagnetic damper element �m (with �F ≠ 0) (Fig. 2b): 

                             � > 1: �m = − ��F ∙ �m� ∙ ��p+1 − �p-1�;        � = 1:         �m = − ��F ∙ �m ∙ �p+1                          (3) 

Where �F is the whirling angular frequency of the rotor and �p+1 and �p-1 are imaginary parts of the complex 
field damping value. Without electromagnetic field damping, the field damping coefficients get �p+1 = �p-1 = 0. 
For 2-pole motors (p =1) the component �p-1 gets also zero, neglecting the homopolar flux. If electromagnetic 
field damping has to be considered, the electromagnetic field damping coefficients �p+1,�p-1, �p+1, �p-1  have to 
be derived. With the ordinal number � = � ± 1 for an eccentricity field wave, the electromagnetic field damping 
coefficients can be calculated: 

                                                      �ν = 1 − �ν ∙ �ν�  ;     �ν = −�ν ∙ �ν ∙ sν                                                            (4) 

                                       with: �ν = ��,ν��(��h,ν���σ,ν)     and �� = ��ν���ν� ∙ �Schr,ν� ∙�K,ν�����σ,ν��h,ν   

Where ��,� is the resistance of a rotor bar and ring segment, �� is the electrical stator angular frequency, ���,�  is 
the main field inductance of a rotor mesh, ���,�  is the leakage inductance of a bar and ring segment, �����,� is the 
screwing factor and ��,� is the coupling factor, which are all described in detail by Seinsch (1992).  
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The harmonic slip ��  can be described by:                                                                            �ν = �ν� �����        with:   � = ��� (1 − �)                                                  (5) 

Where s is the fundamental slip of the induction motor, �� is the electrical stator angular frequency and �ν/� 
are the angular frequencies of the eccentricity fields, depending on the kind of eccentricity: 

- Static eccentricity: �ν = �� 
- Dynamic eccentricity as a circular forward whirl: �ν = �� ± �F   
- Dynamic eccentricity as a circular backward whirl: �ν = �� ∓ �F 

To consider the electromagnetic field damping effect by a magnetic spring element �md and by a magnetic 
damper element �m, the compromise has to be made, that the calculation of �md and �m is here only based on 
circular forward whirls. With this simplification, the electromagnetic influence is supposed to be higher than it 
maybe in reality. If the absolute value of the harmonic slip |�ν| is high – as it is for a circular backward whirl in 
conjunction with a small fundamental slip s – which is usual for steady state operation –  the damped magnetic 
spring �md gets very small as well as the magnetic damper �m. In this case, the eccentricity fields induce strongly 
in the rotor cage and so the eccentricity fields get clearly reduced due to the harmonic rotor currents. Therefore, 
calculating �md and �m based on circular forward whirls presents the worst case regarding the height of the 
electromagnetic influence, when considering electromagnetic field damping, shown by Werner (2016). 
 
3 Vibration Model 
 
The model is an enhancement to the model, described by Werner (2008), where no electromagnetic field 
damping has been considered, no internal damping of the rotor, and no damping of bearing housings and end-
shields. The vibration model is a simplified plane vibration model (plane y, z). It consists of two main masses, 
the rotor mass mw, concentrated in the shaft centre point W, and the stator mass ms, which has the inertia θsx and 
is concentrated in the centre of gravity S (Fig. 3). 

 
Figure 3. Vibration model 

 
Additional masses are the mass of the shaft journal �v and the mass of the bearing housing �b, which are 
accounted separately, mostly to avoid zeros at the main diagonal of the mass matrix. Due to their low mass, their 
influence is only marginal. The rotor rotates with the rotary angular frequency Ω. The inertia moments of the 
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rotor are not considered and therefore also no gyroscopic effects. The shaft journal centre point V describes the 
movement of the shaft journal in the sleeve bearing. The point B is positioned in the axial middle of the sleeve 
bearing shell and describes the movement of the bearing housing. The rotor mass is linked to the stator mass by 
the stiffness c and internal damping �i of the rotor, the oil film stiffness matrix Cv and oil film damping matrix 
Dv of the sleeve bearings, which are supposed to be equal for the drive side and the non-drive side, and the 
bearing house and end shield stiffness and damping matrix Cb and Db, which are also assumed to be equal for the 
drive side and the non-drive side. The stator structure is assumed to be rigid, compared to the soft foundation. 
The foundation stiffness matrix Cf and the foundation damping matrix Df connect the stator feet, FL (left side) 
and FR (right side), to the ground. The foundation stiffness and damping on the right side is the same as on the 
left side and the foundation stiffness values cfy and cfz and the foundation damping values dfy and dfz are the 
values for each motor side. The electromagnetism is considered by the electromagnetic spring and damper 
matrix �� and �m, where also electromagnetic field damping is included. All used coordinate systems are fixed. 

For deriving the damping coefficients, it is important to consider here, that natural vibrations with the angular 
natural frequency �stab of the critical mode at the limit of stability with the rotary angular frequency �stab has to 
be analyzed. Therefore the whirling frequency �F becomes �stab:  
                                                                                   �F = �stab                                                                           (6) 

The oil film stiffness and damping coefficients cij and dij  (�, � = �, �) of the sleeve bearing are calculated by 
solving the Reynolds differential equation, shown by Tondl (1965), Glienicke (1966) and Lund et al.( 1987). 
                                                                    ��� = ���(�)  and ��� = ���(�)                                                          (7) 

Referring to Gasch (2002), the internal material damping of the rotor �i is described here by the mechanical loss 
factor tan �i of the rotor, depending on the whirling angular frequency �F.                                                                                          �i(�F) = �∙����i �F                                                                          (8) 

With the stiffness of the bearing housing and end shield (�bz; �by), the damping of the bearing housing and end 
shield (�bz;�by) is here also described by the mechanical loss factor tan �b:                                                                            �bz(�F) = �bz∙����b �F  ;    �by(�F) = �by∙����b �F                                          (9) 

The damping of the foundation elements is also described by the mechanical loss factor tan �f:                                                                            �fz(�F) = �fz∙��� �f �F  ;    �fy(�F) = �fy∙����f �F                                            (10) 

The electromagnetic stiffness coefficient �md and damping coefficient �m are depending on the harmonic slip �ν, 
and therefore also depending on the whirling angular frequency �F (see chapter 2).  

                                                                   �md = �md(�F)  and �m = �m(�F)                                                  (11) 
 
4 Mathematical Description 
 
To calculate the limit of stability, it is necessary to derive the homogenous differential equation. Therefore, 
d’Alemberts method is applied to the vibration system in order to derive the equations of motion, leading to the 
parts: a) rotor mass system, b) journal system, c) bearing house system and d) stator mass system – (Fig. 4).  
 
Because of the small displacements of the stator mass (zs, ys, ϕs), compared to the dimensions of the machine (h, 
b,Ψ ), following linearization is possible: The machine feet displacements on the left side (zfL, yfL) and the 
machine feet displacements on the right side (zfR, yfR) can be described by the displacements of the stator (zs, ys, 
ϕs) by: 

                                         �fL = �s − �s ∙ �;    �fR = �s + �s ∙ �;    �fL = �fR = �s − �s ∙ ℎ                                 (12) 

With the equilibrium of at each single system, the homogenous differential equation can be derived: 

                                                                     � ∙ �̈ + � ∙ �̇ + � ∙ � = �                                                                (13) 

Coordinate vector �: 

                                                            [ ]Tyyzzyyzz bvbvswsws ;;;;;;;; ϕ=q                                                             (14) 
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Figure 4. Vibration model, cut free into sub-systems 

 
Mass matrix M:                                                                                                                                                    (15) 
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Damping matrix �:                                                                                                                                               (16) 
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Note: The negative vertical displacement in , relating to the coordinate , 
is considered by the direction of the vertical forces in , so has to be 
described in the differential equation by: 
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Stiffness matrix �:                                                                                                                                                (17)       
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Due to the non-symmetric stiffness matrix – caused by the oil film and internal material damping of the rotor – 
and due to a negative electromagnetic damping coefficient ��, the vibration system will get instable, when the 
limit of stability is exceeded (� > �����). The limit of vibration stability ����� can be derived, by increasing the 
rotary angular frequency �, and analyzing the eigenvalues.  
 
When a real part of one eigenvalue gets zero, the limit of vibration stability is reached. If the rotary angular 
frequency � is increased furthermore, the real part gets positive and the vibration system gets instable. To find 
the limit of stability, the homogenous differential equation has to be analyzed. To calculate the eigenvalues, the 
state-space formulation is used here (with �� = �; Index ℎ for homogenous): 

                                                                ��̇��̈����̇ = � � �−��� ∙ � −��� ∙ �����������������A ∙ ����̇����                                                  (18) 

With the formulation � = �� ∙ ��∙�, the eigenvalues can be derived from: 

                                                 det[� − � ∙ �] = 0                                             (19) 

At the limit of stability, the eigenvalue � of the critical mode gets:  

                                              � = �stab = ±� ∙ �stab                                             (20) 

Knowing the eigenvalue �stab, the critical mode shape at the limit of stability can be derived. The real part of the 
critical eigenvalue �stab is zero and the whirling angular frequency �F is then identical to �stab, while the rotor is 
rotating with �stab. It has to be considered, that the coefficients �i, �bz, �by, �fz, �fy �m, �md are depending on the 
whirling angular frequency �F, which has to be determined.  
 
Referring to Werner (2016) – where a rigid mounted induction motor was investigated –, an iterative solution 
has to be deduced, according to Fig. 5, for a soft mounted induction motor. First, the coefficients �i, �bz, �by, �fz, �fy,�m and �md , which depend on the whirling angular frequency �F, are set to zero, so that only the non-
symmetric stiffness matrix of the oil film will cause instability. The eigenvalues are calculated according to (19), 
depending on the rotary angular frequency �. 
 
To derive the limit of stability, the rotary angular frequency � is increased, till the real part of an eigenvalue gets 
zero. At this limit, the rotary angular frequency is �stab,1 – index “1” for the first calculation – and the natural 
angular frequency of the critical mode �stab,1 can be derived from the eigenvalue. Afterwards the coefficients �i, �bz, �by, �fz, �fy,�� and �md are calculated with �F = �stab,1, and the limit of stability and the natural angular 
frequency are calculated again, leading to �stab,2 and �stab,2. Then the new calculated natural angular frequency �stab,2 will be compared to the origin natural angular frequency �stab,1. If the ratio is less than Δ – an arbitrarily 
chosen value –, the calculation is finished and �stab = �stab,2 and �stab = �stab,2. If the ration is larger as the 
chosen value Δ, a new calculation is deduced and the coefficients �i, �bz, �by, �fz, �fy,�m and �md are now 
calculated with �F = �stab,2. With these new coefficients, the new limit of stability �stab,n+1 and the natural 
angular frequency �stab,n+1 are derived. Then again the new value �stab,n+1 is compared to the previous value �stab,2. If the deviation is still too large, the loop in Fig. 5 will run through, till the deviation is less than Δ. With 
this iterative process the limit of stability �stab can be derived, as well as the corresponding natural angular 
frequency �stab of the critical mode. This procedure is useful, if the biggest influence on the limit of stability is 
caused by the non-symmetric stiffness matrix of the oil film, which is usually the case for common induction 
motors with sleeve bearings. 
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Figure 5. Flow diagram to derive the limit of stability for a soft mounted induction motor 

5 Numerical Example 
 
The limit of vibration stability for a 2-pole induction motor (Table 1), mounted on soft rubber elements, and 
driven by a converter with constant magnetization, is analyzed. The load machine is a pump and therefore the 
load torque is a quadratic function of the rotor speed n. At rated speed, the load torque is identical to the rated 
torque of the motor. 

Table 1. 2-pole induction motor, mounted on soft rubber elements 
Data of the motor: 
- Rated power �N = 2400 kW 
- Rated voltage �N = 4160 V  (∆) 
- Rated frequency �N = 60.15  1/s 
- Rated speed �N = 3600 rpm 
- Rated torque �N = 6366 Nm 
- Rated slip � = 0.0025 
- Number of pole pairs � = 1 
- Undamped magnetic spring constant �m = 7.0 ∙ 10� kg/s� 
- Masse of the stator �s = 7040 kg 
- Mass inertia of the stator at the x-axis �sx = 1550 kgm� 
- Mass of the rotor  �w = 1900 kg 
- Mass of the rotor shaft journal �v = 10 kg 
- Mass of the bearing housing �b = 80 kg 
- Stiffness of the rotor  � = 1.8 ∙ 10� kg/s� 
- Height of the centre of gravity S ℎ = 560 mm 
- Distance between motor feet 2� = 1060 mm 
- Horizontal stiffness of bearing housing and end shield �by = 4.8 ∙ 10� kg/s� 
- Vertical stiffness of bearing housing and end shield �bz = 5.7 ∙ 10� kg/s� 
- Mechanical loss factor of the bearing housing and end shield tan �b = 0.04 
- Mechanical loss factor of the rotor  tan �i = 0.03 

Data of the sleeve bearings:  
- Bearing shell Cylindrical 
- Lubricant viscosity grade  ISO VG 32 
- Nominal bore diameter / Bearing width db = 100 mm / bb = 81.4 mm 

, h
b, c, 

Loop

Loop passed?
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- Ambient temperature / Supply oil temperature Tamb = 20°C / Tin = 40°C 
- Mean relative bearing clearance (DIN 31698) Ψm = 1.6 ‰ 

Data of the foundation elements (for each motor side):  
- Vertical stiffness for each motor side ��� = 2.0 ∙ 10� kg/s� 
- Horizontal stiffness for each motor side ��� = 1.0 ∙ 10� kg/s� 
- Mechanical loss factor of the foundation elements tan �� = 0.1 

The oil film stiffness and damping coefficients of the sleeve bearings have been calculated with the program 
SBCALC from RENK AG.  

First, the coefficients  ��, ���, ���, ���, ���,�� and �md  are set to zero – according to the flow diagram in Figure 
5 – and the real part and the imaginary part of the critical eigenvalue is analyzed. The critical vibration mode is 
the mode, which will get instable (Fig. 6).  

Figure 6 shows, that at a rotor speed of 4595 rpm the real part of the critical eigenvalue becomes zero. Increasing 
the rotor speed, will lead to a positive real part and therefore to instability. So the limit of stability is reached at a 
rotor speed of �����,� = 4595 rpm (�����,� = 481.2 rad/s).  

 
Figure 6. Real and imaginary part of the critical eigenvalue, depending on the rotor speed, with the boundary 

condition: �i = �bz = �by = �fz = �fy = �m = �md = 0; Critical mode shape at the limit of stability 

At this rotor speed the imaginary part, which represents the whirling angular frequency �F of the critical natural 
mode, becomes �F = �stab,1 = 255.3 rad/s. According to the flow diagram this angular natural frequency �stab,1 can now be used to calculate the coefficients �i, �bz, �by, �fz, �fy,�m and �md (Table 2).  

Table 2. Coefficients �i, �bz, �by, �fz, �fy,�m and �md at a rotor speed of nstab,1 = 4595 rpm and at a whirling 
angular frequency of ωF = ωstab,1 = 255.3 rad/s 

Damping constant of the rotor �i = 2.12 ∙ 10�kg/s 
Damping constant of bearing housing and end shield (horizontal direction) �by = 7.52 ∙ 10�kg/s 
Damping constant of bearing housing and end shield (vertical direction) �bz = 8.93 ∙ 10�kg/s 
Damping constant of foundation elements for each motor side (horizontal direction) �fy = 3.92 ∙ 10�kg/s 
Damping constant of foundation elements for each motor side (vertical direction) �fz = 7.83 ∙ 10�kg/s 
Electromagnetic damping constant �m = −61.7 kg/s 
Electromagnetic spring constant �md = 4.82 ∙ 10�kg/s�  

 
The large difference between rotor angular frequency �stab,1 = 481.2 rad/s and the whirling angular frequency �F = �stab,1 = 255.3 rad/s, leads in combination with a very small fundamental slip � = 0.0032 to a large 
harmonic slip �ν = −0.47, and therefore to a strong electromagnetic field damping, and the electromagnetic 
coefficients �m and �md get very small. Fig. 7 shows, that the electromagnetic coefficients would be much 
higher, if the whirling angular frequency �F would be close to the rotor angular frequencyΩ.   
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Figure 7. Magnetic spring constant a) and b) and magnetic damper constant c) and d) for different whirling 

angular frequencies and different rotor angular frequencies 

With the basic coefficients from Table 2, the limit of stability is calculated again according to the flow diagram. 
To clarify this additional calculation, the index “2” is used instead of index “1”. So the limit of vibration stability 
is reached now at a rotor speed of �stab,2 = 4554 rpm and the whirling frequency is �F = �stab,2 = 255.6 rad/s. According to the flow diagram a third calculation is not necessary, because �stab,2 differs only marginal from �stab,1 (+0.12%). Therefore, the values for the limit of stability are ����� = �����,� = 4554 rpm; ����� =�����,� = 255.6 rad/s. Now different cases are investigated. Table 3 shows, that the electromagnetic damper �� 
and the electromagnetic spring constant ��� influence the limit of vibration stability only marginal (case b and 
c), because the large harmonic slip at the limit of stability causes a strong electromagnetic field damping and 
therefore leading to low values for ��  and ���. Without considering electromagnetic field damping (case d), the 
magnetic spring value gets maximal (��� = ��) and the magnetic damper coefficient gets zero (�� = 0). For 
this case, the limit of stability will be clearly reduced from 4554 rpm to 4377 rpm, which means -3.9%. When 
neglecting the internal damping of the rotor (case e), the limit of stability will be increased (+2.0%).  

Table 3. Limit of stability for different cases 
Case       Description ����� [rad/s]  �����  [rpm] 

∆ of ����� 
to  a) [%] 

a)  Data Table 2 (Basic conditions) 255.6 4554 0 
b)  Data Table 2 with �� = 0 256.5 4556 +0.04 
c)  Data Table 2 with ��� = 0 256.5 4566 +0.26 
d)  Data Table 2 with �� = 0; ��� = �� (no electromagnetic field damping) 248.1 4377 -3.9 
e)  Data Table 2 with �� = 0 (no internal damping of the rotor) 255.7 4645 +2.0 
f)  Data Table 2 with ��� = ��� = 0 (no damping of the bearing housing and end shield) 256.5 4509 -1.0 
g)  Data Table 2 with ��� = ��� = 0 (no damping of the foundation elements) 256.1 4537 -0.37 
h)  Data Table 2 with ��� = ��� → ∞ (motor rigid mounted) 226.4 3922 -13.9 
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However, neglecting the damping of the bearing housings and end-shields (case f) will lower the limit of 
stability (-1%), as well as neglecting the damping of the foundation elements (-0.37%). The low influence of the 
damping of the foundation elements is caused by their low stiffness, which leads in conjunction with the loss 
factor to low damping values, which can be seen in Table 2. Figure 8 shows, that if the foundation element 
stiffness would be e.g. 4 times higher and the mechanical loss factor of the foundation elements would be the 
same (tan �f = 0.1), the limit of stability would increase from 4554 rpm to 4880 rpm (+7.2%). However, for a 
low loss factor (tan �f = 0.01) the limit of stability would only increase to 4730 rpm (+3.9%). 

 
Figure 8. Influence of the foundation element stiffness on the limit of stability n����� 

Figure 9 shows the influence on the limit of stability and on the whirling angular frequency �����, for stiffness 
variation of the foundation elements in a range of ��� = 1 ∙ 10� … 4 ∙ 10�kg/s�; ��� = 1 ∙ 10� … 8 ∙ 10�kg/s� . 

 
Figure 9. Influence of the arbitrary stiffness of the foundation elements on a) the limit of stability �limit and on b) 

the whirling angular frequency �stab; with a loss factor of tan �� = 0.1 for the foundation elements 

If the motor would be rigid mounted (case h), which means �fy = �fz → ∞, the limit of stability would be reached 
already at 3922 rpm, and the whirling frequency at the limit of stability �stab would be 226.4 rad/s instead of 
255.6 rad/s, shown by Werner (2016). Therefore, putting here the motor on the soft foundation elements 
increases the limit of stability clearly (+16.1%), compared to the rigid mounted induction motor. 

 
6 Conclusion 
 
In the paper a multibody vibration model and a procedure are presented for stability analysis of soft mounted 
induction motors, with sleeve bearings. The focus of the paper is on the influence of electromagnetic field 
damping, regarding the limit of stability. After the mathematical coherences have been derived, a numerical 
example was presented, where the limit of stability was analyzed. It could be shown, that neglecting 
electromagnetic field damping leads to a lower limit of stability. Additionally the influence of the foundation 
elements and of the internal damping of the rotor on the limit of stability could be demonstrated. Although, the 
vibration model is a simplified multibody model, the procedure and conclusions can be adopted into finite-
element analysis. 
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Modal Analysis of Rotors under Special Support Conditions 
 
G. Mikota 
 
 
Gyroscopic rotors in rolling element or tilting pad bearings assume a particular model structure if the bearing 
load directions coincide. For simple bearing models in suitable coordinates, the stiffness and damping matrix 
are free from cross-coupling terms. Under these conditions, a relationship between right and left eigenvectors is 
derived. The rows of the frequency response matrix are related to its columns, and the elements of the frequency 
response matrix are expressed in terms of eigenvalues and right eigenvectors. The results are illustrated by a 
numerical example. The theory can be used to facilitate advanced applications of modal testing for a special 
class of rotors. 
 
 
1 Introduction 
 
Modal testing of rotors has been complicated by the fact that the right and left eigenvectors do not coincide. If a 
rotor is excited in one degree of freedom and the vibration responses are measured in all degrees of freedom, the 
right eigenvectors can be obtained, which correspond to the vibration mode shapes (Nordmann, 1984). Advanced 
applications such as model correlation or modification prediction require a complete modal model; the left 
eigenvectors can be obtained by exciting the rotor in all degrees of freedom, but this is often too much effort and 
sometimes even impossible. It would be helpful if a relationship between right and left eigenvectors could be 
established in advance. Zhang et al. (1988) as well as Lee (1991) found such relationships for several cases of 
isotropic rotors. However, bearings are often anisotropic and thus do not meet the assumptions made by these 
authors. For undamped gyroscopic rotors, Meirovitch (1974) and Meirovitch and Ryland (1979) proved that the 
left eigenvectors are the complex conjugates of the right eigenvectors. Bucher and Ewins (2001) used a 
perturbation analysis for lightly damped systems that was developed by Wang and Kirkhope (1994a,b); for a 
special type of anisotropic bearings, they simplified the relationship between frequency response functions and 
modal parameters and concluded that a complete modal model can be obtained from an excitation at one point 
along the shaft in both the x- and y-directions. Nevertheless, a considerable amount of damping may be present in 
practice. For damped gyroscopic rotors, Gutierrez-Wing (2003) published a general method whereby left 
eigenvectors can be derived from right eigenvectors; however, this method involves some matrix algebra and the 
solution of two eigenvalue problems. 
 
As an alternative, one can take advantage of the model structure that is assumed by special types of bearings. 
Simple models of rolling element and tilting pad bearings indicate that in a coordinate system aligned with the 
load, the stiffness and damping matrix are free from cross-coupling terms. If bearing load directions coincide, 
this also applies for the contributions of bearings to the rotor’s overall stiffness and damping matrix. A multi-
degrees-of-freedom model of the rotor itself is, for instance, described in Genta (2005), where Timoshenko beam 
elements are used. With respect to the coordinate axes, the symmetric mass, damping, and stiffness matrices 
appear in separate blocks. The skew-symmetric gyroscopic matrix only contains symmetric off-diagonal 
submatrices. This leads to a special case of the vibro-acoustical model structure, for which a simple relationship 
between right and left eigenvectors is known. The rotor model may further include a skew-symmetric circulatory 
matrix from internal damping, which only contains symmetric off-diagonal submatrices. 
 
In this paper, the cross-coupling properties of rolling element and tilting pad bearings are extracted from 
literature. The vibro-acoustical model is expressed in velocity and pressure state variables in order to 
demonstrate the analogy to a special case of the rotordynamic model. This model is extended by a circulatory 
matrix to account for internal damping. Under these conditions, a simple relationship between right and left 
eigenvectors is derived. The rows of the frequency response matrix are related to its columns, and the elements of 
the frequency response matrix are expressed in terms of eigenvalues and right eigenvectors. The results are 
illustrated by a numerical example. The theory can be used to facilitate advanced applications of modal testing 
for a special class of rotors. 
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2 Cross-coupling Properties of Supports 
 
In rotordynamic models, bearings are often considered by 2×2 stiffness and damping matrices which need not be 
symmetric. These matrices can be split into symmetric and skew-symmetric parts, and principal axes can be 
found where the symmetric parts are free from cross-coupling terms. The skew-symmetric parts do not change 
with the angular position of the coordinate system, are cross-coupling in nature, and thus contribute to the overall 
circulatory and gyroscopic matrices. For journal bearings in general, the principal axes of stiffness and damping 
may differ among the individual supports of a rotor; any choice of coordinate system may lead to cross-coupling 
terms in the overall stiffness or damping matrix. The overall stiffness matrix could be decoupled for equally 
loaded identical journal bearings, but this is a somewhat unrealistic configuration. 
 
Models of rolling element bearings include further restrictions. Krämer (1993) used 2×2 stiffness and damping 
matrices which are diagonal in a coordinate system aligned with the load. For a rotor whose bearing load 
directions coincide, this model does not contribute any cross-coupling terms to the overall stiffness or damping 
matrix. Dietl (1997) assembled 5×5 stiffness and damping matrices of rolling element bearings based on the 
stiffness and damping coefficients of the individual elasto-hydrodynamic lubrication contacts. One of his models 
describes the dry Hertzian contact with respect to stiffness and damping and uses an empirical law for elasto-
hydrodynamic oil-film damping. For radial, axial, and tilting loads in a plane through the rotor axis, this model is 
symmetric to that plane. If x denotes the radial load direction, it follows that the resulting stiffness and damping 
matrices do not include any coupling terms between the local displacement vectors 
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This conclusion still holds for a rotor whose bearing loads are confined to the x-z-plane. Such conditions may be 
realistic, especially if the load is constituted by the rotor’s own weight. 
 
Similar models are obtained for tilting pad bearings. According to Someya (1989), the cross-coupling stiffness 
and damping terms of four pad and five pad bearings disappear in a coordinate system aligned with the load. 
Dimond et al. (2011) stated that in tilting pad bearings, the cross-coupled stiffness terms are generally three 
orders of magnitude less than the direct stiffness terms. Experimental results for five pad and four pad bearings 
were published by Childs et al. (2011); cross-coupled stiffness and damping coefficients were always much 
smaller than direct ones. 
 
These considerations are summarized as follows. For 2×2 matrix models of rolling element or tilting pad 
bearings, cross-coupling can be avoided if the coordinate system is aligned with the load. If radial and tilting 
loads are confined to a plane through the rotor axis, this also holds for a 4×4 matrix model of rolling element 
bearings. 
 
 
3 From Vibro-acoustics to Rotordynamics 
 
According to Wyckaert et al. (1996), the vibro-acoustical model can be described by 
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with the structural displacement vector s, the sound pressure vector p, the vector of external force loading fs, the 
vector of acoustical source loading q, the structural mass matrix Ms, the structural damping matrix Cs, the 
structural stiffness matrix Ks, the fluid mass matrix Mf, the fluid damping matrix Cf, the fluid stiffness matrix Kf, 
the coupling submatrix Kc, and the fluid density ρ. Wyckaert et al. (1996) derived a simple relationship between 
right and left eigenvectors of such systems. If structural velocities v are chosen as state variables instead of 
structural displacements s, the vibro-acoustical model (2) becomes 
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Equation (3) is recognized as a special case of the linear time-invariant rotor model 
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which reads 
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The mass, damping, and stiffness matrix are partitioned into separate symmetric blocks Mx, My, Cx, Cy, Kx, and 
Ky, respectively; if bearing load directions coincide, this applies for the configurations summarized in Section 2. 
A skew-symmetric gyroscopic matrix G is taken into account; in the following, G0 need not be symmetric. The 
rotordynamic model (5) is extended to include a skew-symmetric matrix 
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where N0 need not be symmetric; this results in the model 
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under consideration. 
 
 
4 Eigenvector relations 
 
The right eigenvectors 
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of equation (7) satisfy the equation 
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with the n-th eigenvalue λn. This is equivalent to 
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Transposing equation (10) leads to 
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it follows that the left eigenvectors θln of equation (7) are related to the right eigenvectors by 
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5 Properties of the Frequency Response Matrix 
 
The rotor model (7) is transferred to the frequency domain by taking the Laplace transform and setting the 
Laplace variable s=iω. The Laplace transforms of the vectors x, y, fx, and fy are denoted as X, Y, Fx, and Fy, 
respectively. From the frequency domain model 
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it can be seen that the displacement vector is related to the force vector by 
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with the frequency response matrix 
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Equation (14) is equivalent to 
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From equations (13) and (16), it follows that 
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and this matrix is symmetric; this leads to the properties 
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of the frequency response matrix H(iω). 
 
Using equations (18), (19), and (20), each column of the frequency response matrix can be related to a row. For a 
column located in the left half of H(iω), the corresponding row is obtained from the transpose after changing the 
sign in the lower half of the column. For a column located in the right half of H(iω), the corresponding row is 
obtained from the transpose after changing the sign in the upper half of the column. 
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6 Modal Analysis 
 
In terms of eigenvalues and eigenvectors, the elements of the frequency response matrix H(iω) are expressed as 
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in which θrnj is the j-th component of the right eigenvector θrn, θlnk is the k-th component of the left eigenvector 
θln, an is a constant for each mode, and N is the number of degrees of freedom (Irretier, 1999); the bar above a 
symbol denotes the complex conjugate. Equation (21) shows that the right eigenvectors θrn can be identified from 
the k-th column of H(iω) if the values of θlnk/an are selected in advance; the left eigenvectors θln can be identified 
from the j-th row of H(iω) after selecting the values of θrnj/an. 
 
For rotors modelled by equation (7), the j-th row of H(iω) is obtained from the j-th column using the properties 
(18), (19), and (20). This means that the left eigenvectors can be identified from a column of the frequency 
response matrix, which only requires an excitation in one degree of freedom. 
 
Alternatively, the left eigenvectors can be determined from the right eigenvectors using the relationship (12). If 
equation (12) is inserted into equation (21), the elements of H(iω) become 
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σ=1 for b=x and σ=-1 for b=y; θxrnj, θxrnk, θyrnj, and θyrnk are the j-th and k-th components of θxrn and θyrn, 
respectively. 
 
From equation (22), it follows that 
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and 
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Thus, the properties (18), (19), and (20) of the frequency response matrix have been rederived, and it is obvious 
that they are also valid separately for each mode. 
 
 
7 Numerical Example 
 
To illustrate the theory, the example of a rigid rotor supported by two identical anisotropic bearings is taken from 
Lee and Joh (1993) and described by the coordinates used in this paper. A schematic view of the rotor is given in 
Figure 1. 
 
The system submatrices appearing in equation (7) are given as 
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Figure 1. Rigid rotor-bearing system 
 
 

 ,
0

0
,

0
0









=








=

yy

yy
y

xx

xx
x c

c
c

c
CC            (27) 

 

 ,
0

0
,

0
0









=








=

yy

yy
y

xx

xx
x k

k
k

k
KK            (28) 

 

 ,
0

0
20 








+








−

−
=

xy

xy

pp

pp

c
c

II
II

L
ΩG      and     ,

0
0

0 







=

xy

xy

k
k

N           (29) 

 
where m is the rotor mass, It and Ip are the transverse and polar mass moments of inertia about the centre of 
gravity of the rotor, Ω is the rotational speed, and the distances L, L1, and L2 are depicted in Figure 1; cxx, cxy, cyx, 
cyy and kxx, kxy, kyx, kyy are the damping and stiffness coefficients of the bearings. Due to the fact that cyx=−cxy and 
kyx=−kxy, the rotor under consideration complies with the model structure (7). For model parameters according to 
Table 1, the right and left eigenvalue problems are solved, and the resulting eigenvalues and eigenvectors are 
listed in Table 2. It is obvious that each pair of corresponding right and left eigenvectors satisfies the relationship 
(12). Moreover, the frequency response functions Hxy11(iω) and Hyx11(iω) are depicted in Figure 2 and apparently 
satisfy the property (25). For the rotor under consideration, all modal parameters can be identified exactly from 
one row or column of the frequency response matrix even though the bearings are not isotropic. 
 
 

Table 1. Model parameters of the rigid rotor-bearing system. 
m 8 kg 
L1/L 0.5 
L2/L 0.5 
It/L2 0.45 kg 
Ip/L2 0.15 kg 
Ω 10 000 rpm 
cxx 300 Ns/m 
cyy 300 Ns/m 
cxy 20 Ns/m 
kxx 3 900 000 N/m 
kyy 4 100 000 N/m 
kxy 50 000 N/m 
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Table 2. Modal parameters of the rigid rotor-bearing system (complex conjugates not included). 
mode eigenvalue λn(s-1) right eigenvector θrn left eigenvector θln 
1 backward −38.9+988.0i 1 1 
  1 1 
  0.2524+0.1184i −0.2524−0.1184i 
  0.2524+0.1184i −0.2524−0.1184i 
1 forward −36.1+1010.5i 1 1 
  1 1 
  3.2220−1.5459i −3.2220+1.5459i 
  3.2220−1.5459i −3.2220+1.5459i 
2 backward −165.2+1922.1i 1 1 
  −1 −1 
  −0.0011+0.8564i 0.0011−0.8564i 
  0.0011−0.8564i −0.0011+0.8564i 
2 forward −168.2+2297.1i 1 1 
  −1 −1 
  −0.0012−1.1387i 0.0012+1.1387i 
  0.0012+1.1387i −0.0012−1.1387i 
 
        

 
Figure 2. Selected frequency response functions of the rigid rotor-bearing system. (a): real part of Hxy11(iω), (b): 

imaginary part of Hxy11(iω), (c): real part of Hyx11(iω), (d): imaginary part of Hyx11(iω). 
 
 

8 Conclusion 
 
For rolling element and tilting pad bearings, the stiffness and damping matrix of the rotor are free from cross-
coupling terms if bearing loads are confined to a coordinate plane through the rotor axis. Under these conditions, 
a simple relationship between right and left eigenvectors has been derived; the rows of the frequency response 
matrix have been related to its columns, and the elements of the frequency response matrix have been expressed 
in terms of eigenvalues and right eigenvectors. The results allow for advanced applications of modal testing even 
if the rotor can only be excited in one degree of freedom. 
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More Flexible Damping Systems for Blades and Vanes 
 
 A. Hartung, H.-P. Hackenberg, U. Retze 
 
 
The blades and the vanes of aero engines are subject to very high thermo-mechanical loads. In some cases, an 
additional damping system is necessary to reach the lifetime goals. Commonly, damping systems based on 
energy dissipation due to friction are used, e.g. under platform dampers for blades and spring dampers for the 
vanes. These damping systems have some limitations: under platform dampers work well mostly for just one 
mode family, their effectiveness is limited relative to rotational speed (because of the associated contact forces) 
and  is dependent on the excitation order. The spring dampers work well for more than one mode family but 
their effectiveness is limited concerning the available contact force (just one value). Additionally, the use of the 
spring dampers requires a significant, sometimes suboptimal design change of the vane cluster. In this paper, 
some alternative damping systems are introduced and analyzed. All these new systems offer additional 
possibilities for damping and give more design flexibility. Two of them: insert damping and rocking damping are 
also based on frictional energy dissipation. The third one, impulse mistuning, adopts a special kind of 
absorption and is based on the so called targeted energy transfer. The analytical results for the insert damping 
systems were presented previously in Borufka et al. (2009), while in this paper the experimental validation by 
shaker tests is shown. The rocking damping was not presented so far – to the knowledge of the authors. Impulse 
mistuning was first presented in: Hartung and Retze (2011) and Hartung et al. (2016). In this work, an overview 
of such damping systems and some additional information on the experimental validation of some impulse 
mistuning systems are presented. 
 
1 Damping Systems for Blades and Vanes: State of the Art 
 
As mentioned above, the blades and vanes of modern aero engines are subject to very high thermomechanical 
loads and in some cases an additional damping system is necessary to reach the life targets, before high cycle 
fatigue (HCF) damage occurs. The HCF damage could be caused by different kinds of vibrations: forced 
synchronous vibrations (SV), driven by resonances with excitation or engine orders (EO), forced non-
synchronous vibrations (NSV) and self-excited non-synchronous vibrations (flutter). In Figure 1, a sketch of a 
Campbell diagram with all these kinds of vibrations from Krack et al. (2016) complemented by indication of 
excitation orders is plotted. In Figure 2, the measured Campbell diagram of a blade stage from a MTU test 
engine is shown. Different kinds of vibration are visible, however an example of NSV is not absolutely 
identified. All of this would be analyzed during the analytical development and during engine validation. The 
need for a damping system arises when one (or more) of types of vibration lead to an HCF problem. The state of 
the art of damping systems for the blade stages are under-platform dampers, for the vanes, respectively, vane 
clusters – damper-springs. Both types of designs are depicted in Figure 3. The acting principle of both damping 
system is energy dissipation due to friction. These damping systems could be designed to be very effective in 
damping of the (mostly one, sometimes two) mode shape(s) or mode family causing an HCF concern. Hereby 
only mode shapes with enough relative motion between the blade or vane and the damper can be damped 
effectively. Additionally, the dampers are designed for limited rotation speed intervals only – due to the fixed 
geometry and the fixed mass of the damper. Consequently, the limitations of the under-platform dampers are: 
 
Ø Mode family (mostly just one) 
Ø Rotation speed interval 
Ø Excitation order 

 
and the limitations of the spring-dampers: 
 
Ø Mode family (mostly 1-2) 
Ø Friction force (just one value) 
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The strategic aim of turbine makers is to invent and to integrate the damper design with significantly fewer 
limitations. In this paper, three different damping systems with reduced effectiveness’ limitations than the state 
of the art dampers are analyzed. 

 
 
 

Figure 1. The schematic Campbell diagram from Krack et al. (2016) including excitation orders (EO) 
 

 
 

Figure 2. The measured Campbell diagram of a blade stage, from an MTU test aero engine 
 

 
 
       Figure 3. Examples of the common blade and vane damping systems – under-platform damper and  
                      damper-spring 
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2 Insert damping Systems 
 
An insert damping system is a combination of a damping device and a cooling system which requires the use of 
hollow blades. For this reason, the insert damping system is independent of the excitation order. The idea of 
combining the damping and cooling system for hollow blades and vanes is not new. In Borufka et al. (2009), 
some design ideas from different patent applications were shown, followed by the presentation of the MTU 
design “Insert Damping System” with analytical results of the damping effectiveness. In the present paper, a 
brief overview of the most important topics from Borufka et al. (2009) will be given, supplemented with new 
experimental results. 
The design idea of the insert damping system is shown in Figure 4. It entails complementing the cooling system 
“insert” with “pedestals”, which are in frictional contact with specific positions of the airfoil. These positions 
will be designed dependent on the resonant mode shapes. In Figure 5, this is indicated for two resonant mode 
shapes, first bending (1F) and first torsion mode (1T). During the resonance passage, the energy dissipation due 
to friction between pedestals and the airfoil leads to the reduction of the vibration stresses and avoidance of HCF 
damage.  
The proof of the damping effectiveness for the design shown in Fig. 4 and 5 was given in Borufka et al. (2009) 
as well and is plotted in Figure 6. The amplitude reduction for the 1F mode was 40% and for the 1T mode 70%. 
The analysis was performed to engine conditions. Due to a moved static equilibrium, the curves in Figure 6 are 
not symmetric anymore. In the same paper, robustness of this design concerning friction coefficient and hence 
concerning contact conditions in general was proven. 
 

 
 
       Figure 4. Design idea of the insert damping system: cooling system insert with “pedestals” from  
                      Borufka et al. (2009) 
 

 
 
 
       Figure 5. Design development of the insert damping system, Borufka et al. (2009) 

insert placement inside the airfoil 
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       Figure 6. Proof of the damping effectiveness of the insert damping system, Borufka et al. (2009) 
 
Recently, the experimental validation of the insert damping concept was performed at MTU Aero Engines. For 
this reason, a shaker test specimen was developed and manufactured. The specimen including design features 
(pedestal positioning) is shown in Figure 7. The blade root cannot be shown for confidentiality reasons. Because 
of the significant difference between laboratory and engine conditions, it was not possible to test exactly the 
same design as analyzed in Borufka et al. (2009). However, the test constitutes an appropriate concept 
validation. Just mode shape 1T was tested, the comparison of the measured and calculated mode shapes 
including the placement of the characteristic node for experimental vibration comparison is plotted in Figure 8. 
Additionally, the positioning of the substitute excitation for the linear plausibility proof is explained. The 
experimental results as measured forced response curves on this characteristic node with and without insert are 
plotted in Figure 9. Additionally to the measured curves, linear steady state dynamics calculations with measured 
equivalent linear damping ratios are depicted as well. The substitute excitation for the linear calculation was 
adjusted to the measurements without inserts. The measured amplitude reduction of 56% compared to the 
measurements without inserts confirm the possibility of high damping potential of the insert damping. The 
plausibility proof with the linear analysis (amplitude reduction 60%) proceeded successfully as well. 
Summary of the conclusions concerning insert damping system:  

Ø Independent on the excitation order 
Ø Damping of more than one mode family simultaneously conditionally possible 
Ø Robust concerning contact conditions 
Ø Experimentally validated in a shaker test 
Ø Flexibility concerning rotation speed is limited: it deals with one contact force similar to the state of 

the art damping systems 
 

 
 

Figure 7. Specimen for the shaker test and explanation of the pedestals positioning 
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       Figure 8. Measured and calculated mode shapes 1T and explanation of the characteristic node to comparison 
                     of the experimental results and linear proof of its plausibility as well as positioning for the 
                     substitute excitation in the numerical analysis 
 

 
 

Figure 9. Measured and calculated results on the characteristic node 
 
3 Rocking Damper 
 
The second damping system, which is independent of the excitation order, is the rocking damper. This is only 
possible for blades with a “cover plate” as a special design feature. Cover plates are seals placed on the face side 
of the blades. Hence rocking dampers can only be used together with cover plates or similar features. The design 
of a rocking damper will not be shown in this paper, but two substitute models are analyzed in Erbts (2011). 
Here, two new damping systems are analyzed, the rocking damper being one of them. In the following, the most 
important results of this work are presented. 
In Figure 10a, a sketch of dummy rocking damper with a dummy carrier is given (necessary to illustrate the 
boundary conditions on the damper because of the cover plate), Figure 10b shows a sketch of the assembly with 
a dummy blade, and Figure 10c the placement for a real blade.  
 
 

 
 
Figure 10. Geometrical features of the rocking damper derived from Erbts (2011). a) dummy damper and carrier, 
              b) assembly of these dummy with a dummy blade, c) placement of the rocking damper for a real blade 
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In Erbts (2011) a real blade with substitute damper was analyzed, whereas two substitute models were analyzed, 
a lumped parameter model and a finite element model (in CalculiX) with a regularized contact formulation 
realized in a user-subroutine. The preparation of the lumped parameter model for the mode shape 1F free shroud 
is exemplarily explained in Figure 11.  
 

 
 

Figure 11. Lumped parameter model of the undamped blade, Erbts (2011) 
 
The parameters shown in this Figure are: ��   – substitute stiffness, derived from the relevant mode shape and eigen frequency, �� – substitute damping ratios, derived from the substitute stiffness, �� – generalized coordinates chosen concerning the dominant direction of the relevant mode shape, F(t) – substitute aero-elastic excitation force of the relevant resonance crossings, derived by forced response 
            prediction or from testing.  
In the simulations, harmonic excitation was assumed. 
The modelling of the damper influence was proposed in Erbts (2011) as follows: In case of sticking damper 
conditions, the motion of the substitute lumped mass �� is suppressed: 
 
 ���� = ��� = 0,                                                                                                                                       (1) 
 
hence a three D.O.F. linear ordinary differential equations system with an additional algebraic condition for the 
contact force �� to prove the end of sticking (whenever the contact force is larger than Coulomb’s sliding 
friction force ��) needs to be solved. In case of sliding, a four D.O.F linear ordinary differential equations 
system with the additional Coulomb friction force is to be solved. The condition for the end of the sliding 
becomes 
 
 ��� = 0 ��� �� < ��                                                                                                                                 (2) 
 
Such lumped parameter models have to be prepared for each mode shape separately. The analysis with the 
lumped-parameter models were performed in the time domain until steady state conditions were reached. In 
Erbts (2011), two mode shapes, 1F and 1T, both with free shrouds, were analyzed. 
The second substitute model, prepared and analyzed in Erbts (2011), was a standard FE model of the blade with 
a simple follow regularized contact formulation: 
 

 �� = −����,     � = � −1,    ��    ��� < −���� 2�⁄         ��    − � < ��� < �1,     ��     ��� > �                                                                           (3) 

 
The analysis with the second model was also performed in the time domain but in difference to the lumped-
parameter model as a transient resonance passage through the resonance using the approach described in Hartung 
(2010). Care was taken to ensure that the frequency sweep velocity is slow enough to obtain stationary 
amplitudes during transient passage.  
Based on the simulation with both models, the diagrams in Figure 12 are provided. The diagrams contain just 
amplitudes of the simulations, normalized to the analysis without the damper. 
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Figure 12. Normalized maximum amplitude over the rocking damper mass: a) 1F, b) 1T 
 
 
The results show good agreements between 1D and 3D-FE-analysis for 1F until sticking. Discrepancies between 
1D and 3D for 1T are related to the simple lumped parameter model. From the authors’ point of view, these very 
different simulations give the numerical validation for the damping effectiveness of the rocking damping system. 
The finite element results in Figure 12 show that it is possible to damp simultaneously both mode shapes, 1F and 
1T (Figure 13). 
 

 
       Figure 13. Evaluation of the optimal rocking damper configuration for simultaneously damping both mode 
                       shapes, 1F and 1T 
 
For the analyzed blade, the evaluated damper mass is a realistic one – a rocking damper could be designed if 
necessary.  
 
Summary of conclusions concerning rocking dampers: 
 

Ø Independent of the excitation order 
Ø Damping of more than one mode family simultaneously conditionally possible 
Ø Robust concerning contact conditions 
Ø Numerically validated on two different models 
Ø Limited flexibility concerning rotation speed: it deals with one contact force similar to the state of 

the art damping systems 
 
4 Impulse mistuning Systems 
 
The idea of the Impulse Mistuning Systems goes back to the attempt to damp the blades and vanes by free 
moving bodies placed e.g. inside of the airfoils. The idea of the inside damping systems is not new generally, 
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some references are given in Borufka et al. (2009), Hartung and Retze (2011) and Hartung et al. (2016). To make 
a classification of the inside damping systems for blades and vanes, the Figure 14 is prepared. 
 

 
 
       Figure 14. Some examples of inside, (friction)-impact based dampers from Borufka et al. (2009) 
 
The most important features of the damping systems shown here are the geometry and the mass of the bodies, 
the number of bodies in a cavity and the geometry of the cavities. Dependent on all of this, the inside damping 
systems work as impact, friction-impact, particle or self-tuning impact dampers, as highlighted in Hartung and 
Retze (2011) and Hartung et al. (2016). In these papers was shown, that assumed only one body is placed in a 
cavity and for much smaller dimensions of the damping bodies and of the cavities another acting principle is 
active: mistuning of the resonance frequency due to impacts – “impulse mistuning”. Impulse mistuning could be 
also described as a special kind of vibration-impact nonlinear energy sinks (VI-NES) with a large capability of 
energy absorption and negligible contribution of energy dissipation. The mass ratio of such VI-NES to the main 
system is <1%. There are also some other types of Nonlinear Energy Sinks: e.g. friction or non-linear stiffness 
based. The acting of the Nonlinear Energy Sinks lead to Targeted Energy Transfer (TET): one-way directed 
transfer of energy from a primary subsystem to a nonlinear attachment. References and more explanations are 
given in Hartung et al. (2016). In difference to the energy dissipation based damping systems, the impulse 
mistuning systems work for a larger interval of rotation speed (for all speeds below a critical value) in case of 
blade and has no dependency on the contact pressure in case of vanes. Additionally, every mode shape with 
enough movement at the cavity will be damped, independent of the direction of the motion – more  than one 
mode family could be damped. In Hartung et al. (2016) damping of two mode shapes for a turbine blade was 
presented: from analytical prediction until experimental validation in a rotated rig. The validation in an engine 
demonstrator was mentioned. A vane Impulse Mistuning System with five bodies (mistuners) for a vane was 
analyzed in Hartung et al. (2016) as well. In this case,  the robustness of the mistuning system concerning masses 
of the bodies and the gaps between the mistuners as well as the cavity walls was analyzed analytically and 
proved experimentally. The damped vane  mode shape in Hartung et al. (2016) was a “1E cluster” mode (Figure 
15a). Beside the cluster mode shapes so-called airfoil mode shapes could be HCF-critical as well. Because of 
design features of the vane clusters it is not possible to damp the airfoil mode shapes with a friction based 
damping system. For such a mode shape, “1T-Airfoil”, experimental analysis of another vane cluster (Figure 
15b) was performed at MTU recently and will be  presented below for the first time. The test series consisted of 
five shaker tests of the vane cluster (Figure 15b): without dampers and with four impulse mistuning systems - 
two different designs of the impulse mistuning system with three different manufacturing approaches were 
tested. A special feature of the airfoil mode shapes is that a family of such mode shapes exist in the vicinity of 
each other instead a single resonance in case of the cluster mode shapes. So, first the identification of these was 
performed (Figure 16). Mode 3 is the most relevant for the engine. For this mode and the relevant excitation 
level,  the highest amplitude reduction of 40% with one of the tested impulse mistuning systems was established 
(Figure 17). The second result of this test series is, that the impulse mistuning system produced with three 
different manufacturing technologies showed no significant difference in damping effectiveness.  
Summary concerning Impulse Mistuning systems: 
 

Ø Suitable for both, blades and vanes, respectively. vane clusters 
Ø Action principle: frequency mistuning due to impulses, targeted energy transfer 
Ø Independent on the excitation order 
Ø Robustness concerning design parameters and production technologies proven 
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Ø Damping of more than one mode family simultaneously often possible 
Ø Fully validated – including engine experiences, Hartung et al. (2016) 
Ø A very large flexibility concerning the contact force 

 

 
 
       Figure 15. Analyzed vane cluster mode shapes a) “1E cluster”, Hartung et al. (2016), b) “1T airfoil” 
 

 
Figure 16. Measured and identified “1T airfoil” mode family 

 

 
 

Figure 17. Measured mean amplitude reduction mode shape “1T airfoil” for the second impulse mistuning         
system averaged over all test samples manufactured using three different production technologies 

 
 
 
5 Conclusions 
 
Three different new damping systems independent of the excitation order are presented. All three systems are 
analyzed and validated using the different analytical and experimental methods. All three systems showed good 
capability of damping effectiveness. Insert and Rocking Dampers could be designed more flexible than under-
platform dampers concerning simultaneously damping of more than one mode family but are limited concerning 
using for different rotation speeds. This restriction is of general quality because of the acting principle of energy 
dissipation due to friction. Impulse mistuning systems showed the highest effectiveness and flexibilities: 
concerning the rotation speed, mode families and production technologies. 
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On Dynamics and Stability of the Automotive Engine 
Turbocharger Rotor Supported by the Electrodynamic Passive 
Magnetic Bearings 
 
T. Szolc  
 
 
In the paper dynamic investigations on the automotive turbocharger rotor-shaft supported on the electro-
dynamic passive magnetic bearings (EDPMB) and on the traditional floating-ring journal bearings have been 
carried out using a computer model. The results of computations obtained for the two mutually compared kinds 
of suspension are demonstrated in the form of Campbell diagrams and amplitude-frequency characteristics. 
Here, the main attention is focused on resonant-free operation ability assured by the support on the EDPMBs. 
Moreover, conditions of stability for the support on the journal bearings and on the EDPMBs have been 
investigated by means of the eigenvalue analysis. There is studied an influence of skew-symmetrical dynamic 
properties of the both kinds of rotor-shaft suspensions caused by the bearing stiffness negative cross-coupling 
terms as well as by the gyroscopic effects which are particularly severe at turbocharger high rotational speeds. 
 
 
1 Introduction 
 
 
The turbocharger is now viewed as feasible option when looking for an output power increase in a broad variety 
of internal combustion reciprocating petrol- and diesel engines. At present, this device is frequently applied in 
passenger car engines subjected to the downsizing tendency. Despite of the fact that the modern turbochargers 
have reached a relatively high level of robustness and operational excellence, there are still observed various 
problems with floating-ring journal bearings commonly supporting rotor-shafts of these devices. Namely, the 
turbocharger rotor-shafts supported by this kind of bearings often indicate a tendency to self-excitations and sub-
synchronous oscillations leading to instability (Schweizer (2009), Kamesh (2011), Koutsovasilis and Driot  
(2015), Göbel et al. (2015)). Turbocharger rotors with foil-air bearing show analogous problems like self-
excitations which lead to instability, what is carried out in the studies of Bonello (2016). Since maximal 
rotational speeds of the relatively light-weight turbocharger rotors reach 200,000 rpm and more, their suspension 
on another touch-less and lubricant-free bearings seems to be very required. For this purpose passive magnetic 
bearings (PMB) could be particularly promising. Actually, during the last 10-15 years, by means of the newest 
achievements of electrical engineering, electronics and material technology, various kinds of passive magnetic 
bearings (PMB) have been developed to give a chance for broad applications for numerous cases of the high-
speed rotating machines. These are: the permanent magnet magnetic bearings (PMMB), superconductor passive 
magnetic bearings (SCPMB) and the electrodynamic passive magnetic bearings (EDPMB) which seem to be very 
advantageous here. In order to generate levitation forces these kinds of passive magnetic bearings use conductors 
mounted on the shaft and rotating in a magnetic field created by permanent magnets built-in the stators embedded 
in bearing housings. Then, eddy-currents are induced in the conductors, which generate the Lorenz forces 
levitating the rotor-shaft. The physical fundamentals for a passive magnetic levitation together with conditions of 
its stable operation can be found in Filatov et al. (2002). In Lempke (2005), Amati et al. (2008) and in Falkowski 
(2016) the concept of radial EDPMBs has been developed theoretically and by Lempke (2005) tested 
experimentally for the small-size high-speed rotating systems. The results of comparative rotordynamic analyses 
performed for the industrial centrifugal compressor and for the single-spool gas turbine supported on the 
EDPMBs as well as on the classical oil-film journal- and rolling-element bearings were demonstrated in Szolc 
and Falkowski (2014). The passive magnetic suspensions have got more important advantages then the active 
magnetic bearings (AMB). Namely, the EDPMBs do not need any power supply, enable us resonant-free 
operation, have a simple structure and they are cheaper than the AMBs. According to the above, in this paper in 
order to indicate mechanical advantages of the turbocharger rotor-shaft support on the EDPMBs, a comparative 
rotor-dynamic analysis has been performed, where the obtained results of computations were confronted with the 
analogous findings determined for the same rotor-shaft suspended by the floating-ring journal bearings.  
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2 Modelling of the Turbocharger-Rotor-Shaft System 
 
 
The object of considerations is a typical automotive engine turbocharger rotor-shaft shown in Figure 1a. This 
rotating element is originally supported on two floating-ring oil journal bearings (#1 and #2). Its full geometry, 
material constants, inertial parameters as well as the journal bearing dimensions are taken from Göbel et al. 
(2015). This rotating system is expected to operate within the rotational speed range of 0-210,000 rpm. It consists 
of the flexible stepped shaft of the total length 0.16 m with attached two heavy disks corresponding respectively 
to the turbine and compressor rotor. The considered rotor-shaft is characterized by the entire mass of 0.564 kg 
and by the bearing span equal to 0.05 m. Such a structure can be very representative for a broad variety of 
turbochargers applied in internal combustion piston engines. Thus, this rotor-shaft system was theoretically 
slightly adopted to run on the electrodynamic passive magnetic bearings regarded here as a perspective 
alternative.  
 
 
2.1 Modelling of the Rotor-Shaft  
 
 
In order to obtain sufficiently reliable results of theoretical calculations for the considered rotor-shaft system, the 
dynamic analysis will be performed by means of the one-dimensional hybrid structural model consisting of finite 
beam elements and discrete oscillators. The flexural beam elements represent successive cylindrical segments of 
the stepped rotor-shaft. With an accuracy that is sufficient for practical purposes the heavy turbine and 
compressor rotors are substituted by rigid bodies attached to the respective beam-element extreme cross-sections. 
Using such a model, the rotor-shaft geometry as well as its material properties can be described in an identical 
way as in an analogous classical finite element model of the same structure. However, in the hybrid model 
inertial-visco-elastic properties of its beam elements are not discretized, but they have been left as naturally 
distributed in a continuous way. Such a hybrid model of the turbocharger rotor-shaft is presented in Figure 1b.  
 
 

         Turbine                        Compressor 

 
a) 

 
b) 

Figure 1: The automotive engine turbocharger rotor-shaft: the real object (a) and the hybrid model (b)  
 
 

Here, each bearing support is represented by a dynamic oscillator of two degrees of freedom, where its rigid mass 
represents an inertia of the floating ring in the case of the journal bearing or an inertia of the stator elements in 
the case of the EDPMBs. Using such a model, apart from the magnetic field or oil-film interaction, also the 
visco-elastic properties of an embedding of both kinds of bearings in the turbocharger housings are taken into 
consideration. This bearing model makes possible to represent with a relatively high accuracy kinetostatic and 
dynamic anisotropic and anti-symmetric properties in the form of constant or variable stiffness and damping 
coefficients. The obtained in this way mutual combination of continuous finite elements together with discrete 
oscillators and rigid bodies according to the structure of the real object results in the hybrid mechanical model of 
the automotive turbocharger rotor-shaft system.  
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2.2 Modelling of the Electrodynamic Passive Magnetic Bearing  
 
 
Here, dynamic modelling of the electrodynamic passive magnetic bearings reduces to determinations of their 
electromagnetic stiffness- and damping characteristics. For this purpose it is necessary to calculate the bearing 
global levitation force or the global radial ‘in-plane’ stiffness K regarded as a derivative of the Lorenz force with 
respect of the conductor-to-stator radial proximity (Lempke, 2005, Szolc and Falkowski, 2014, Falkowski, 2016). 
This target is usually achieved by computations carried out by means of advanced 3D finite element models of 
the electrodynamic bearing for various rotational speeds Ω  or using the analytical-numerical method based on 
the Kirchhoff electrical circuit theory (Amati et al., 2008). All these approaches result in magnetic force and 
stiffness characteristics respectively very similar qualitatively to each other. Then, according to Lempke (2005), 
the main (rotor)- and cross-coupling stiffness components of the EDPMB can be determined for selected 
successive values of the rotor-shaft rotational speed by means of the following formulae:  
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where θ = arc tan(R/Ω L) is the so called ‘force angle’ expressed as a function of the magnetic bearing coil 
resistance R and inductance L. Nevertheless, for the need of numerical simulations and qualitative analyses the 
bearing main (rotor)- and cross-coupling stiffness values obtained for several successive rotational speed values 
can be approximated using the following continuous analytical functions:  
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where KR, KC, α, β, δ and γ are the proper fitting coefficients. In Figure 2a there are presented the rotor main- and 
cross-coupling stiffness characteristics determined using formulae (2) for the EDPMBs suspending the 
considered turbocharger rotor-shaft system within its entire operating rotational speed range. These plots have 
been obtained for KR =3.5∙104 N/m, KC =6.32∙103 N/m, α =0.05, β =270.0, δ =0.3 and γ =270.0 and they are  
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Figure 2: Stiffness (a) and damping (b) characteristics of the EDPMB, damping characteristics of the inner 

floating-ring journal bearing (c) 
 
 
qualitatively identical with those obtained in Lempke (2005), Amati et al. (2008), Szolc and Falkowski (2014), 
Falkowski (2016) for high-speed rotor machines different than investigated here. For the listed fitting coefficient 
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values the static turbocharger rotor-shaft vertical displacement off-set in the bearing stators due to the 
gravitational forces does not exceed 0.11 mm. Then, according to Lempke (2005), Szolc and Falkowski (2014), 
damping coefficients of the EDPMB have been calculated by means of the following formulae: 
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The plots of the corresponding main- and cross-coupling damping coefficients for the considered EDPMB are 
presented in Figure 2b. It is to remark that the mutual skew-symmetry of the cross-coupling stiffness and 
damping coefficient components characterizing the EDPMBs has an essential influence on the levitation stability.  
 
 
2.3 Modelling of the Floating-Ring Oil-Journal Bearing  
 
 
A mathematical modelling of the oil-film interaction in the floating-ring journal bearings commonly reduces to a 
numerical solving of the Reynolds equations and determination of the oil pressure distributions (Schweizer 
(2009), Kamesh (2011), Koutsovasilis and Driot (2015), Göbel et al. (2015)). Since a character of this interaction 
is usually non-linear, several associated phenomena as a self-excitation by oil whirl and whip or sub-synchronous 
oscillations can be taken into considerations. As it follows e.g. from Schweizer (2009), Kamesh (2011), 
Koutsovasilis and Driot (2015), Göbel et al. (2015), such advanced investigations are often extensive enough to 
become their own separate studies. But here, the dynamic properties of the turbocharger suspension by the 
floating-ring journal bearings are going to be regarded as an approximate qualitative reference to the 
corresponding support on the EDPMBs. Thus, a linearized model of the floating-ring journal bearing has been 
assumed, where the stiffness and damping coefficients of the inner and outer bearing were determined according 
to Someya (1989) using the solutions of the Reynolds equations, as well. For great rotational speeds of the 
turbocharger rotor the respective Sommerfeld numbers of the inner and outer bearing are appropriately high. 
Therefore, for the admissible journal-to-bushing clearance values the resulting main- and cross-coupling stiffness 
coefficients are big enough to substitute them by the proper average values. Here, it turned out that the main 
stiffness components became ca. 13 times larger than the mean levitation stiffness realized by the assumed 
EDPMBs. According to Someya (1989), the corresponding coefficients of damping in the journal bearings 
hyperbolically decay with the shaft rotational speed Ω , as demonstrated by the plots in Figure 2c.  
 
 
3 Mathematical Solution of the Problem  
 
 
The complete mathematical formulation and solution for the hybrid models of rotor-shaft systems assumed in the 
way described above can be found e.g. in Szolc (2000). In these models flexural motion of cross-sections of each 
visco-elastic macro-element is governed by the partial differential equations derived using the Timoshenko or the 
Rayleigh rotating beam theory. In such equations there are contained gyroscopic forces mutually coupling rotor-
shaft lateral vibrations in the vertical and horizontal plane. The analogous coupling effect caused by the system 
rotational speed dependent shaft material damping described using the standard body model is also taken into 
consideration. The solution for the lateral vibration analysis has been obtained using the analytical-computational 
approach demonstrated in details in Szolc (2000). In the considered case it is to emphasize that since, according 
to formulae (1), (2) and (3), the visco-elastic bearing support parameters are rotational speed dependent, the 
fundamental dynamic properties of the rotor-shaft, e.g. its natural frequencies, eigenfunctions, modal masses and 
others, also depend on the shaft rotational speed value Ω. Then, solving the differential eigenvalue problem for 
the orthogonal system obtained for the given Ω and an application of the Fourier solutions in the form of fast 
convergent series in orthogonal eigenfunctions lead to the set of modal equations  
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The symbols M(Ω), K0(Ω) denote the diagonal modal mass and stiffness matrix, respectively, D0(Ω) is the non-
symmetrical damping matrix and Dg(Ω) denotes the skew-symmetrical matrix of gyroscopic effects. Skew- or 
non-symmetrical elastic properties of the bearings are described by matrix Kb(Ω). Anti-symmetrical effects due 
to the standard body material damping model of the rotating shaft are expressed by the skew-symmetrical matrix 
Kd(Ω) and F(t,Ω 2) denotes the external excitation vector due to the unbalance and gravitational forces. On the 
one hand, for a given value of Ω  all matrices are constant. But on the other hand, since visco-elastic properties of 
the bearing supports are rotational speed dependent, the successive lateral eigenforms and natural frequencies of 
the turbocharger rotor-shaft are also functions of Ω. Hence, according to the fundamentals of modal analysis, the 
elements of modal mass, stiffness and damping-gyroscopic matrices become rotational speed dependent, as well. 
The modal coordinate vector r(t) consists of the unknown time functions that occur in the Fourier solutions. The 
number of equations (4) corresponds to the number of lateral eigenmodes taken into consideration in the range of 
frequency of interest.  
Since the main target of the realized study is an investigation of stability of the considered rotating system, its 
eigenvalue real parts are going to be regarded first as the fundamental measure of the asymptotic stability. In 
order to determine eigenvalues of the rotor-shaft dynamic model, it is convenient to transform its homogeneous 
modal motion equations (4) into analogous equations in modal state coordinates. Next, using for them the well-
known exponential complex analytical solution one can obtain the standard complex eigenvalue problem. Then, 
the problem reduces to searching the eigenvalue imaginary and real parts expressed as functions of the shaft 
rotational speed Ω  by means of the following matrix (Szolc et al., 2016):  
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where I is the identity matrix. 
It is to remark that the modal submatrix D0(Ω) containing the damping coefficients (see Eq. (3)) of the passive 
magnetic bearings is non-symmetrical. Moreover, in matrix H(Ω) described by Eq. (5), in addition to the skew-
symmetrical gyroscopic matrix Dg(Ω), also the skew-symmetrical stiffness submatrices Kd(Ω) and Kb(Ω) occur. 
This fact can influence very essentially dynamic stability effects of the entire rotor-shaft system. Because matrix 
H(Ω) is a non-symmetrical one, in order to determine effectively the complex eigenvalues it is necessary to 
reduce it to the Hessenberg form using the Hausholder transformation. Then, the final computation of the 
eigenvalue real and imaginary parts for each lateral eigenmode of the considered system is achieved by means of 
the commonly known QR algorithm.  
Since the comparison of dynamic behaviours of the turbocharger rotor-shaft suspended by the floating-ring 
journal bearings and by the electro-dynamic passive magnetic bearings is going to be performed also for forced 
vibrations at steady-state operating conditions, constant values of the shaft rotational speeds Ω will be assumed. 
At the constant rotational speed Ω equations (4) are a system of linear ordinary differential equations with 
constant coefficients and harmonic external excitation due to residual unbalances. For the mentioned above 
harmonic and gravitational excitation with the respective amplitude modal components P, Q and R, the induced 
steady-state vibrations are also harmonic with the same synchronous circular frequency Ω. Thus, the analytical 
solutions for the successive modal functions contained in vector r(t) can be assumed in an appropriate harmonic 
form. Then, by substituting them into (4), derived here for Ω=const, one obtains the following systems of linear 
algebraic equations: 
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where vectors C, S contain respectively the modal cosine- and sine-components of forced vibration amplitudes 
and vector G contains the modal components of the rotor-shaft static deflection due to the gravitational force. 
These equations are very easy to solve with respect of the unknown components of vectors C, S and G.  
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4 Stability Analysis of the Turbocharger Rotor-Shaft System  
 
 
Before investigations concerning the proper stability analysis, there is worth studying some fundamental dynamic 
properties of the considered turbocharger rotor-shaft-bearing systems in the form of the Campbell diagrams in the 
expected rotational frequency range 0-210,000 rpm which corresponds to 0-3500 rev/s. In Figure 3 there is 
presented the Campbell diagram for the turbocharger rotor suspended by the floating–ring journal bearings and in 
Figure 4 the analogous diagram for a support on the EDPMBs is shown. For a better clarity, on the left-hand 
sides of the both diagrams also the respective lateral eigenfunctions are depicted. Because of the relatively soft 
suspension by the EDPMBs towards the rotor-shaft flexibility, from among the fundamental lateral eigenforms 
one can distinguish first two similar to ‘rigid-body’ ones, see Figure 4. However, the harder support on the 
journal bearings results in almost all typical bending eigenmodes, as shown in Figure 3. In the considered 
synchronous external excitation frequency range 0-3500 Hz in the both cases of bearing support four lateral 
eigenforms of the turbocharger rotor-shaft have been determined, respectively with their backward and forward 
whirl branches. It is to emphasize that because of an influence of the significant negative cross-coupling stiffness 
components characterizing both the journal bearings as well as the EDPMBs, the fundamental first natural 
frequencies appear upon certain shaft rotational speed values, as shown in Figures 3 and 4. Due to his fact, in the 
case of the turbocharger rotor-shaft support on the journal bearings, the first critical speed coincides with the 
second eigenmode forward precession. Consequently, the third and the fourth critical speed coincide respectively 
with the third and fourth eigenmode forward precession, as marked using the small rings in Figure 3. However, 
from the analogous rings in Figure 4 it follows that in the case of the much “softer” suspension by the EDPMBs 
only two critical speeds are observed: namely with the forward whirls of the third and the fourth eigenmode. 
Moreover, in the case of journal bearing support, due to gyroscopic forces the second and the third eigenform 
tend to mutually coincide with the shaft rotational speed rise. Thus, the natural frequency of the second 
eigenmode forward whirl as well as the natural frequency of the third eigenmode backward whirl vanish together 
above ca. 2950 rev/s.  
A dynamic stability analysis of the hybrid structural model of the considered turbocharger rotor-shaft system 
supported on the floating-ring journal bearings as well as on the electrodynamic passive magnetic bearings has 
been performed within the frequency range 0-6000 Hz containing its 6 lateral eigenforms. The investigations are 
carried out for the shaft material loss factor 0.002 and for the bearing visco-elastic characteristics depicted in 
Figure 2. Here, the eigenvalue imaginary and real parts are determined as rotational speed functions using matrix 
H defined by Eq. (5). Because of a commonly low magnitude of steel shaft material damping as well as due to 
the relatively small damping coefficient values characterizing the both kind of bearings, particularly for bigger 
rotational speeds, see Figures 2b and 2c, the eigenvalue imaginary parts, playing a role of damped natural 
frequencies, almost overlay with the corresponding plots of undamped natural frequencies in the Campbell 
diagrams in Figures 3 and 4. Thus, for a better clarity they have not been presented here in a graphical form. In 
Figures 5 and 6, respectively for the turbocharger rotor-shaft support on the journal bearings and on the 
EDPMBs, there are demonstrated eigenvalue real parts. From the plots illustrated in these figures it follows that 
not every eigenvalue real parts are negative, what means that the both considered rotating systems pain a lack of 
stability. Namely, in the case of the journal-bearing support with abovementioned significant negative cross-
coupling stiffness components the eigenvalue real parts corresponding to backward whirls of the first four 
eigenmodes are positive, particularly for greater rotational speeds, as shown in Figure 5. The suspension by the 
EDPMBs also results in the unstable backward whirls of the first four eigenmodes. But this instability is 
essentially severe for small rotational speeds in the cases of the first and the second eigenmode, see Figure 6, 
which follows from the visco-elastic properties of this kind of a magnetic support (Lempke, 2005, Amati et al., 
2008, Szolc et al., 2016). It is to emphasize that this result has been obtained for a relatively hard structure of the 
EDPMB stators embedded in the turbocharger housing, i.e. in the so called ‘metal-to metal’ way. But for an 
appropriately flexible stator suspension in the housing, e.g. by means of a vulcanized rubber or polymer foil strip, 
as well as for a properly “soft” visco-elastic structure of the stators, a sufficient amount of passive damping can 
be introduced. Such damping results in almost complete stabilization of the rotor-shaft support on the EDPMBs, 
as indicate the system respective eigenvalue real parts presented in Figure 7. It is worth noting that in this way it 
was possible to stabilize the light-weight and high-speed turbocharger rotor without any specialized dampers, 
contrary to e.g. Amati et al. (2008) and Szolc et al. (2016), where for other rotors suspended by EDPMBs it had 
to be made.  
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Figure 3: Campbell diagram for the turbocharger rotor-shaft system supported on the journal bearings  
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Figure 4: Campbell diagram for the turbocharger rotor-shaft system supported on the EDPMBs  
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Figure 5: Eigenvalue real parts of the turbocharger rotor-shaft system supported on the journal bearings  
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Figure 6: Eigenvalue real parts of the turbocharger rotor-shaft system “hardly” supported on the EDPMBs  
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Figure 7: Eigenvalue real parts of the turbocharger rotor-shaft system “softly” supported on the EDPMBs  

 
 
5 Forced Vibration Comparative Analysis  
 
 
In addition to the comparison of eigenvibration properties of the turbocharger rotor-shaft supported on the 
floating-ring journal-bearings and on the EDPMBs, there are going to be compared also amplitude-frequency 
characteristics of the steady-state forced dynamic responses due to synchronous excitations caused by 
unavoidable residual unbalances. According to Göbel et al. (2015), 0.6⋅10-6 kgm unbalance of the turbine rotor 
and 0.4⋅10-6 kgm unbalance of the compressor rotor have been assumed. Here, two unbalance variants will be 
investigated, i.e. the commonly called “static unbalance”, when the turbine and compressor rotor unbalances are 
mutually oriented ‘in phase’, as well as the “dynamic unbalance”, for which these two unbalances are mutually 
oriented ‘in anti-phase’. In order to determine the amplitude-frequency characteristics Eqs. (6) had to be solved 
for the both mentioned above unbalance variants and for the turbocharger rotor-shaft system parameters 
representing the two considered kinds of bearing support within the expected rotational speed range 0-210,000 
rpm corresponding to the harmonic synchronous excitation frequency band 0-3500 Hz.  
Figures 8 and 9 demonstrate amplitude-frequency characteristics of the steady-state dynamic responses excited 
by the static unbalance of the rotor-shaft. In Figure 8 the lateral displacement amplitudes of the turbocharger 
rotors are depicted and in Figure 9 the bearing vertical reaction force amplitudes are plotted. In these figures the 
black lines correspond to the rotor-shaft location close to turbine rotor and the grey lines to that of the 
compressor one. In an identical way Figures 10 and 11 illustrate amplitude-frequency characteristics of the 
analogous dynamic responses excited by the dynamic unbalance of the rotor-shaft. Figures 8-11a correspond to 
the support on the EDPMBs and Figures 8-11b to that on the journal bearings regarded here as an approximate 
reference. From the obtained characteristics it follows that the visco-elastic properties of the rotor-shaft 
suspension by the EDPMBs result in the much smaller vibration displacements in the critical speed vicinity and 
in the almost unremarkable bearing force amplitudes in a comparison with the classical, original support on the 
journal bearings. As it follows from the Campbell diagram in Figure 4, the skew-symmetry of the EDPMBs 
significantly “shifts” the fundamental first two ‘rigid-body’ modes far away from a synchronous excitation  
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Figure 8: Displacement amplitude characteristics of the turbocharger rotor-shaft supported on the passive 
magnetic bearings (a) and on the journal bearings (b) obtained for the static residual unbalance  
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Figure 9:  Bearing force amplitude characteristics of the turbocharger rotor-shaft supported on the passive 
magnetic bearings (a) and on the journal bearings (b) obtained for the static residual unbalance  
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Figure 10: Displacement amplitude characteristics of the turbocharger rotor-shaft supported on the passive 
magnetic bearings (a) and on the journal bearings (b) obtained for the dynamic residual unbalance  
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Figure 11:  Bearing force amplitude characteristics of the turbocharger rotor-shaft supported on the passive 
magnetic bearings (a) and on the journal bearings (b) obtained for the dynamic residual unbalance  
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possibility. However, at the critical speeds marked in this figure resonances with the successive two ‘elastic’ 
modes can be rather hardly induced. Thus, the turbocharger rotor behaves as a typical overcritical, self-centring 
shaft, what actually results in the obtained very small dynamic reaction forces transmitted by the bearings. Here, 
some amplifications of lateral vibration amplitudes are observed only at ca. 450 rev/s, because of predominant 
damping force activity exceeding an interaction of the elastic forces at low rotational speeds. Such a dynamic 
behaviour has been indicated also in Amati et al. (2008) for this kind of bearings. The naturally ‘harder’ journal 
bearings are responsible not only for much greater vibration amplitudes, but at ca. 280 rev/s the severe resonance 
occurs as a result of the critical speed with the second eigenmode shown in Figure 3. Nevertheless, it is to 
remember that non-linear properties omitted in the simplified floating-ring journal bearing model assumed here 
can result in various additional oscillation components, oil whirl and whip effects and in other phenomena 
(Schweizer (2009), Kamesh (2011), Koutsovasilis and Driot (2015), Göbel et al. (2015)). Hence, all the critical 
speeds discussed in this study are caused by the synchronous harmonic excitations, i.e. they arise from the 
linearized inertial-visco-elastic properties of the rotor-shaft-bearing models. Then, possible resonances occurring 
at these speeds are induced by external excitations due to unbalances, but neither by self-excitations associated 
with non-linear descriptions of the journal bearings nor with the EDPMBs which actually are linear in character.  
 
 
6.   Final Remarks and Preview 
 
 
In the paper dynamic properties of the automotive turbocharger rotor-shaft supported on the electro-dynamic 
passive magnetic bearings (EDPMB) have been investigated. Here, the analogous suspension of this object by the 
floating-ring journal bearing, commonly applied till present, was regarded as a reference. Such a comparison has 
indicated essential advantages of the proposed kind of magnetic contact-free and lubrication-free support for the 
relatively light-weight turbocharger rotor-shafts rotating within very broad speed ranges. Moreover, a properly 
selected visco-elastic design of the EDPMB stators and their flexible embedding in the turbocharger housing can 
assure asymptotic stability of the considered rotor-shaft systems. Using such a simple mean, it was possible to 
introduce a sufficient magnitude of additional external damping into the vibrating rotor-shaft system in order to 
satisfy the Routh-Hurwitz stability criterion as well as to keep all its eigenvalue real parts always negative. Thus, 
it turned out that a suspension of relatively small and very quickly rotating automotive turbocharger rotor-shafts 
by the EDPMBs is particularly advantageous and perspective. Nevertheless, the main target of the introductory 
theoretical study presented here reduced to lateral vibration- and stability analyses. But in order to realize this 
idea in an engineering and industrial application many further investigations are required. First of all, this is an 
axial support in the form of a proper magnetic thrust bearing. Then, it will be necessary to design relatively 
simple and robust touch-down bearings. It can be expected that an application of the EDPMBs should not cause 
many problems in design of the turbocharger housing and shaft. Namely, a substitution of the lubricating oil 
supply system by properly embedded permanent magnets as well as an installation of the touch-down bearings do 
not seem to be particularly expensive and difficult. Consequently, the rotor-shaft journals should be easily 
substituted by conductor sleeves. Nevertheless, several thermal loading phenomena as well as many other 
problems hard to foresee now ought to be solved using an appropriate real prototype of the considered object.  
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On the Importance of Frictional Energy Dissipation in the Prevention of
Undesirable Self-Excited Vibrations in Gas Foil Bearing Rotor Systems

T. Leister, C. Baum, W. Seemann

In this contribution, a nonlinear and fully coupled fluid–structure–rotor interaction model of a gas foil bearing
rotor system is presented. Aiming at the reduction of undesirable self-excited vibrations, many common bearing
designs feature a compliant and slightly movable multi-part foil structure inside the lubrication gap. The present
paper discusses the general impact of frictional energy dissipation within the foil structure by adding equivalent
viscous damping to the widespread simple elastic foundation model. For the computational analysis, the PDEs
describing the fluid pressure distribution and the foil structure deformation field are spatially discretized using finite
difference schemes. After suitable nondimensionalization of the resulting system of nonlinear ODEs, a corresponding
state-space representation is deduced. Using numerical simulation tools, the stability of equilibrium points and the
occurrence of self-excited vibrations are addressed and possible bifurcation scenarios are discussed. Summing up
all results, frictional energy dissipation proves to be of crucial importance with regard to the reduction or prevention
of undesirable self-excited vibrations in gas foil bearing rotor systems.

1 Introduction and Motivation

Gas foil bearings (GFBs) are an upcoming and promising oil-free technology in modern high-speed rotating
machinery. Relying on a thin gas film building up an aerodynamic, load-carrying lubrication wedge, such bearings
are self-acting and do not require any external pressurization. Most notably, due to the absence of solid-to-solid
contact between the airborne rotor journal and the bearing sleeve, excessively low wear and power loss can be
achieved (Heshmat et al., 1983). During the last few decades, the potential of GFBs has been widely confirmed
by a great number of successful applications in air cycle machines of commercial aircraft (Howard et al., 2007).
Lately, in particular as a result of insurmountable speed, temperature, and weight limitations of conventional
rolling-element bearings, novel concepts of oil-free turbochargers (Howard, 1999) and oil-free rotorcraft propulsion
engines (Howard et al., 2010) are gaining more and more interest.

Most of the considered rotating machinery is supposed to reach and to maintain a stable operating point after
completing the run-up. However, as a result of the highly nonlinear bearing forces induced by the pressurized
fluid, the existing equilibrium points of GFB rotor systems tend to become unstable for higher rotational speeds.
Subsequently, undesirable self-excited vibrations with comparatively large amplitudes may occur (Bonello and
Pham, 2014; Hoffmann et al., 2014; Baum et al., 2015a). For this reason, many common bearing designs feature a
compliant and slightly movable multi-part foil structure inside the lubrication gap. By dissipating a certain amount
of energy via dry sliding friction mechanisms (Peng and Carpino, 1993; Howard et al., 2001), this countermeasure
is supposed to reduce the vibrational amplitudes or, as the ultimate goal, to prevent the occurrence of self-excited
vibrations in the first place.

In currently conducted research on GFBs, sophisticated models and reliable numerical tools are of major interest
with regard to the complexity and costliness of experimental investigations. As the classical mathematical model,
based on the assumption of a full fluid film lubrication regime, the fluid pressurization is usually described
by the Reynolds equation for compressible ideal gases (Reynolds, 1886; Szeri, 2010). With regard to the
foil structure, many recent publications discuss complex FE models with or without considering frictional
effects (Le Lez et al., 2007; San Andrés and Kim, 2008). In most cases, however, such models do not capture
the true coupled nature of fluid–structure–rotor interaction (Bou-Saïd et al., 2008; Bonello and Pham, 2014) and
thus prove to be inapplicable when it comes to a transient analysis of the system’s nonlinear dynamic response.
The main objective of the present paper is a systematic investigation of the general impact of energy dissipation
within the foil structure. To this effect, a nonlinear and fully coupled model considering equivalent viscous damping
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Figure 1. Schematic sketches (with greatly magnified lubrication gap) showing the fluid–structure–rotor model:
(a) front view of the rotor journal inside the GFB model, (b) side view of the rotor model mounted on two GFBs,
(c) interaction chart of the three fully coupled submodels.

is presented in a way which bears some basic resemblance to a recent contribution by Bonello and Pham (2014).
Using numerical simulation tools, the essential question to be answered is whether and to what extent frictional
energy dissipation is beneficial with regard to the reduction or prevention of undesirable self-excited vibrations.

2 Theory and Modeling

2.1 Fluid–Structure–Rotor Interaction

In the considered GFB rotor system, the pressurized fluid inside the lubrication gap is supposed to interact strongly
with both the compliant foil structure and the movable rotor shaft (Bonello and Pham, 2014; Baum et al., 2015a;
Leister et al., 2016a). In this regard, a realistic analysis of the system’s nonlinear dynamic response requires an
interconnected simulation approach in which all parts of the model are fully coupled to each other and in which all
governing equations are solved simultaneously (Bonello and Pham, 2014; Baum et al., 2015a; Leister et al., 2016a).
As depicted by the schematic sketches in Figure 1a (front view) and in Figure 1b (side view), the comprehensive
overall model presented in this paper essentially comprises three submodels: an aerodynamic fluid model (colored
in blue), a dissipative foil structure model (colored in yellow), and a turbomachine rotor model (colored in orange).

The basic bearing geometry is described by the axial length L of the bearing sleeve and by the inner radius R of
the undeformed foil structure. Depending on the outer radius r of the rotor journal inside the bearing, the nominal
height of the gas-filled lubrication gap is characterized in terms of a small radial clearance parameter

C = R− r, 0 < C/R � 1. (1)

Given the small clearance assumption in Equation (1), the curvature of the lubrication gap and any radial dependence
of the fluid properties can be neglected. Thus, the boundary value problem for the gas pressure calculation is
henceforth considered on a two-dimensional, rectangular domain. Altogether, introducing a characteristic time
scale T , we define a tuple of nondimensional independent variables (ϕ,Z, τ) = (x/R, z/L, t/T ). The arising
nondimensional time derivative is denoted by (�)′ = d(�)/dτ for better legibility of the following equations.

The fluid–structure–rotor interaction chart in Figure 1c visualizes the coupling mechanisms between the three
submodels. Defined in relation to the constant ambient pressure p0, the nondimensional pressure field P (ϕ,Z, τ) =
p(ϕ,ZL, τT )/p0 represents the load acting upon the foil structure. Moreover, the same pressure distribution induces
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a bearing force which supports the rotor. On the other hand, the pressurization of the fluid is influenced by the
dynamics of both the foil structure and the rotor. For this reason, considering the nominal radial clearance C from
Equation (1), we introduce the nondimensional foil structure deformation field Q(ϕ,Z, τ) = q(ϕ,ZL, τT )/C,
the nondimensional rotor journal eccentricity ε(τ) = e(τT )/C, and the nondimensional rotor journal attitude
angle γ(τ) = Γ(τT ). Due to squeeze effects which are discussed later, a transient coupling mechanism must also
account for the respective time derivatives Q′(ϕ,Z, τ), ε′(τ), and γ′(τ).

2.2 Aerodynamic Fluid Model

It is obvious from the sketch in Figure 1a that the effective fluid film thickness h(ϕ, z, t) depends on the nominal
lubrication gap clearance, the foil structure deformation field, and the position of the rotor journal, which is assumed
to be perfectly aligned with the bearing. By applying the law of cosines to the highlighted orange triangle and after
linearization with respect to the rotor journal eccentricity, we find the nondimensional expression

H(ϕ,Z, τ) =
h(ϕ,ZL, τT )

C
=

Clearance

1

Rotor position

− ε(τ) cos
[
ϕ− γ(τ)

] Structure deformation

−Q(ϕ,Z, τ) (2)

and the corresponding nondimensional time derivative

H ′(ϕ,Z, τ) = − ε′(τ) cos
[
ϕ− γ(τ)

]
− ε(τ)γ′(τ) sin

[
ϕ− γ(τ)

]
−Q′(ϕ,Z, τ). (3)

The considered bearing is supposed to operate within the full fluid film lubrication regime, such that a minimum
fluid film thickness larger than the surrounding surface roughnesses is sustained at any time. In this case, the
lubricant pressure is governed by a generalized form of the classical Reynolds equation which is applicable for
compressible fluids (Reynolds, 1886; Szeri, 2010). Under isothermal conditions with a constant viscosity µ0 and
under the assumption of the ideal gas law, we obtain the nondimensional partial differential equation (PDE)

Expansion

P ′

H + P


Rotor squeeze

− ε′(τ) cos
[
ϕ− γ(τ)

]
− ε(τ)γ′(τ) sin

[
ϕ− γ(τ)

] Structure squeeze

−Q′


=

∂

∂τ

[
PH

]
=

1

2


∂

∂ϕ

[
PH3 ∂P

∂ϕ

]
+ κ2 ∂

∂Z

[
PH3 ∂P

∂Z

]
Poiseuille

− Λ
∂

∂ϕ

[
PH

]
Couette

,

(4)

which involves the fluid film thickness from Equation (2) and the corresponding time derivative from Equation (3).
In the above stated PDE, a nondimensional bearing geometry parameter κ = R/L and the nondimensional bearing
number Λ = 6µ0ω0/p0(R/C)2 arise, the latter corresponding to the angular velocity ω0 = 2πn0 of the rotor.
Moreover, with regard to transient run-up and coast-down simulations, it is convenient to adopt a characteristic time
scale T for the overall problem which does not depend on the rotor speed, giving τ = t/T = t/[6µ0/p0(R/C)2].
According to Hamrock (1991), the pressurization described by the Reynolds equation results from four basic
mechanisms, which are subsequently referred to as Poiseuille flow, Couette flow, fluid expansion, and squeeze
flow. With regard to the modeled fluid–structure–rotor interaction, it should be emphasized that the latter can be
subdivided into a transient foil structure squeeze flow and a transient rotor journal squeeze flow.

In axial direction, the lubrication gap is open to the atmosphere, imposing ambient pressure P0 = 1 at Z = ±1/2.
With regard to the circumferential direction, however, different concepts can be found in recent literature. A first
common approach (see, e.g., San Andrés and Kim, 2010) suggests that the fluid is supplied with ambient pressure
through the foil fixation gap (see Figure 2) at a certain angular position ϕ = ϕ0. In this case, the Reynolds equation
can be considered on a rectangular domain with four Dirichlet boundaries. A second common approach (see, e.g.,
Bin Hassan and Bonello, 2017) neglects the foil fixation gap and considers the Reynolds equation on a cylindrical
domain with only two Dirichlet boundaries, supposing in addition circumferential periodicity of the fluid properties
and of the respective gradients. The present study is based on the second approach with the objective of obtaining
generic results which are independent of ϕ0.
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2.3 Dissipative Foil Structure Model

The schematic sketch in Figure 2 depicts the foil structure configuration which is typically used in first generation
bump-type GFBs. It is composed of a thin, corrugated bump foil with NB bumps (thickness tB, bump width 2lB,
bump distance lS = 2πR/NB, Young’s modulus EB, Poisson’s ratio νB) and a thin, smooth top foil (thickness tT,
Young’s modulus ET, Poisson’s ratio νT). With the exception of the foil fixation, relative motion and local
detachment between the compliant bump foil, the compliant top foil, and the bearing sleeve are possible. Hence,
a realistic structure model is supposed to consider not only the foil deformation, but also the energy dissipation
caused by dry sliding friction. Earlier experimental works have reported relatively small deformation gradients in
axial direction (Ruscitto et al., 1978), confirming that the foil structure can be represented in good approximation by
plane 1D models (San Andrés and Kim, 2008) loaded by the axially averaged pressure

P (ϕ, τ) =

∫ + 1
2

− 1
2

P (ϕ,Z, τ) dZ. (5)

The classical 2D simple elastic foundation model, sometimes referred to as the Winkler foundation model and firstly
applied to GFBs by Heshmat et al. (1983), is not applicable for rotor journal eccentricities ε(τ) ≥ 1 as it predicts
non-physical contact at the open bearing edges resulting from the prevailing ambient pressure. However, this issue
can be avoided by using a slightly modified 1D simple elastic foundation model respecting the aforementioned
assumption of small deformation gradients in axial direction (Baum et al., 2015a; Leister et al., 2016a). In this
case, since it is supposed to be uniform along the Z-axis, the elastic deformation Qe(ϕ, τ) depends directly on the
averaged pressure from Equation (5) and is obtained by the algebraic expression

KWQe(ϕ, τ) = −
[
P (ϕ, τ)− 1

]
. (6)

According to Walowit and Anno (1975), the bumps can be approximated by means of a simple beam model, giving
the nondimensional foundation stiffnessKW = EBC/[2(1−νB

2)p0lS](tB/lB)3. Even though the elastic foundation
model is completely uncoupled in circumferential direction and does not account for local stiffness variations, no
important inaccuracy is expected to result from this simplification (Leister et al., 2016a). Under certain conditions,
however, the analytical expression KW tends to underestimate the real structural stiffness (Larsen et al., 2014).
Using Equations (5) and (6), the fluid–structure interaction via film thickness and structure squeeze in Equation (4)
is described by

Qe(ϕ, τ) = −KW
−1

[∫ + 1
2

− 1
2

P (ϕ,Z, τ) dZ − 1

]
, (7)

Q′e(ϕ, τ) = −KW
−1

[∫ + 1
2

− 1
2

P (ϕ,Z, τ) dZ

]′
= −KW

−1

∫ + 1
2

− 1
2

P ′(ϕ,Z, τ) dZ

(?)

. (8)
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Since the Reynolds equation must be solved for the fluid expansion P ′(ϕ,Z, τ) in order to obtain a state-space
form, it should be noted that the evaluation of the integral (?) requires a special treatment upon substitution of
Equation (8) into Equation (4). This can be achieved by approximating (?) using a numerical integration method,
which leads to a finite sum of discrete fluid expansion values. The resulting Reynolds equation being linear with
respect to the spatially discretized fluid expansion, the state-space form is found by an inverse matrix operation. In
this context, it must be stressed that (?) cannot be neglected if one is interested in a strongly coupled overall model.

As already mentioned, the dominating energy dissipation mechanism is attributed to dry sliding friction. However,
according to a proposition by Peng and Carpino (1993), the assumption of equivalent viscous damping reveals to be
a useful approximation. Therefore, in addition to the nondimensional stiffness parameter KW, the nondimensional
damping parameter DW is introduced. Based on the elastic foundation model from Equation (6), an extended
viscoelastic foundation model for the deformation Qv(ϕ, τ) is stated by the ordinary differential equation (ODE)

DWQ
′
v(ϕ, τ) +KWQv(ϕ, τ) = −

[
P (ϕ, τ)− 1

]
. (9)

Knowing that Equation (9) is a differential equation rather than an algebraic equation, it is convenient to consider
henceforth the foil structure deformation field Qv(ϕ, τ) as a state variable with the corresponding state equation

Q′v(ϕ, τ) = −DW
−1

[
KWQv(ϕ, τ) +

∫ + 1
2

− 1
2

P (ϕ,Z, τ) dZ − 1

]
. (10)

Most notably, in contrast to Equation (8) for the elastic model, the integral (?) does not appear anymore, thus
allowing for a simplified evaluation of the Reynolds equation despite the structure model being more comprehensive.

2.4 Turbomachine Rotor Model

As the present study is focused on gaining a basic understanding of energy dissipation inside the bearing, we
consider a simple horizontal rigid rotor of mass 2m without unbalance, which is symmetrically mounted on two
GFBs. In this case, an additional static load 2FL is equivalent to a modified gravitational acceleration g + FL/m.
Integrating the gas pressure acting on each of the rotor journals, we obtain the nondimensional bearing force vector

f(τ) =

[
fξ(τ)
fη(τ)

]
{eξ,eη}

=
1

p0RL

[
Fξ(τT )
Fη(τT )

]
{eξ,eη}

=

∫ + 1
2

− 1
2

∫ 2π

0

P (ϕ,Z, τ)

[
sinϕ
cosϕ

]
{eξ,eη}

dϕdZ. (11)

With the nondimensional rotor mass parameter M = p0/(36µ0
2L)(C/R)5m and the modified gravity parameter

G = 36µ0
2/(p0

2R)(R/C)5(g + FL/m), the free body diagram in Figure 3 yields the equations of motion

ε′′(τ)− ε(τ)γ′(τ)2 −G cos γ(τ) +
1

M

[
fξ(τ) sin γ(τ) + fη(τ) cos γ(τ)

]
ε(τ)γ′′(τ) + 2ε′(τ)γ′(τ) +G sin γ(τ) +

1

M

[
fξ(τ) cos γ(τ)− fη(τ) sin γ(τ)

]
 = 0. (12)

2.5 State-Space Representation

The domain of the lubrication gap is discretized using a uniform computational grid with Nϕ ×NZ grid points.
Defining discrete pressure values Pi,j(τ) for the Reynolds equation as well as discrete displacement values Qi(τ)
for the viscoelastic foundation model, we obtain the nondimensional discrete state vectorsF(τ)

sS(τ)
sR(τ)

 =

 Fluid state sF
>(τ)

P0,1(τ) · · · PNϕ−2,NZ−2(τ)

Structure state sS
>(τ)

Q0(τ) · · · QNϕ−2(τ)

Rotor state sR
>(τ)

ε(τ) ε′(τ) γ(τ) γ′(τ)

>
= s(τ) ∈ R(Nϕ−1)(NZ−2)+(Nϕ−1)+4 = Rn,

(13)

which will not contain any structure displacement values if the purely elastic foundation model is considered. For
the right-hand side k of the state equation system, depending on the structure model, we use either Equation (8)
or (10). Moreover, a state-space form of Equation (12) is stated for the rotor. With regard to the fluid model, we
solve Equation (4) for P ′(ϕ,Z, τ) and discretize all spatial derivatives by means of a finite difference scheme. The
bearing number Λ being the bifurcation parameter, we obtain the nonlinear autonomous first-order ODE system

s′(τ) =

sF(τ)
sS(τ)
sR(τ)

′ = k


sF(τ)
sS(τ)
sR(τ)

 ,Λ
 = k

{
s(τ),Λ

}
, k : Rn × R→ Rn. (14)
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Table 1. Parameters used for the numerical simulations.

Parameter Symbol Value

Axial bearing width L 38.10 mm
Bearing radius R 19.05 mm
Lubrication gap clearance C 50 µm

Ambient pressure p0 1013.25 hPa
Dynamic viscosity µ0 1.85× 10−5 Ns/m2

Rotational speed n0 36 000 min−1

Rotor mass 2m 2× 185 g
Gravity g 9.81 m/s2

External load 2FL 2× 20.25 N

Number of bumps NB 26
Bump width 2lB 2× 1.778 mm
Foil thickness tB, tT 101.6 µm
Young’s modulus EB, ET 214 GPa
Poisson’s number νB, νT 0.29

3 Results and Discussion

3.1 Model Parameters

The numerical results presented hereafter are based on data of a typical first generation bump-type GFB, which
is referred to in a great number of both experimental and numerical investigations (Ruscitto et al., 1978; Peng
and Khonsari, 2004; San Andrés and Kim, 2008), thus allowing the authors to validate their code against the
literature. According to the definitions in the preceding sections, a nondimensional parameter set is deduced
from the dimensional values in Table 1. In doing so, one must be aware of the uncertainty which might arise
from the empirically estimated value C = 50 µm describing the poorly known lubrication gap clearance (Peng
and Khonsari, 2004; Leister et al., 2016b). For the numerical analysis, we use Nϕ × NZ = 79 × 7 grid points,
which is sufficient for a grid-independent solution if local stiffness variations of the foil structure are not taken into
account (Leister et al., 2016a).

As known from the literature (see, e.g., Thomson, 1996), the equivalent viscous damping can be assessed by
opposing the viscoelastic model to a Coulomb friction model (coefficient µC) and by equilibrating the respective
amounts of energy dissipated during one cycle of a characteristic sinusoidal displacement q̂ sin(ωt). With the choice
of reasonable parameter values and the assumption of a normal force induced by a characteristic pressure p, we
obtain the order-of-magnitude estimate

DW =

=O(1)

4

π

=O(0.1)

µC

=O(1)

C

q̂

=O(1)

ω0

ω

=O(10)

p

p0

=O(1)

Λ−1 = O(1). (15)

3.2 Stabilization of Stationary Operating Points

In the first part of the analysis, we investigate the capability of frictional energy dissipation to prevent the
occurrence of self-excited vibrations in the first place. Mathematically speaking, we are interested in stationary
solutions s(τ) = s0 of Equation (14) for which the overall system state remains unchanged as time elapses. For this
purpose, the nonlinear algebraic equation system k{s0,Λ} = 0 is solved for s0 using a Newton–Raphson method
with an adequate initial guess. Locally, by virtue of the Hartman–Grobman theorem, the stability of these equilibrium
points can be assessed by a consideration of the corresponding linearized problem. Thus, we calculate the
eigenvalues λi of the numerically approximated Jacobian Jk|s(τ)=s0,Λ. With the condition maxλi <(λi) < 0 for
asymptotic stability, the critical bearing number Λ = Λc can be estimated using a numerical continuation method.
From a practical point of view, the existence of a stability threshold suggests that no stable stationary operating
point of the GFB rotor system is possible anymore if some critical rotor speed is exceeded.
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Figure 4. Stability diagram showing the critical bearing number depending on foil structure stiffness and damping.

In the stability diagram in Figure 4, the black chain-dotted line visualizes the critical bearing number for the elastic
structure model as a function of the structure stiffness KW. As a reference, the gray surface indicates the critical
bearing number which is found for a rigid bearing with the same parameters but without any structural deformation.
When comparing the results found with the elastic model and the results found with the rigid model, a slightly
stabilizing effect due to the foil structure deformation can be observed for stiffnesses KW > 0.4, which is in
accordance with earlier works by the authors (Baum et al., 2015a; Leister et al., 2016b). On the other hand, if the
stiffness is excessively low, the overall system is destabilized to such an extent that no stable equilibrium point at all
can be found.

For the viscoelastic model, the multicolored surface in Figure 4 visualizes the critical bearing number as a function
of the structure stiffness KW and the structure damping DW, both of them influencing the eigenvalues. In contrast
to the elastic model, much larger critical bearing numbers are predicted, in particular for low stiffnesses. As shown
in the diagram, a specific optimum damping value which maximizes the critical bearing number is associated to
each stiffness value. When the stiffness is increased, the optimum damping is also shifted toward higher values.

Thus, we conclude that energy dissipation within the foil structure has the potential to stabilize stationary operating
points of the GFB rotor system and, if the dissipation rate is chosen appropriately, to prevent the occurrence of
undesirable self-excited vibrations in the first place.

3.3 Nonlinear Dynamic Response of the System during Run-Up and Coast-Down

Despite the stabilizing effect of frictional energy dissipation, the occurrence of self-excited vibrations can only be
shifted toward higher rotational speeds and is never completely avoidable. In order to gain a basic understanding
of the dynamic response of the GFB rotor system, a typical machine run-up and coast-down scenario is simulated
in this part of the analysis. According to the first plot in Figure 5, the rotational speed is varied linearly during
τmax = 50 000 (tmax = 50 s) from Λ1 = 0.500 (n1 = 30 000 min−1) to Λ2 = 0.833 (n2 = 50 000 min−1) and
back. The numerical time integration of Equation (14) is performed using a trapezoidal-type scheme in order to
avoid numerical damping.

The second and the third plot in Figure 5 show the horizontal position of the rotor journal ξ(τ) as a red signal
envelope curve and the vertical position of the rotor journal η(τ) as a blue signal envelope curve. In each of the
plots, the solid lines correspond to the viscoelastic structure model and the chain-dotted lines correspond to the
rigid structure model. Beyond the critical bearing number, no further stationary solution is stable and the onset
of self-excited vibrations can be observed. In accordance with the eigenvalue analysis above, the critical bearing
number is significantly higher for the viscoelastic model compared to the rigid model. During the coast-down, the
self-excited vibrations collapse only at a subcritical bearing number and the resulting asymmetry of the curves
suggests that a certain range of bearing numbers exists where both stationary and periodic solutions are stable. This

286



0.5

0.6

0.7

0.8

0.9

0 10000 20000 30000 40000 50000

B
ea

ri
ng

 N
um

be
r 
Λ

Time τ

Run-Up Coast-Down

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

0 10000 20000 30000 40000 50000

Jo
ur

na
l 
P
os

it
io

n 
ξ

Time τ

Viscoelastic Structure Model
Rigid Structure Model

-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

0 10000 20000 30000 40000 50000

Jo
ur

na
l 
P
os

it
io

n 
η

Time τ

Viscoelastic Structure Model
Rigid Structure Model

0.0
1.0
2.0
3.0
4.0
5.0

0 10000 20000 30000 40000 50000P
re

ss
ur

e 
P

| φ
 =

 0
, 
Z
 =

 0

Time τ

Viscoelastic Structure Model
Rigid Structure Model

Figure 5. Signal envelopes of rotor journal position and fluid pressure during run-up and coast-down.

is a characteristic property of dynamic systems in which a subcritical Poincaré–Andronov–Hopf bifurcation and a
subsequent fold bifurcation of cycles occur (Baum et al., 2015a,b). Most notably, the vertical rotor journal vibrations
with the viscoelastic model exhibit smaller amplitudes than the rigid model predicts. Moreover, the absolute
positions are shifted vertically because of the foil structure deformation, which allows for positions with |ξ(τ)| ≥ 1
and/or |η(τ)| ≥ 1.

The fourth plot in Figure 5 shows, at an exemplary point, the pressure P (0, 0, τ) as a green signal envelope curve.
The arising oscillation is similar to the rotor journal position oscillations. It should be noted that each of the discrete
pressure values could be considered as a vibrating subsystem. For the viscoelastic model, the pressure peaks are
significantly lower than for the rigid model as a result of the foil structure deformation. Most notably, in contrast to
the rigid model, this result shows that almost no underpressure with P (ϕ,Z, τ) < P0 is predicted by the viscoelastic
model. Assuming the top foil to be lifted up until ambient pressure is reached, underpressure is forbidden in most
of the available literature using a boundary condition originally proposed by Heshmat et al. (1983). However,
according to the present investigation, this assumption seems to be redundant if an appropriate structure model is
utilized, knowing that the top foil lift-off could also be limited by a counteracting structural stiffness.

Altogether, we conclude that frictional energy dissipation does not only increase the critical bearing number but has
also the potential to reduce the amplitudes of self-excited vibrations if these cannot be avoided.

3.4 Amplitude Reduction of Self-Excited Vibrations

In the last part of the analysis, we investigate the aforementioned capability of frictional energy dissipation to reduce
the amplitudes of self-excited vibrations if their occurrence cannot be prevented in the first place. Thus, we are now
interested in limit cycles, i.e., periodic solutions s(τ) = sp(τ) of Equation (14) which verify the conditions

sp
′(τ) = k

{
sp(τ),Λ

}
, sp(τ) = sp(τ + T ). (16)

287



0.0

0.5

1.0

1.5

Elastic Structure Model
DW → 0

Undeformed Foil Structure
Transient Rotor Trajectory
Rotor/Structure Collision

0.0

0.5

1.0

1.5

Viscoelastic Structure Model
DW = 1 (underdamped)

Undeformed Foil Structure
Transient Rotor Trajectory

Periodic Rotor Orbit

0.0

0.5

1.0

1.5

Viscoelastic Structure Model
DW = 2 (underdamped)

Undeformed Foil Structure
Transient Rotor Trajectory

Periodic Rotor Orbit
0.0

0.5

1.0

1.5
Viscoelastic Structure Model
DW = 4 (critically damped)
Undeformed Foil Structure
Transient Rotor Trajectory

Periodic Rotor Orbit

0.0

0.5

1.0

1.5

Viscoelastic Structure Model
DW = 8 (overdamped)

Undeformed Foil Structure
Transient Rotor Trajectory

Periodic Rotor Orbit

0.0

0.5

1.0

1.5

Viscoelastic Structure Model
DW = 16 (overdamped)

Undeformed Foil Structure
Transient Rotor Trajectory

Periodic Rotor Orbit

0.0

0.5

1.0

1.5

Viscoelastic Structure Model
DW = 32 (overdamped)

Undeformed Foil Structure
Transient Rotor Trajectory

Periodic Rotor Orbit

0.0

0.5

1.0

1.5

Rigid Structure Model
DW → ∞

Undeformed Foil Structure
Transient Rotor Trajectory

Periodic Rotor Orbit

Figure 6. Periodic rotor journal orbits (self-excited vibrations) with increasing foil structure damping.

Choosing a moderate stiffness KW = 1 and maintaining the rotational speed Λ0 = 0.600 (n0 = 36 000 min−1),
the influence of a varying damping parameter DW is investigated in Figure 6. The chain-dotted red lines show rotor
journal trajectories, which result in stable periodic orbits highlighted by thicker solid red lines. With the elastic
structure model, no stable periodic orbit can be observed in the numerical simulation because the rotor journal is
predicted to collide with the excessively deformed top foil. However, stable periodic orbits can be reproduced as
expected when considering the viscoelastic structure model. With weak damping DW < 4, the arising vibrations
exhibit relatively large amplitudes with rotor journal eccentricities ε(τ) > 1. These amplitudes are reduced with
increasing damping coefficient, the optimum being equal to the critical damping DW ≈ 4, which has already been
identified with regard to the stability of stationary equilibrium points. With strong damping DW > 4, the rotor
journal eccentricities fall back to ε(τ) ≈ 1. In accordance with a proposition by Le Lez et al. (2007), we conclude
that there is an optimum damping which ensures to dissipate the maximum energy possible per cycle.

In Figure 7, some of the periodic solutions are compared in the frequency domain by means of an FFT analysis,
yielding characteristic subsynchronous whirling frequencies with 2π/T ≈ Λ/2. According to a heuristic explanation
given by Genta (2009), the observed whirling speeds are directly correlated with the circumferential fluid velocity,
which is the superposition of a Poiseuille flow and a Couette flow. Dominated by the triangular velocity profile of
the Couette flow, the average circumferential fluid velocity is found to be approximately equal to half the peripheral
rotor journal speed. Due to a decelerating influence of the Poiseuille flow, which is typically growing with increasing
fluid film thickness, whirling motions at rather small eccentricities may actually occur with distinctly lower whirling
speeds. In accordance with this expectation, the results of the FFT analysis reveal that not only the amplitudes but
also the frequencies are minimized when considering the critically damped viscoelastic structure model. Altogether,
it can be concluded that energy dissipation strongly affects subsynchronous whirling phenomena and thus must be
considered carefully in realistic simulations.

4 Conclusion and Perspective

The nonlinear GFB rotor model presented in this paper has been developed with the aim of capturing the true
coupled nature of fluid–structure–rotor interaction phenomena. As the present study is focused on gaining a
basic understanding of frictional energy dissipation inside the bearing, a rather simple structure model based on a
viscoelastic foundation is utilized. It has been shown that damping stabilizes stationary operating points and that
the occurrence of self-excited vibrations may be prevented if an adequate dissipation rate is ensured. Moreover, it
has been shown that vibrational amplitudes can be reduced significantly by means of frictional energy dissipation.
Summing up all results, frictional energy dissipation proves to be of crucial importance with regard to the reduction
or prevention of undesirable self-excited vibrations in GFB rotor systems.
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Figure 7. FFT analysis of an underdamped, a critically damped, and an overdamped GFB rotor system.

Future work will aim at the development of a more sophisticated dry sliding friction model considering stick–slip
transitions and interaction mechanisms between the bumps. Moreover, the fluid model will be extended with regard
to thermal effects and more realistic rotor models will be integrated into the simulation, knowing that many practical
issues caused by subsynchronous vibrations are directly related to heavy loading conditions and rotor unbalance.
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On the Incorporation of Friction Into a Simultaneously Coupled Time
Domain Model of a Rigid Rotor Supported by Air Foil Bearings

Sebastian von Osmanski, Jon S. Larsen, Ilmar F. Santos

Despite decades of research, the dynamics of air foil bearings (AFBs) are not yet fully captured by any model,
suggesting that the fundamental mechanisms of the AFB and their relative merits are not yet fully understood.
The recent years have seen promising results from nonlinear time domain models, allowing the dynamic pressure–
compliance interaction and the unsteady terms of the compressible Reynolds equation to be considered.

By including the simple elastic foundation model (SEFM) in a fully coupled simultaneous time integration, the
dynamics of a rotor supported by industrial AFBs have previously been modelled by the authors, leading to good
agreement with experimental results. In this paper, the authors investigate the substitution of the SEFM for a new
foil structure model which is based on directly measurable quantities and includes frictional energy dissipation in
the foil structure. An important finding is that the incorporation of a friction model into the global model cannot
be reconciled with a simultaneous time solution without the inclusion of the foil inertia. The resulting AFB model
allows the effects of friction on AFB performance to be directly examined and leads to the questioning of friction’s
role and its significance to the operation of AFBs.

Nomenclature

AFB Air Foil Bearing
CG Center of Gravity
DAE Differential/Algebraic Equation
DOF Degree of Freedom
FE Finite Element
ODE Ordinary Differential Equation
SEFM Simple Elastic Foundation Model
(Ü) Time derivative,d2/dτ2

(Û) Time derivative,d/dτ
∇∙ Divergence
∇ Gradient,∇ = {∂/∂θ, ∂/∂ z̃}
A, B Bearings
C Radial clearance
Eb Young’s modulus of bump foil material
Et Young’s modulus of top foil material
I Mass moment of inertia
L, L̃ Bearing length,̃L = L/R
Np Number of bearing pads
R Journal radius
Rb Bump radius of curvature
S Compressibility number,S= 6μω/pa (R/C)2

Sb Bump foil pitch
W, W̃ Static load components,̃W = 1/(paR2)W
p̃m Nondimensional mean axial pressure
e, ε Journal eccentricity components,ε = e/C
fN Normal force function
fμ Friction force
fμ f Friction coefficient smoothing function

h, h̃ Film height,h̃ = h/C
hb Bump foil height
hc, h̃c Film height (compliant),̃hc = hc/C
hr , h̃r Film height (rigid),h̃r = hr/C
hs, h̃s Slope height,̃hs = hs/C
k Stiffness
kj ,dj Truss stiffness and damping,

j ∈ {1, 1b, 2, 3, 3b, 4}
l0 Bump half length
l1, l2 Distance from CG to bearings
l3, l4 Distance from CG to discs
m Mass
p, p̃ Film pressure,̃p = p/pa
pa Ambient pressure
t Physical time
tb Thickness of bump foil
tt Thickness of top foil
vr Relative sliding velocity
x, y, z, z̃ Cartesian coordinates,z̃ = z/R
xj Generalised degree of freedom
xj Relative displacement
α Bearing position,α = A, B
γ Friction function smoothing parameter
μ Dynamic viscosity
μ f Coefficient of friction
νb Poisson’s ratio of bump foil material
νt Poisson’s ratio of top foil material
ω Angular speed of journal
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ψ Film state variable (nondimensional),ψ = p̃h̃
ρb Density of bump foil material
ρt Density of top foil material
τ Dimensionless time,τ = ωt
θ Circumferential angle
θ ′ Curvelinear coordinate,θ ′ = θR
θ0 Bump half angle
θ j Truss transmission angle,θd or θdb
θl First pad leading edge angle
θs Inlet slope extend
θt First pad trailing edge angle
θ̃ Dimensionless circumferential coordinate,θ̃ =

θ ′/R= θ
ζ Damping ratio
ũ Foil structure state space vector,

ũ = {x̃T Û̃xT }T

f, f̃ Bearing force vector,
f = {fTA, fTB}

T , f̃ = 1/(paR2)f
fub, f̃ub Unbalance force,̃fub = 1/(paR2)fub
s Advection vector,s = {S, 0}T

w, w̃ Load vector,̃w = 1/(paR2)w

ψ Film state vector
p̃ Pressure vector
ε Eccentricity vector,{εAx, εAy, εBx, εBy}T

fμ Vector of friction forces
f p Vector of pressure forces
g() Nonlinear vector function
r Residual vector
x Foil displacement vector
y Global state vector
z1, z2 Rotor state vectors,z1 = ε, z2 = z1

0 Zero matrix
A f ,Ã f Foil structure system matrix
D f , D̃ f Foil structure damping matrix
Gr , G̃r Rotor gyroscopic matrix,

G̃r = ω2C/(paR2)Gr

I Identity matrix
K f , K̃ f Foil structure stiffness matrix
M f , M̃ f Foil structure mass matrix
Mr , M̃r Rotor mass matrix,̃Mr = ω2C/(paR2)Mr

Γ Fluidity matrix
(̃ ) Nondimensional quantity

1 Introduction

Practical application of gas lubrication appeared in the mid-1950s driven by its attractiveness to several emerging
technologies and facilitated by improved experimental equipment together with the development of computerised
numerical methods (Powell, 1970). The first gas bearings with compliant inner surfaces appeared in the mid-1960s
and the air foil bearing (AFB) was introduced industrially by Garrret AiResearch in 1969 (Agrawal, 1997). The
AFB offers several advantages compared to conventional rigid gas bearings, and it is a key component in NASA’s
efforts towards creating a completely oil-free turbine engine (NASA, 2001). NASA is interested in the AFB
technology’s weight-saving potentials in rotorcrafts and its high-temperature capabilities, but AFBs also present
an environmentally friendly alternative in many applications of oil-lubricated high-speed rotating machinery.

The compliant nature of AFBs does, however, complicate the modelling of its dynamic characteristics and is ca-
pable of introducing undesirable nonlinear features. As the performance of AFB supported rotor–bearing systems
is often limited by nonlinear phenomena, such as sub-synchronous vibrations driven by unbalance, reliable means
for predicting the response are an essential prerequisite for further spread of the technology.

The majority of the literature on AFB modelling rests on the original contributions by Heshmat et al. (1983b,a),
who introduced the simple elastic foundation model (SEFM). The original SEFM, as well as the refined version
by Peng and Carpino (1993), was applied in a perturbation method framework introduced by Lund (1968) and
hence relied on a linearisation of the reaction forces to effectively replace the bearing and fluid film with a spring–
dashpot system. Such analyses are inherently restricted to an assumed small-amplitude periodic motion (Bonello
and Pham, 2009), and recent work (Larsen et al., 2016) additionally suggests an inadequacy in the applied Taylor
series expansion of the pressure field. Another commonality shared throughout much of the literature is equivalent
viscous models for the energy dissipation in the compliant structure. This approximation is pivotal since sliding
friction in the foil structure is widely assumed to constitute a major source of damping (Agrawal, 1997; San Andrs
and Kim, 2007; Howard and San Andrs, 2011; Le Lez et al., 2009) and hence to be essential in the workings of the
AFB.

Nonlinear time domain integration circumvents the limitations of the perturbation techniques and provides a basis
for the incorporation of foil structure models without the assumption of viscous dissipation. Applying different foil
structure models, but based on a decoupling of the fluid, rotor and foil structure equations, time domain models
have been presented by for example Lee et al. (2009); Le Lez et al. (2009); Hoffmann et al. (2015). This approach
introduces a demand for very small time steps and temporal convergence studies, which has been overcome using
simultaneous formulations (Bonello and Pham, 2014b,a; Larsen and Santos, 2015; Larsen et al., 2015b). Several
promising results have been presented from these simultaneous models, but they are, however, still relying on the
SEFM and hence on the assumption of viscous dissipation.
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Figure 1: Schematics and nomenclature of a rigid rotor supported by AFBs: (a) shaft, bearings and rotor discs for
unbalance masses; and (b) detailed view of the bearing geometry.

In recent work by the authors (von Osmanski et al., 2017), a fully coupled simultaneously formulated AFB model
including friction has been presented. The current work provides additional discussions on the necessity of foil
mass inclusion and an assessment of three effects related to friction: (a) displacement of the static equilibrium; (b)
introduction of a dynamic foil stiffness; and (c) dissipation of energy through sliding friction.

2 The Rotor–Bearing System

The presented model and the derived considerations are based on a test rig previously presented and described
by the authors (Larsen et al., 2015a,b; Larsen and Santos, 2015; Larsen et al., 2016; von Osmanski et al., 2017).
The rig comprises a near-symmetrical hollow rotor supported by two identical second generation Siemens AFBs
as sketched in Fig. 1a. The illustrated permanent magnets are part of the electrical drive capable of rotating the
shaft to approximately30 kRPM and the discs at each of the shaft’s extremities allow unbalance mass to be added.
As observed from the AFB geometry (Fig. 1b), the foil structure is segmented into three pads fixed to the bearing
housing at their leading edges. The dimensions and mechanical properties as used throughout this paper are listed
in Table 1.

3 Mathematical Model of the Rotor and the Fluid Film

As the dynamics of the support structure is not considered, modelling of the rotor–bearing system requires three
domains to be assessed: the rotor, the fluid film and the compliant structure of the AFBs. This paper concerns
mainly the latter of these, hence only a brief exposition of the applied rotor and fluid film models will be made.

The operational range of the rig is limited by the electrical drive to30 kRPM, while the lowest free–free natural
frequency of the assembled shaft is found to be approximately1050Hz, hence a rigid shaft model is deemed
adequate. This gives a four degrees of freedom (DOFs) model which is considered a system of first order ordinary
differential equations (ODEs) as

{
Ûz1

Ûz2

}

=

[
0 I

0 M̃−1
r G̃r

] {
z1

z2

}

+

{
0

M̃−1
r (w̃ − f̃ + f̃ub)

}

, (1)

where the state vectors hold the rotor displacements and velocities at the bearing positions as

z1 = ε = {εAx, εAy, εBx, εBy}
T and z2 = Ûz1 = Ûε. (2)

The system matrix contains the dimensionless mass and gyroscopic matrices of the rotor,M̃r andG̃r , while w̃, f̃
andf̃ub represent the static load, integrated fluid film reaction forces and unbalance forces, respectively.

The fluid film formed between the shaft and compliant inner surface of the AFBs is assumed to be governed by the
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Table 1: Geometry, material properties and operating conditions of the Siemens AFB test rig.

Shaft assembly
BearingA to CG,l1 201.1 mm Mass,m= mx = my 21.1166 kg
BearingB to CG,l2 197.9 mm Polar moment of inertia,Izz 30.079 × 10−3 kg m2

UnbalanceA to CG,l3 287.2 mm Transverse moment of inertia,Ixx = Iyy 525.166 × 10−3 kg m2

UnbalanceB to CG,l4 304.0 mm

Bearing configuration
Bearing radius,R 33.50 mm First pad leading edge,θl 30◦

Bearing length,L 53.00 mm First pad trailing edge,θt 145◦

Radial clearance,C 40 μm Slope extend,θs 30◦

Number of pads,Np 3 Slope height,hs 50 μm

Fluid properties
Viscosity,μ 1.95 × 10−5 Pa s Ambient pressure,pa 1 × 105 Pa

Bump foil properties
Bump foil thickness,tb 0.13 mm Bump foil pitch,Sb 7.00 mm
Bump foil half length,l0 3.43 mm Bump foil height,hb 1.15 mm
Young’s modulusEb 207 GPa Poisson’s ratio,νb 0.3
Radius of curvature,Rb 5.7 mm Coefficient of friction,μ f 0.05
Density,ρb 8280 kg/m3 Bump half angle,θ0 37◦

Top foil properties
Top foil thickness,tt 0.254 mm Poisson’s ratio,νt 0.3
Young’s modulusEt 2.07 × 1011 Pa Density,ρt 8280 kg/m3

isothermal, compressible, transient Reynolds equation:

∇ ∙
(
p̃h̃3∇p̃

)
= ∇ ∙

(
p̃h̃

)
s + 2S

d
dτ

(
p̃h̃

)
, (3)

whereS= 6μω/pa (R/C)2 is the compressibility number,s = {S, 0}T is the advection vector and the film height
h̃ is divided into a rigid and a compliant contribution as first suggested by Heshmat et al. (1983b):

h̃ = h̃r (εx, εy, θ̃) + h̃c . (4)

The rigid contributioñhr depends on the initial undeformed bearing geometry as illustrated in Fig. 1b and is given
by e.g. von Osmanski et al. (2017), while the compliant contributionh̃c is treated in the following sections.

Following a partial substitution ofψ for p̃h̃ as introduced in Bonello and Pham (2014a,b), the fluid film partial
differential equation Eq. (3) is spatially discretised using a finite element (FE) scheme. This gives a system of
nonlinear ODEs in the film state variable time derivative vectorÛψα for each bearingα = A, B

Γα Ûψα = rα
(
Ûψα,ψα

)
, (5)

where the fluidity matrixΓα is constant for a given angular velocity, while the residual vectorrα depends on both
the pressures, the film heights and the film heights’ temporal derivatives.

4 Modelling of the Foil Structure

In the first time domain model presented by Larsen et al. (2015b); Larsen and Santos (2015) as well as in the
presented models by Bonello and Pham (2014a,b), the compliant height contributionh̃c in Eq. (4) is supplied
using the SEFM. This is numerically efficient, but implies that (a) the foil structure’s energy dissipation is modelled
as being viscous using an equivalent rotor-speed based loss factor; (b) the stiffness is linear and independent of
both deformation and frequency; and (c) neighbouring points in the foil are assumed to deform independently.
Other authors, such as Hoffmann et al. (2015); San Andrs and Kim (2009), have applied the SEFM merely to the
underlying bump foil structure while incorporating more comprehensive models for the top foil. In this case, the
top foil’s bending stiffness couples the deflections of neighbouring points, but any bump–bump interaction effects
are still neglected. An objective of the present work has hence been to discard the SEFM entirely in favour of a
more general foil structure model. This model should facilitate the inclusion of friction, allow for a simultaneous
solution of the equation system and be sufficiently efficient to permit time integration.
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4.1 Friction Models

Sliding friction in the foil structure is widely assumed to be an important mechanism in AFBs (Agrawal, 1997;
San Andrs and Kim, 2007; Howard and San Andrs, 2011; Le Lez et al., 2009); consequently, a friction model is
included in the present work. Time integration of friction phenomena is difficult due to the nonlinear behaviour of
the friction force near zero velocity and/or zero normal force. The potentially applicable friction models available
in the literature can be roughly divided into three categories: stick-slip bookkeeping with alternating boundary
conditions (Tariku and Rogers, 2001; Lee et al., 2009; Le Lez et al., 2007), nonlinear springs with moving reference
points (Larsen et al., 2014) and continuous dynamic friction approximations (Oden and Martins, 1985; Makkar
et al., 2005; Le Lez et al., 2008; Petrov and Ewins, 2003).

The stick-slip bookkeeping models introduce a differentiation between static and dynamic friction regimes in
which either a boundary condition or a dynamic friction force is applied. These models hence rely on a continuous
evaluation of the stick/slip states, and the abrupt changes inevitably caused by the change of state pose a challenge
to numerical stability due to non-smooth, or even discontinuous, reaction and friction forces.

A friction model relying on nonlinear springs with moving reference points has also been suggested (Larsen et al.,
2014) and shown to perform well in a quasi-static setting. The model handles the classical issue of determining the
friction force at zero velocity, but has proven difficult to apply in a time domain framework due to the requirement
of instantaneous detection of direction shifts.

The friction model applied in the current work belongs to the group of continuous dynamic friction approximations.
These are based on expressions for the friction forcefμ of the form

fμ = fN fμ f (vr ) , (6)

where fN is the normal force function andfμ f (vr ) is a smooth function of the sliding velocityvr approximating the
sign function. In the literature, various different functions can be found serving as sign approximations, including
the inverse tangent, fractions similar tovr/(γ+|vr |) and the hyperbolic tangent. The latter is used in the present as

fμ f (vr ) = μ f tanh (γvr ) , (7)

whereμ f is a dynamic coefficient of friction andγ is a smoothing parameter controlling the slope nearvr = 0 and
hence the level of approximation. As it can be seen, Eq. (7) provides no distinction between static and dynamic
friction, but this could be achieved using the extended version given by Makkar et al. (2005).

Note that while the particular choice of friction model and smoothing function is debatable, an important point is
that all of the assessed approaches share the common characteristic of velocity dependency. This is, to the best
knowledge of the authors, the case for all existing and suitable friction models.

4.2 Structural Models

The compliant structure of the Siemens AFB consists of a bump foil and a top foil. For the present purpose, a
simple one dimensional Bernoulli–Euler beam model is utilised for the top foil, as the main point of attention is
the supporting bump foil structure. This approach leaves out any axial film height variations, but this has been
shown to be a reasonable assumption (San Andrs and Kim, 2009).

For modelling of the bump foil, a straightforward plane FE approach requires several thousand DOFs per bump
(Larsen et al., 2014), and is hence precluded from time integration purposes. A model reduction technique could
possibly be applied, but here an efficient equivalent model by Le Lez et al. (2007) is used instead. In this model, the
bump foil is represented using bar elements forming a simple truss with member stiffness coefficientsk1, k2, k3,
k4, k1b, k3b and force transmission anglesθd, θdb. These coefficients are calculated from 33 analytical expressions
given by Le Lez et al. (2007) based on Castigliano’s second theorem, and their values for the present geometry are
given by von Osmanski et al. (2017).

In Table 2, the effective radial stiffness of the truss model for a nine-bump foil strip with dimensions from Table 1
is compared to results from a plane FE model based on a very accurate replication of the actual foil geometry.
To emphasise the significance of the boundary condition at the foil–housing contacts, results are included for
both rolling and pinned supports at this interface. The truss coefficients from Le Lez et al. (2007) are based
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on the case of rolling supports, meaning that the bumps are allowed to slide circumferentially with no frictional
resistance. Considering that the widely used expression by Walowit and Anno (1975) predicts a uniform stiffness
of 0.88GN/m3, the observed agreement between the truss and plane FE models is very good. If the foil–housing
contacts are pinned, i.e. restrained from circumferential sliding, the effective truss stiffness is increased more than
fivefold, while the plane FE model stiffness increases at least tenfold. A similar stiffening was observed by Feng
and Kaneko (2010) and should be kept in mind as the two cases correspond to the extreme cases of zero friction
and permanent sticking, respectively.

Table 2: Effective radial stiffness (for a uniform pressure) resulting from the truss model compared to a plane FE
model for the two cases of (frictionless) rolling and pinned housing contact nodes.

Effective normal stiffness for each bump[GN/m3]
Condition Model 1 2 3 4 5 6 7 8 9

Sliding
Truss model 3.4 3.2 3.3 3.2 3.2 3.3 3.1 3.7 1.7
Plane FE model 2.4 3.6 3.2 3.3 3.3 3.3 3.1 4.5 1.6

Pinned
Truss model 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8 11.0
Plane FE model 42.5 43.6 43.7 43.8 43.8 43.8 43.7 43.340.5

The truss model is formulated as a static model, meaning that it is governed by a system of algebraic equations.
Coupling any (quasi-) static model directly to the differential equations governing the fluid film and the velocity
dependent friction model gives rise to certain issues. These become evident if considering the simple mechanical
system sketched in Fig. 2. It comprises a single point mass supported by four massless springs affected by a friction
force in a configuration similar to the bump foil truss model. Writing out the governing equations in first order
form, the following system can be obtained:






0
0
0
Ûx4

Üx4






=












2kc2
θ 0 −kc2

θ 0 0
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where
cθ = cos θd,
sθ = sin θd .

(8)

If friction is discarded, the upper three rows of Eq. (8) governing the massless truss are purely algebraic and hence
provide neither velocities nor accelerations. Together with the two differential equations governing the point mass,
this constitutes a system of semi-explicit differential/algebraic equations (DAEs). The DAEs represent a superset
of the ODEs and are, in general, more troublesome since no guarantees on solution uniqueness or existence can be
given as is the case for ODEs (see Poulsen et al. (2002); Petzold (1982)). Without friction, Eq. (8) is nevertheless
very easy to solve. It could be condensed and solved as two first order ODEs, or it could be solved as is using a
DAE solver.

Introducing friction, the solution of Eq. (8) becomes considerably more troublesome since the velocity required
to determine the orientation and size of the friction force is not available. Obviously, this could be reconstructed
using information from previous time steps using finite difference, but this would violate the requirement for a
simultaneous formulation and reintroduce the demand for temporal convergence studies. In the case of a strictly
positive normal force, the system could be considered as an implicit ODE (or DAE), but for any reasonable ap-
proximation to the sign function, this system is too stiff for practical purposes. In the actual AFB model, the case
of zero normal force, implying zero friction force for any sliding velocity, would furthermore have to be spanned
leaving the very structure of the equation system state dependent.

From a physical point of view, the fundamental issue is the lack of inertia to smooth out the displacements caused
by the rapidly changing friction forces in the vicinity of zero sliding velocity. As a remedy, it is therefore natural to
introduce the foil mass, even though this is per se insignificant to the overall rotordynamic response. Lumping the
bump foil mass onto the truss structure (giving a diagonal mass matrix) the equations are remoulded from algebraic
to differential with sliding velocities directly available. Coupling the obtained bump foil differential equations
to the (also dynamic) Bernoulli–Euler beam top foil model and the friction model, the overall foil structure is
assembled as visualised in Fig. 3. Notice that viscous dampers have also been introduced in the truss. These are
principally undesired as a main objective is to model frictional instead of viscous dissipation, but a slight structural
damping has proven numerically necessary due to the very high natural frequencies in the foil ranging up to around
500 kHz. The frequency range of interest for the rotordynamic response goes to around500Hz, and is hence well
separated from the first natural frequency of the foil structure at around2 kHz. This allows a proportional damping,
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Figure 2: Mechanical system illustrating the challenges of using a massless foil model. It comprises a point
mass (governed by a second order differential equation) supported by a massless truss (governed by four algebraic
equations) subject to a friction force.
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Figure 3: Illustration of the foil structure model for three bumps interacting with the journal through the generated
fluid film (grey area).kj, dj denote the truss element stiffness and damping, whileθ j are the transmission angles
and fμ represents the friction forces. Notice that the last bump uses different coefficients than the remaining ones.

providing a damping ratio ofζ = 0.001 at 500Hz, to be introduced to effectively dampen out the foil structure
dynamics while leaving the dynamics of interest virtually unaffected.

Collecting the DOFs of the foil structure for each bearingα = A, B into the foil state vector̃uα, the system of first
order nonlinear ODEs governing the structure in Fig. 3 can be written as

Û̃uα =

Ã f

︷                      ︸︸                      ︷
[

0 I

−M̃−1
f K̃ f −M̃−1

f D̃ f

]

ũα +

{
0

M̃−1
f

(
fμ

(
ũα, Û̃uα, p̃α

)
+ f p (p̃α)

)
}

, (9)

whereM̃ f , D̃ f andK̃ f are the mass, (proportional-) damping and stiffness matrices of the foil structure, respec-
tively. The vector functionfμ represents the friction forces at the contact nodes given from Eq. (6) and the vector
functionf p represents the work equivalent nodal loads on the top foil stemming from the fluid film pressurep̃α.
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Figure 4: Hysteresis curves at the summit of bump three in the second pad segment (θ = 180◦) for 0.5 s of
simulation from a rotor drop from the centre with (left) and without (right) friction. The dashed lines are fits to the
last 0.125 s and indicate the local effective foil stiffness.

5 Structure of the Assembled Equation System

The three sets of first order ODEs representing the rotor, fluid and foil structure domains given from Eq. (1), Eq. (5)
and Eq. (9) are now coupled. For this purpose, the global state vector

y =
{
ψT

A ψT
B ũTA ũTB zT1 zT2

}T
, (10)

is introduced, using which a single system of nonlinear first order ODEs can be written as
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. (11)

The nonlinear functionsg Ûψα on the right hand side of the upper equations representing the fluid film are defined
from Eq. (5), while those in the midmost rows representing the foil structure,g Û̃uα, are given as the nonlinear part
of Eq. (9).

It should be noted that the numerical time integration of the coupled equation system given from Eq. (11) is a
nontrivial task. To make the presented foil model extension practically feasible, considerable prior optimisation
of the SEFM based time integration code has been necessary. Through these efforts, the SEFM based simulation
times has been reduced from days to minutes; but with the new foil structure, especially the friction model, the
relevant simulations nevertheless take in the order of 24 hours to complete.

6 Results & Discussion

To provide insight into the behaviour of the foil model and the influence of friction, a rotor drop from the bearing
centres with a high level of unbalance at20 kRPM is simulated for0.5 s with and without friction. In Fig. 4,
the mean axial pressurẽpm is plotted as a function of the top foil deformationhc at θ = 180◦. This point is in
the heaviest loaded region and coincident with the summit of bump three in the second pad. Settingγ to zero,
effectively deactivating the friction model, the foil behaves linearly and no friction-induced hysteresis is present.
Fitting a line to the last125ms reveals a local stiffness of3.2GN/m3, which is very close to the statically obtained
values from Table 2. Activating the friction model usingγ = 104, a hysteresis loop opens up and the fit now gives
a line passing diagonally through the hysteresis loop indicating an increase in effective stiffness to6.8GN/m3.

In Fig. 5, the vertical eccentricity ratio in bearingA is plotted during the first and last40ms of the rotor drop
simulation both with and without friction. In the transient part, the inclusion of friction lowers the displacement
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Figure 5: Vertical eccentricity ratioεAx with friction (γ = 104) and without (γ = 0) friction. The first40ms after
the rotor drop are shown to the left, while the final40ms, where steady state has set in, are shown to the right.
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Figure 6: Circumferential displacement, i.e. sliding, of the bump foil–housing contact nodes of the four leading
bumps in pad segment two. The left plot shows the first40ms after the rotor drop, while the right plot shows the
final 40ms of the simulation where steady state has been reached.

amplitudes, but almost identical steady states are eventually reached. This indicates that the equilibrium position
is determined by the structural stiffness alone. This is in the order of3–4GN/m3 and hence much lower than the
equivalent SEFM stiffness of9GN/m3 used by Larsen and Santos (2015). The value of9GN/m3 was based on
a number of ”engineering assumptions” and was intended by Larsen and Santos (2015) to represent the dynamic
foil stiffness, but as the applied model made no distinction between static and dynamic behaviour, this resulted in
equilibrium points lying much higher than those obtained from the present model. If the effective static stiffness
of the foil structure is in fact closer to9GN/m3, as suggested by the agreement to experimental results, the foil
structure must, at least partly, be sticking.

Fig. 6 shows the circumferential sliding displacement for the first four bump foil–housing contact nodes in the
second pad during the first and last40ms. The presence of friction is evident in both plots from the characteristic
flattened peaks and valleys related to the sign change of the friction forces. As both the mean displacements and
the dynamic displacement amplitudes increase along the pad (this is also true for the remaining five bumps), the
frictional energy dissipation will be largest for the bumps closest to the trailing edge.

The original motivation for introducing a friction model was twofold:(a) to circumvent the requirement for an
empirically determined and constant equivalent stiffness; and(b) to avoid the inclusion of an empirical mechanical
loss factor. It is evident from Fig. 4 that the friction model provides damping and that it increases the effective
dynamic stiffness. It has, however, also been shown that the friction induced dynamic stiffness does not affect the
equilibrium position. This means that the present AFB model results in steady state rotor eccentricities determined
solely by the structural foil stiffness, while its dynamic characteristics at this equilibrium are influenced by friction.
The effect is sketched in Fig. 7, where the left plot shows the radial deflection of a bump subjected to the load
profile shown to the right. When loading up, point ”A” is reached tracking the upper edge of the global hysteresis
loop, where the effective stiffness is that of the sliding structure plus a frictional contribution. Ramping down
the load, a line parallel to the right edge of the global loop is tracked to point ”B” while the direction of sliding
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Figure 7: Sketch of the frictional drift present for the dynamic friction model. The right plot depicts a hypothetical
load profile applied to a single bump and the left plot is the resulting displacement.

and hence the frictional force is reversed. Ideally, the effective stiffness is here close to that of a pinned bump, as
no sliding should occur while the friction force changes direction. Note that the friction force crosses zero and
changes direction as the dashed line indicating the sliding bump stiffness is crossed. Further decreasing the load
from ”B”, the global hysteresis loop is tracked until ”C” while the contact slides. Increasing the load to ”D”, the
same stiffness as between ”A” and ”B” is experienced, but as the load is lowered from ”D” towards ”E”, a frictional
force sign change is required without any sliding. This is not possible for the dynamic friction model, meaning
that the contact point will drift towards the frictionless equilibrium for each sign change made within the global
loop. These drifts are marked in red in the plot (the short horizontal arrows) and even though their magnitude is
dependent on the smoothing parameter, point ”F” will eventually be reached. At this point, the oscillations take
place around the same equilibrium as would have been reached without friction.

7 Conclusion

The paper has presented an alternative foil structure model for AFB simulation based on a truss representation of
the bump foil originally proposed by Le Lez et al. (2007). The top foil is added using a simple one dimensional
Bernoulli–Euler beam and a dynamic friction approximation is included to model frictional energy dissipation at
the top foil–bump foil and bump foil–bearing housing interfaces. The usually applied foil structure models are
static, i.e. represented by algebraic equations, but it is argued that the combination of a simultaneous solution in
time and a friction model requires the inclusion of the foil inertia. This is achieved by augmenting the bump foil
truss and top foil beam elements with lumped masses and subsequently to eliminate the entailed very high natural
frequencies using stiffness proportional damping.

The new foil structure model is coupled to a nonlinear time domain model of a rigid shaft supported by two AFBs
as a replacement for the SEFM. This allows the SEFM’s inherent assumptions of viscous dissipation, constant
stiffness and decoupled neighbouring points to be abandoned, and the empirically determined equivalent stiffness
and loss coefficients of the SEFM can be replaced by directly measurable quantities.

The numerical results from the coupled model demonstrates that energy is dissipated by the friction model and
that an increased effective dynamic stiffness is introduced. It is, however, evident that the dynamic stiffness caused
by friction does not affect the obtained steady state position in the current model. This is reasonable considering
the applied dynamic friction approximation, as this is not capable of representing true sticking and hence will
allow net sliding until the equilibrium position dictated by the structural stiffness is reached. This is interesting,
as the equivalent SEFM stiffness used by Larsen and Santos (2015) to obtain unbalance responses in very good
agreement to experimental results, was based on the dynamic foil structure stiffness. In the SEFM, no distinction is
made between the static structural stiffness and the friction induced dynamic stiffness, meaning that much higher
foil compliances and rotor eccentricities are obtained using the new model than was the case using the SEFM
(Larsen and Santos, 2015).

The agreement to experimental results achieved using the SEFM, with a constant equivalent stiffness much higher
than that of a sliding bump foil structure, suggests that sticking is in fact a prevalent state. This would imply
that the orbits predicted using the new foil structure model are too low-lying and, most importantly, that frictional
dissipation is not as significant as generally assumed.
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Practical Approach for Solving Vibrations of Large Turbine and 
Generator Rotors - Reconciling the Discord between Theory and 
Practice 

Z. Racic, M. Racic

The purpose of this paper is to illustrate a different perspective in viewing and solving vibration problems in 
large rotating machines regarding the commonly seen discord between theoretical predictions of dynamic 
behavior, especially the standard predicted and expected "fixes" to many vibration problems, versus observed 
operation in practice when unexpected vibration problems still remain or arise anew.  The paper will also 
discuss the key root causes behind this discord with regard to large turbine and generators rotors, and behind 
unexpected or unexplainable vibration in operation, usually after a major outage.  In short, the primary cause in 
a substantial portion of such cases is the presence of “significant”, axially distributed mass eccentricities 
inherent to individual rotors, or compound eccentricities from misaligned rotors or bearings.  These cases 
require a different approach versus the methodology traditionally utilized for diagnosing and resolving 
“unbalance responses” in general, on a variety of rotating machines of different sizes and operating speeds.  
The paper also presents and describes an improved rotor balancing approach when dealing with such cases.  
These problems should be ideally resolved in service shops, and when balancing significantly eccentric rotors in 
balancing facilities, it is necessary to apply a new balancing method using 2N+1 balancing planes, where "N" is 
the highest mode reached in operation.  

1 Introduction  

Over many years of consulting work, the authors have recognized that at any number of power plants, turbine-
generator rotor vibration problems continue sometimes for years without an effective resolution, despite the best 
efforts of OEMs and plant engineers and other consultants to solve them.  It is likely that most practicing  
engineers working in this area of rotordynamics and vibration have encountered special cases where the machine 
appears unaware of the theoretical behavior it is supposed to adhere to.  Likewise, the suspected root causes and 
proposed solutions predicted by standard theory do not always reliably resolve the turbine-generator vibration 
problems at hand.  In a lot of these cases, any excessive discord between predicted and actual measured behavior 
is written off as "nonlinearity" or as due to unknowable external variables.  Subsequently, an educated series of 
what become essentially trial-and-error solutions (particularly field balancing) are usually attempted until finally 
a combination arises that creates a tolerably running machine.  

However, through many years of focusing on troubleshooting these kinds of special cases, it is evident that a 
good majority of these situations actually do tend to follow a regular and predictable pattern of root cause, and 
can be treated with a reliable framework of solutions - if the observed symptoms are properly recognized and 
understood.  The root cause of "unexplainable" vibrations is almost always the presence of distributed mass 
eccentricity in the rotor train.  This includes distributed eccentricity on individual rotors (such as a rotor bow, or 
skewed generator retaining rings, etc.), and includes induced eccentricity within an overall rotor train (such as 
from bearing or coupling misalignment, off-square couplings, etc.).     

The largest point of discord arises when interpreting high measured rotor vibration as resonant modal excitation 
(or "unbalance response"), and likewise attempting to resolve it by balancing, when the real root cause is actually 
distributed mass eccentricity.  Distributed mass eccentricity is commonly and often erroneously considered as a 
particular subset of unbalance.  However, there are subtle but crucial differences in rotor behavior and in the 
approach and viewpoint needed to recognize and address distributed eccentricity versus typical unbalance.  First, 
it is important to distinguish between the definitions of "unbalance" and "eccentricity". 

"Unbalance" as addressed in this paper can be considered as any axially-localized mass that produces net-
asymmetric centrifugal force when under rotation, but that doesn't otherwise statically shift the mean mass center 
axis of the rotor (such as the effect of a chipped blade, or variance in blade static moment weight).  "Unbalance" 
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forces can act as a source of excitation of resonant responses at system critical speeds, creating whirling (an 
enlarged shaft orbit) when passing through the critical(s), but it doesn't otherwise affect the rotation or 
orientation of the rotor in its bearings.   It is important to remember that any resonant modal response requires a 
sufficient force to act as a source of excitation, or otherwise the rotor will pass through its system critical speed 
regions without a visible increase in the shaft orbit amplitude (or so-called high vibration).  
 
"Distributed mass eccentricity" produces the same excitation effects as unbalance, but with the important added 
effect that it also statically shifts the mean mass center axis of the rotor relative to the rotor's geometric axis.  
This means that there is a net parallel offset and/or skew (depending on axial eccentricity distribution) between 
the rotor's geometric centerline axis and the actual mean mass axis (the "amount" of eccentricity), which itself is 
constant regardless of the rotor’s modal deformation.  The geometric axis refers to the line connecting the 
concentric journal centers, based on the rigid shape of the rotor, and is the line through which torque is applied.  
If the rotor dynamically and elastically bends at high speed or under resonance, both the geometric axis and the 
mass axis would equally distort along with the elastic bent shape of the rotor.  The threshold of relevance (by 
practical experience) when the amount of mass eccentricity can be considered "significant" enough to have an 
effect is generally around ~0.05 mm (~0.002 inches).  (Note, by the author’s interpretation,  ISO 1940-1, for 
class G2.5 rotors, gives a more conservative value at 0.025 mm (0.001 inches) based on modal mass at the 
system fundamental harmonic frequency.)  
 
The rotor's mass axis itself can also be thought of in two separate ways.  One way would represent the intrinsic 
rotor mass eccentricity of the stationary rotor. This is essentially the curving line connecting the radial mass 
center of every "slice" of the rotor, and would never change with speed.  The second way would be to 
additionally incorporate any induced modal bending of the rotor (which would be speed dependent), and create a 
straight line through the centers of the modal masses of the purely rigid segments (or elements) of the rotor.  The 
latter can be referred to as the "modal mass axis". 
 
The key consideration when dealing with significant mass eccentricity is the recognition that every object if free 
and unconstrained has a natural tendency to rotate about its center of mass (by conservation of angular 
momentum).  Any object rotating in this manner is perfectly balanced, and would produce no forces against any 
constraint holding it in space.  Likewise, any object not rotating about its center of mass must be forced into 
maintaining this "unnatural" state by an imposed constraint, and will produce cyclic forces against its constraint 
with each revolution.   For horizontal rotors, the applicable constraints are the rotor bearings and the force of 
gravity holding the journals in the bearings at the points of contact.  In multi-rotor trains, adjacent 
rotors/couplings also act as constraints.   
 
When dealing with a rotor with significant mass eccentricity, the rotor's natural tendency is to rotate about its 
mean mass axis, which incorporates any eccentricity.  However, the rotor is constrained by gravity in its bearings 
and is forced to spin about its principal rotation axis defined by the line connecting its journal centers, assuming 
the journals are concentric.  Likewise, torque is applied concentrically to the rotor about this same principal 
rotation axis, either transferred concentrically through an adjacent coupling or via turbine blades.  The net result 
is the rotor being maintained in a forced unnatural state of non-centroidal rotation.  This requires a perpetual 
force to be applied by and against the constraints (bearings), as a force-pair to the reactive centrifugal force being 
generated by the mass eccentricity of the rotating rotor.  Unlike "unbalance", which produces enough centrifugal 
force only to excite the resonant modal responses at the critical speed regions, the reactive centrifugal force from 
distributed mass eccentricity is sufficient to affect the rotor motion through much of the speed range, in a manner 
proportional to increasing speed.  These responses would be considered the "rigid modes" of the rotor (lateral 
translational and conical or "rocking").  These rigid modes are entirely dependent on the presence of mass 
eccentricity and its axial distribution, and cannot and should not be treated in the same manner as resonant modal 
excitation from "unbalance".   
 
Generally speaking, the traditional theoretical-based approaches to resolving rotor vibration tend to focus on 
unbalance as fundamental, and on mass eccentricity as secondary or as simply another form of the same thing.  
However, by experience, whenever distributed mass eccentricity is present on a rotor or within a rotor train, it 
must be recognized and resolved as the fundamental problem before dealing with any modal excitation from 
unbalance.  This applies equally to rotor trains installed in the field and to individual rotors on a balancing 
machine in the shop.  It could be argued that recognizing these differences (and evaluating the presence of 
eccentricity) is actually the most relevant and critical when balancing a rotor with significant mass eccentricity in 
a high-speed balancing facility, prior to installation in the field.  Furthermore, it is also crucial to distinguish that 
a rotor with significant mass eccentricity behaves differently at speeds below the fundamental system critical 
speed (first critical) and at speeds above it.   
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2    Common Points of Discord between Theory and Practice 

In a wider sense, the differences between the classical interpretation of unbalance and the focus on eccentricity 
presented here originate in the application of rotor condition assumptions used within theoretical rotordynamics 
for predictive modeling purposes and to simplify mathematical modeling.  This is not to point out a problem 
with modern classical rotordynamics theory, which is well proven in its general predictive ability.  Rather the 
discord arises with the practical means of application of the theory to troubleshooting and diagnosing problems 
within operating  machines, and in creating practical solutions to remedy these problems.  This can occur when 
applying assumptions regarding often-unverified real-life rotor conditions, when the rotors do not adhere to the 
boundary conditions and assumptions required within the theory (namely rotor concentricity/symmetry).  This 
applies especially to the measurement and evaluation of 1x and 2x rotor eccentricity, as well as coupling 
perpendicularity, journal concentricity and issues arising from bearing misalignment.   

2.1   Rotor Reference Frames and Axes 

Generally speaking, the standard theoretical models upon which rotor vibration behavior (and subsequently rotor 
balancing) is understood assume a concentric rotor, with added static and dynamic "unbalances" that are reduced 
to point masses.  For an otherwise concentric rotor, this approach is accurate, and creates no issues.  For 
eccentric rotors, it can lead to problems.  Distinguishing unbalance and eccentricity becomes important when 
recognizing rotor behavior within the speed region of the fundamental system harmonic frequency (first critical 
speed); namely the rotor's center of rotation switches from a forced centering around the journal (geometric) axis 
to a natural re-centering and re-orientation around its mass axis.  As previously described, when significant 
eccentricity is present, there are two initial reference axes of note within the rotor itself:  the journal (geometric) 
axis about which the rotor is constrained within its bearings, and the true mean mass axis that governs the rotor's 
natural tendency of rotation.   
 

 
Figure 1. Reference coordinates and axes within an eccentric/bowed rotor 
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Note that when in dynamic motion, there are five relevant axes or frames of reference:  1) the stationary global 
coordinates that represent the standstill rotor shaft centerline position within each bearing (the proximity sensors 
remain fixed to this reference), 2) the non-rotating but slowly shifting "inertial frame" representing the "static" 
axis line connecting the rotor shaft centerline at each bearing through all speeds (the "virtual" center points of the 
shaft orbit), 3) the "geometric axis"  or neutral axis representing the concentric geometric centerline of each 
radial "slice" of the rotor through which torque is applied and transferred (including dynamic bending), 4) the 
"journal axis" which represents the line connecting the journal centers not including any dynamic bending (this 
can also be called the principal rotational axis), and 5) the mass axis as previously described.  When the rotor 
exhibits only rigid-mode behavior (no dynamic or resonant bending), the "geometric axis" and "journal axis" are 
coincident.  When the rotor is in motion, the geometric axis (transmitting torque), journal axis and the mass axis 
(and the resulting forces in reference to these axes) are most easily recognized and described within a rotating 
reference frame (Figure 1).   
 
Below the first system critical speed peak, the rotor maintains its forced constrained rotation about its journal 
axis.  This leads to the increasing rotor forces and whirling seen while accelerating toward the critical speed 
peak, as net centrifugal force arises from any eccentric mass.  Upon passing the critical speed peak and at higher 
speeds, the rotor achieves a new mode of rotation self-centered about its mean mass axis, to the extent that 
bearing clearances allow, in accordance with its natural tendency to rotate about its center of mass, based on its 
eccentricity distribution.      

2.2    Points of Discord within Applied Rotor Balancing 

Balancers often carry and apply a number of common theoretical modeling assumptions to practical shop and 
field balancing practices that can lead to unrecognized errors and create problems in the field.  One of the points 
of discord with traditional theory (or modeling) relative to real-life rotor balancing is the consistent focus on only 
a single axis of rotation for all speeds and conditions, generally based on the stationary global coordinates.  A 
second is the assumption that all balancing performed both below or above the first critical speed is equivalent.  
This overlooks the switch in rotation axes through the first critical speed region, and therefore implicitly assumes 
that the journal axis remains the sole reference frame for all speeds, and that all measured dynamic rotor 
vibration amplitudes at all speeds are caused by unbalance relative to this reference axis.  The balancers then 
focus their efforts on resolving only dynamic modal displacement responses observed and measured at the 
journals (at the bearings as points of constraint).  The rotor is assumed to bend or deflect at any speed by 
centrifugal force(s) acting radially out from the "inertial frame" axis line. Therefore, this approach diminishes the 
relevance the shaft centerline path and recognition of speed-dependent rigid mode responses as indicators of 
unresolved mass eccentricity.  
 
A similar understanding can be applied within assembled rotor trains as a whole, where bearing misalignment 
can lead to induced bows in flexible rotors when the couplings of adjacent non-parallel rotors are pulled and 
bolted together.  This situation is quite commonly seen, particularly when rotor coupling faces are unknowingly 
off-square, but still used to set the bearing alignment via standard 16-point coupling gap and rim measurements.   
The off-square couplings combined with resulting misaligned bearings lead to induced "static" bows within the 
rotor train and unexpected vibration in operation, often seen as shaft whirling at outboard bearings or as seal rubs 
as the rotors attempt to "naturally" self-align under increasing inertia and applied torque in accordance with the 
overall mass axis of the rotor train.  Attempts to field-balance such a condition believing it to be rooted in 
"unbalance" are not often successful, and can actually create larger long-term problems or damages within the 
rotor train due to imposing additional internal cyclic bending moments and corresponding axial forces on the 
rotors.   
 
Shop balancers also often neglect the relevance of the self-orientation of the "inertial frame" which represents 
the natural shift or skew in space (within bearing clearances) of the principal rotation axis, dependent on the 
distribution of mass eccentricity (observable in the shaft centerline path).  When significant eccentricity is 
present, balancers will inadvertently balance an eccentric rotor about its mass axis when at speeds above the first 
critical speed region.  This can still lead to a very well-balanced rotor when it is spinning unconstrained and solo 
in the balancing facility.  The problem arises upon installation in the field when this rotor is installed within a 
rotor train and constrained by adjacent rotors to maintain rotation about its journal axis even above its individual 
fundamental critical speed.   
 
The balance weights that were placed in the shop during the balancing process above the critical speed region 
(relative the self-orientation governed by the rotor's mass axis) now create an unbalanced condition in the field.  
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The rotor will still naturally tend to self-align to its mass axis, but if constrained against doing so, it will require 
increasing forces proportional to speed to maintain that "unnatural" state of rotation.  Upon the assembly and 
restart of a unit in a power plant following a major outage, this can frequently lead to unexpected or stubborn 
vibration with a rotor that was supposedly “balanced” in the shop.  These forces will be reflected as either high 
dynamic vibration amplitudes where the rotor has clearance to whirl, high bearing seismic forces or high bearing 
metal operating temperatures where the bearings constrain such motion, or will be absorbed in more flexible 
rotors as internal cyclic bending.  Such internal bending can create hidden damage over time, especially in 
generator rotor materials and other assembly components.   
 
The primary focus in balancing should first be the evaluation of mass eccentricity on every rotor.  If 1x evaluated 
eccentricity near 0.050mm (~0.002 inches) or greater is seen, then the balancer's focus needs to be placed on the 
often-overlooked overall static asymmetry of the mass axis of the rotor relative to its journal axis, and on rigid-
mode behavior at speeds below the fundamental system critical speed range up to the critical speed peak 
amplitude.  The rigid modes of the rotor must be addressed and "balanced" first at “pseudo high speed” (Ehrich, 
1993) to avoid the source of unexpected dynamic behavior (the change in rotational axis and self-centering of the 
rotor) when the rotor is accelerated to speed at and above the fundamental system resonance velocity (1st critical 
speed).   
 
Another important area of consideration in balancing is the axial distribution of correction weights.  In standard 
balancing methods, the first critical speed response is addressed first, and is usually compensated with a single 
weight placed at the midplane (N-method) (Bishop, 1972).  In flexible rotors with significant eccentricity, this 
type of correction for the first critical response results in a too-concentrated weight, and acts to bow and distort 
the rotor around the midplane.  In effect, the balancer is inadvertently attempting to push and bend the rotor's 
geometric axis to align the journal centers to coincide with the rotor’s mass axis.  This results in deforming the 
rotor and introduces internal cyclic bending moments within the rotor body.  This can be particularly problematic 
for longer term operation of generator rotors, which can experience premature fatigue in internal insulation and 
windings, leading to electrical shorts and other damage.  Also, corresponding axial forces generated from this 
cyclic bending may create forced or resonant excitation of free standing turbine blades.  
 

 
Figure 2. Comparison of post-balancing condition between balancing in N (bottom) and 2N+1 (top) planes 

 
When balancing rotors with mass eccentricity distributed across a sizeable portion of the rotor body (any 
permanent bow or distributed asymmetry on the rotor between the bearings), the rigid-mode eccentricities need 
to be statically compensated around the principal rotational axis by mirroring the eccentricity distribution 
without otherwise bending or distorting the rotor (Figure 2).  In a balancing facility, this must be performed at 
rotational speeds at or below the fundamental critical speed of the rotor-bearing system, restoring the symmetry 
of the rotor about its journal axis and eliminating the rotor's rigid-mode responses.   This is necessary to prevent 
the rotor from switching its center of rotation to the mean mass axis once above the critical speed.  To achieve 
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this goal for significantly eccentric rotors, it is necessary to follow a new balancing method using 2N+1 
balancing planes (similar to a patented method applied in practice by GE (Ehrich, 1993), where "N" is the 
highest mode of the rotor within its designed operating speed range).  This also means that the rigid modes of a 
bowed rotor must be balanced at minimum in three balancing planes (Racic, 2014a).  

2.3   A Look at Real Rotor Behavior 

To better conceptually define the idea meant by “rigid mode” behavior in this paper, consider the motion of a 
bowed flexible rotor at higher speed which is undergoing some amount of induced elastic bending while in some 
orbital lateral translation or pivotal rocking motion.  We can conceptually dissociate this total rotor motion into 
two parts, a rigid component and a flexible component.  The “rigid-mode” component of the motion is 
representative of the dynamic motion of the rotor in its innate bowed shape. This is generally limited to motion 
of the journals within the oil film of hydrodynamic bearings.  The flexible or elastic-bending component is 
representative of any superimposed bending deviation of the rotor from its innate shape.  The rigid-mode rotor 
motion is tied purely to any distributed mass eccentricity on the rotor and to its effect on the position and skew 
of the rotor’s mean mass axis relative to its inertial frame.   
 
The elastic-bending component is tied to the centrifugal force generated at any given speed by any points of 
“unbalance” on the rotor.  This can additionally include the centrifugal force generated by distributed mass 
eccentricity, and also includes any amplified harmonic modal responses from resonant excitation.  There is some 
conceptual overlap in this visualization, in that mass eccentricity both affects the static symmetry of the rotor, 
and can act as unbalance generating a centrifugal force to induce bending deflection of a constrained rotor 
(Racic, 2014b).  In diagnosing the cause of observed vibration and in identifying an ideal balancing solution, the 
rigid-mode behavior should be viewed and treated as fundamental, and the elastic-bending component should be 
secondary.   
 
It has been experimentally shown (Zhyvotov, 2011) that in a torque-driven rotor at speeds below its first system 
critical speed peak, its mass center axis (intrinsic rotor mass eccentricity) is synchronously rotating around its 
geometric axis.  Above the first system critical speed, the rotor's geometric axis is rotating around its mass axis.  
These rotations are referenced within the rotor body itself, best viewed in a rotating reference frame centered 
within the rotor body.  At the same time, the rotor’s geometric axis is laterally translating (essentially 
synchronously) in an orbit around the rotor’s principal rotational axis (the straight line connecting the journal 
centers).  This is best referenced from the non-rotating "inertial frame" represented by the shaft centerline 
position at each bearing (the "virtual" center of each orbit).    
 
When an eccentric rotor is rotating at speeds below its system critical speed range, it behaves as in the upper 
image shown in Figure 3, since the rotor journals are held and constrained by gravity in their bearings.  Above 
the peak of the first critical speed range, the rotor's natural tendency is to rotate around its mass axis, as shown in 
the lower image in Figure 3.   When rotors are unconstrained, rotated in free space, or rotated vertically, (e.g. 
like a spinning top, or vertical hydro-turbine-generators or other vertical machines), the natural tendency of 
rotation would resemble the lower figure at any speed and always naturally self-center around its mass axis.  
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Figure 3. The natural behavior tendency of bowed rotors (top) and (bottom) the first critical speed 
 

For a better understanding of real life vibration problems the combined turbine-generator rotor-bearing system 
can be thought of as comprising two interconnected equilibriums, one being the non-rotating “static” equilibrium 
between the shaft and the bearing (best viewed in an inertial reference frame), and the other being the rotating 
“quasi-dynamic” equilibrium of the forces in the spinning rotor itself (best viewed in a rotating, non-inertial 
reference frame).  These equilibriums are "cross coupled" (Figure 4) and affect each other, and instability in one 
can produce instability in the other.  The non-rotating, "static" equilibrium of the rotor position in the bearings 
remains generally stable (only following the shaft centerline path). It is held by gravity load which is constant, 
and oil hydrodynamic forces which govern the rotor’s elevation in the bearings.  The rotating “dynamic” 
equilibrium remains referenced to the geometric center of the shaft or its neutral centerline.   
 
The dynamic forces originating from rotor rotation/orbit are vectorially summed with the static forces from the 
static equilibrium in the bearings.  The net summation then governs the position and orientation and stability of 
the rotor in its bearings.  In an eccentric rotor, the internal moments and forces dynamically generated by any 
eccentric mass (tangential forces in particular) will at some sufficient speed govern the rotor’s orientation in 
"search" of its static bearing equilibrium. If gravity loading on a bearing is low, these forces can potentially 
create subsynchronous rotor instabilities. 
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Figure 4. Cross coupling between "static" and "dynamic" forces during rotation under torque, the static best 
                viewed in an inertial reference frame (left) and the dynamic in a rotating reference frame (right) 

 
The real generated vibration of a flexible rotor is not a single simple motion and is not truly as modeled by a 
linear mass-spring-damper analogue, since the “vibration” of the rotor itself is really a predominantly 
synchronous translational motion in an orbit, without any real cyclic bending oscillation of the shaft itself (if the 
orbit is circular).  That said, there still is a standard radial oscillatory component within the total rotor-bearing 
system response at the bearings (points of gravity constraint) “seen” by vibration sensors located in a global 
(fixed) reference frame.  Although a “vibrating” rotor is really undergoing a combination of synchronous 
rotations, its bearing support (the oil film primarily, but also the shell, housing and pedestal) can be viewed as a 
linear, non-rotating spring under a “static” rotor gravity load.  This load is in a line of action matching the 
attitude angle of the rotor in the bearing, and is summed with the cyclic dynamic load from the translation orbit.   

3.  Rotor Balancing - Modified Approach for Bowed and Eccentric Rotors  

The key requirement of the rotor itself for balancing when any significant eccentricity is present is that the rotor 
must have at least three balancing planes, two endplanes and a midplane.  If a rotor has more "significant" body 
runout (>0.050mm, or > 0.002 inches, 0-peak), but only has two balancing planes on the ends, then a third plane, 
either a machined grove or bolt-holes must be added at the midplane.  If attempting balancing in the endplanes 
only, it can be practically guaranteed that the rotor will cause problems in the field after shop balancing, even if 
the vibration amplitudes in a balancing facility look successful.  If a third, center balancing plane cannot be 
added due to material conditions or potential thermal stresses, then the only chance of good operation in the field 
is to remove the eccentricity in the shop either by machining the full rotor to a new centerline, by “truing” the 
centers, or by thermal straightening, to bring the rotor body runout under a threshold of 0.025mm (0.001 inches), 
as referenced to the journals (Hidalgo and Racic, 2009).  
 
Historically, there have been numerous proposals and experiments of balancing in three planes, but they have not 
yet been raised to a level of general acceptance by industry or academia to become scientifically approved as 
necessary for balancing large turbine-generator rotors, at least as far as the service industry is concerned (Federn, 
1957; Kellenberger, 1967; Zorzi et al, 1979).  To have a proper and effective way of balancing and resolving the 
system responses of a flexible, bowed or eccentric rotor, there was a need to develop a new balancing method 
(Racic, 2014a).  This balancing method is a hybrid of rigid-mode balancing combined with the standard 
influence coefficient method, and is based on displacement readings, though it could also be applied based on 
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measuring and vanishing bearing reaction forces (Ehrich, 1993).  To account for rotor flexibility, this balancing 
method is based on the inverse of a particular Finite Element modeling requirement.  In the FE modeling of 
rotors, the minimum number of nodes of modal elements required in the model to ensure that no rotor modes are 
missed in calculation works out to 2N+1 (Chen and Gunter, 2005).   
 
This correlates to the minimum number of axial divisions (or balancing planes) required to divide a rotor by to 
ensure that each resulting division or modal element will then behave sufficiently as a rigid beam through the 
full speed range.  A well known idea in balancing is that any purely rigid rotor can be fully balanced in any two 
balancing planes.  By taking a flexible rotor and dividing it using 2N+1 divisions (nodal points) as in the FE 
model, each resulting division or element can be assured to behave as a fully rigid beam, with a defined number 
of constraints. As a result, each element can be properly balanced as a rigid beam in two planes.  The inner 
planes shared by two neighboring elements are essentially used twice (Figure 5). 
 
This means that any correction weights for a flexible rotor passing through the first system critical speed must 
initially be placed simultaneously in three balancing planes, symmetrically axially distributed (often 50% in the 
midplane, and 25% at each end-plane, at least as a starting point).  This can be considered as solving the so-
called “static” component of the rotor response, effectively compensating the translational rigid mode.  When 
dealing with a more flexible rotor operating above its second mode (N=2), five planes may be used to 
compensate for the mode seen at the second harmonic frequency.  This second mode is a result of an axially 
asymmetric position of the net center of mass of the rotor.  It is usually a combination of rigid-mode rocking  
(which increases in amplitude proportional to speed once above the first critical speed range) plus the resonant 
bending response at the second harmonic frequency of the rotor.  This second-mode response can be potentially 
resolved in three planes by axially redistributing the initial static correction used for the first (lateral) rigid-mode 
response without adding any additional correction masses.  In cases of a second mode for more slender, flexible 
rotors, the proper axial redistribution may have to be spread among five balancing planes, and determined with 
additional trial runs with pairs of weights to obtain additional influence coefficients for proper redistribution.  
The weights given by a “single” influence coefficient calculation (from a pair of equivalent forces) are placed 
simultaneously as a pair within each end of a single modal element.  
 

 
Figure 5. Representation of rotor element divisions and weight placements in the 2N+1 plane  
                balancing method 
 

This axial redistribution is optimized through trial runs as necessary until all dynamic cyclic reaction forces in 
the bearings are vanished (Ehrich, 1993), or displacements are minimized to the magnitude of the initial 
indicated runout.  This latter procedure is not performed at the actual speed of the second critical resonant 
response, but rather at a “quasi-high speed” not more than up to 50% above the first critical speed (Racic, 
2014a).   
 
If a very flexible rotor (such as newer types of large generator rotors) operates at or above its first flexural mode, 
or its so-called third critical, then the final trim balancing to achieve desired amplitude limit values in operation 
is determined using modal influence coefficients, but in this stage is run and measured at operating speed.  It is 
even better to balance at rotor overspeed to assure a well-balanced condition when placed in the field, where 
different bearings and support stiffness may alter the relative response and speed of the third critical.  The trial 
weight sets must be placed following the well known modal balancing weight distributions, where the sum of the 
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forces and sum of the moments of the weight distribution is zero, so as not to disturb the already corrected rigid-
mode solution by inadvertently altering the corrected net mass axis of the rotor (Kellenberger, 1972).   
 
Utilizing the 2N+1 plane balancing method is beneficial for balancing any rotor, but it is absolutely necessary 
when balancing any large flexible rotor with "significant" residual eccentricity or bowing.  Overall, it is essential 
that the rigid mode responses are resolved first at lower speeds, before even considering balancing at higher 
critical speeds (Schneider, 2006).  Because this balancing procedure is done mostly at lower speeds, the author 
of the initial iteration of this approach, (Ehrich, 1993) named it “Pseudo-High Speed Balancing.”   The modified 
and improved balancing method described in this paper has therefore been named similarly as the “Quasi-High 
Speed Balancing Method” (Racic, 2014a).  
 
As a result of using this axial distribution of balancing weights, any rotor will maintain its inherent shape, even if 
it is bowed, without any distortion during operation, which can be termed as running “dynamically straight”, i.e. 
with minimum residual error (Giordano and Zorzi, 1985).  This prevents any internal cyclic bending moments, 
which can be a problem with generator rotors especially, and prevents high cyclic forces being transmitted into 
the bearings, which often happens when standard balancing methods are applied to flexible and eccentric rotors 
in the balancing facility, or when balancing an assembled rotor train in the field.  The rotor also remains 
balanced about and naturally spinning and orbiting about its journal axis at all speeds, and behaves as if it were 
concentric, since now the journal axis is coincident with the resultant of the inherent mass axis and dynamic 
mass axis from balancing weights.  The most important factor is that this method restores symmetry to the rotor 
about its journal axis connecting the coupling and journal centers, which is the line that the rotor is constrained 
to run about in the field when coupled to adjacent rotors. The final balance weight distribution (and their 
generated force vectors) will approximately mirror the distribution of mass eccentricity on the rotor.    

4   Conclusion 

It is important to review the assumptions used to create the common theoretical understanding and predictions of 
general rotordynamics behavior, and to recognize the rotor conditions and areas in practical rotor behavior and 
balancing that diverge from those assumptions in order to more accurately identify root causes and effective 
solutions to vibration problems with rotors in operation.  Of course, the effects of resonances, damping and 
stiffness in the design of the system are still of great importance when dealing with external forces acting on 
rotors in operation, and these are generally well-studied and optimized by design engineers.  However, many 
“unexpected” vibration problems have little to do with the common areas of focus (resonances and typical 
unbalance, damping and "instability") but rather are rooted in the presence of mass eccentricities and the rigid-
mode behavior of the rotor, which is the true cause of the majority of synchronous vibration problems.   
 
The recognition of the change of rotational axes during the balancing process as a rotor is accelerated through 
the fundamental system critical speed explains why the rigid-mode eccentricities of a rotor body need to be fully 
corrected in a balancing facility at rotational speeds at or below the fundamental critical speed of the rotor-
bearing system.  This means that all eccentricity is statically compensated around the principal rotational axis, 
restoring rigid mode symmetry of the rotor.  It also shows why certain defects that can introduce eccentricity in 
operation (e.g. static runouts of couplings and journals) must be fully resolved by machining prior to balancing.  
 
It has been found by practical experience on multiple occasions that verification and correction of journal and 
coupling runouts (eccentricities), and utilizing the Quasi-High Speed Balancing Method using 2N+1 balancing 
planes in the shop prevents and solves the majority of potential vibration problems at start up after a planned 
outage, and practically eliminates the need for field balancing of turbine-generators at start-ups after a major 
outage. 
 
Based on discussions with plant managers and service shops, the estimated prevalence of flexible turbine and 
generator rotors with significant distributed mass eccentricities in the rotor service industry has statistically risen 
to over 20 percent of serviced rotors.  This fact should require that current shop and balancing methods be 
amended to first include mandatory specific measurement and mathematical 1x and 2x evaluation of rotor and 
coupling runouts, including the correction of coupling deviations by machining prior to balancing, and that 
rotors should be balanced by the new 2N+1 plane balancing method (Racic, 2014a).   Additionally, the allowable 
residual eccentricities stated in ISO-1940-1 for rigid rotors should be further applied to the concept of “modal 
elements” described in this paper, referenced to the rotor/bearing system fundamental critical speed.  
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Reduced Order Modeling of Mistuned Bladed Disks under Rotation

S. Willeke, L. Panning-von Scheidt, J. Wallaschek

In this paper, a substructure-based reduced order model for mistuned bladed disks is extended to account for the
effect of rotational-dependent dynamic properties. To reduce the overall size of the structural model, successive
transformations to reduced modal subspaces of smaller dimension are performed by means of a fixed-interface
Component Mode Synthesis, a Wave-Based Substructuring, and a Secondary Modal Truncation. Since the three-
dimensionally shaped rotor blades tend to untwist under the influence of centrifugal forces, the modal reduction
bases may undergo significant changes for different speeds of rotation. To prevent the necessity of identifying in-
dividual modal subspaces for each operating point and a repetitious passing through the full reduction process, a
multi-model formulation is used to obtain a parameterized reduced order model in terms of rotational speed. The
accuracy of this approach is assessed by comparison with full finite element models for various steady operating
conditions. In terms of computational solution time, the proposed approach outperforms the finite element calcula-
tion by 90%. Finally, numerical results are presented addressing the mitigating influence of constant and variable
rotational speeds on the amplitude amplification of mistuned bladed disks.

1 Introduction

During operation, the rotating bladed disks in turbomachines are exposed to large static and dynamic stresses.
While static loads mainly arise from centrifugal forces and thermal strains, fluctuating gas pressures and rotor
imbalances lead to forced vibrations. In particular, the periodic motion of the rotor blading through the irregular
wake pattern downstream the stator vanes is known as a major source of forced excitation. Besides this synchronous
stimulus, unsteady flow phenomena like aeroelastic flutter may cause self-excited blade vibrations of asynchronous
type. The response of the structural components to these forcing mechanisms is in turn affected by the rotational
motion. For instance, the static stresses stemming from centrifugal forces change the frequency characteristic
of the rotating structure. In addition, small imperfections caused by the manufacturing process break the cyclic
symmetry of the bladed disk and lead to a local concentration of vibrational energy. This mistuning may cause
increased blade vibration amplitudes which in turn lead to an elevated risk of high-cycle fatigue. To efficiently
predict this amplitude amplification in the turbomachinery design process, Reduced Order Models (ROM) of the
full annulus are applied.
A numerical comparison between the mistuned vibrations of a transonic shrouded fan at 8,000 rpm and at rotor rest
is presented in Moyroud et al. (2002). It is concluded from simulations that the stiffening effect of the rotational
motion mitigates stiffness perturbations between the blades and reduces the overall sensitivity to mistuning. To
approximate the evolution of mistuning under the influence of rotation, a simplified prediction method is proposed
by Feiner (2002) and by Feiner and Griffin (2004). In combination with the Fundamental Mistuning Model (FMM),
it is used to predict the response of an integrally bladed compressor disk at 40,000 rpm. A similar method for the
approximation of the mistuned blade stiffness under rotation is described by Nipkau (2011) based on an SDOF-
approach. Its application in numerical studies of a high pressure compressor blisk indicates a reduced effect
of mistuning under rotation. Experimental measurements of a mistuned centrifugal impeller by Maywald et al.
(2009) show no significant influence of rotation on mistuning for a speed range from 10,000 rpm to 19,000 rpm.
A reduced multi-model approach that allows to consider mistuning under rotation is presented by Balmès (1996),
Sternchüss and Balmès (2008), and Sternchüss (2009).
The present paper focuses on the extension of a substructure-based reduced order approach described in Hohl
et al. (2009) by the multi-model formulation proposed in Balmès (1996), Sternchüss and Balmès (2008), and
Sternchüss (2009). To this end, the modal subspaces of each reduction step are enriched by additional modes at
various operating points in the analyzed range of rotational speeds. In addition, the effect of stiffness variation
by centrifugal forces on the associated natural frequencies is incorporated by a second-order polynomial in the
structural stiffness matrix (Sternchüss, 2009).
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In order to predict the forced response of a mistuned bladed disk at an angular frequency ω, the following equation
of motion at the rotational speed Ω is solved:[

−ω2M + iωCv (Ω) + iCs (Ω) + K (Ω)
]
û = f̂e . (1)

Since the present study is focused on modeling the interacting effects of centrifugal stiffness variations and struc-
tural mistuning, any gyroscopic effects in Eq. (1) are neglected. Proportional and structural damping Cv and Cs

are considered in terms of the mass matrix M and the stiffness matrix K,

Cv (Ω) = αM + βK (Ω) and Cs (Ω) = d0K (Ω) . (2)

The vectors û and f̂e denote the displacement and forcing amplitudes of each blade k respectively,

u = ûei(ωt+φu) and fe = f̂ee
i(ωt+φe) where φe,k =

2π

N
EO (k − 1) for k = 1, 2, . . . , N . (3)

In case of synchronous excitation mechanisms, the angular forcing frequency ω is expressed in terms of the Engine
Order (EO) and the rotational speed Ω as

ω = EO · Ω . (4)

Depending on the finite element discretization of the structure, the vector û may contain numerous degrees of
freedom. To reduce the computational effort for solving Eq. (1), the problem is projected to modal subspaces of
gradually smaller dimensions.

2 Reduced Order Modeling of mistuned bladed Disks

In this section, the substructure-based reduction technique presented by Hohl et al. (2009) is summarized prior
to addressing its multi-model extension. The reduction steps include a Component Mode Synthesis (CMS), a
Wave-Based Substructuring (WBS), and a Secondary Modal Truncation (SMT).

2.1 Component Mode Synthesis

Based on the finite element representation of a single segment, the bladed disk is partitioned into a cyclic symmetric
disk and the mistuned blading components. By distinguishing degrees of freedom along the blade-disk-interface
boundary Γ from the internal domain Ξ, the matrix Z related to a component s (i.e. either a blade or the disk) at
operating point n ∈ N is described by,

Z(s,n) =

[
Z

(s,n)
ΓΓ Z

(s,n)
ΓΞ

Z
(s,n)
ΞΓ Z

(s,n)
ΞΞ

]
where Z(s,n) = M(blade),M(disk),K(blade,n) (Ω) ,K(disk,n) (Ω) . (5)

In the following simulations, the parameter n refers to different rotational speeds of the bladed disk. To verify the
extended modeling approach, a speed range from 0 rpm up to 15,000 rpm is chosen. The samples for the stiffness
matrix K(s,n) are taken at rotational speeds of 0 rpm (n = 0), 6,000 rpm (n = 1), and 12,000 rpm (n = 2,
see section 4). This range of the parameter Ω is wide enough to induce distinct changes in eigenfrequencies and
eigenvectors by stress stiffening and spin softening.
According to the fixed-interface approach by Craig and Bampton (1968), the vibrational displacement of each
component is approximated by a set of dynamic component modes Φ(s,n) related to the eigenvalues along the
diagonal of the spectral matrix Λ(s,n) and static constraint modes Ψ(s,n),

K
(s,n)
ΞΞ Φ(s,n) = MΞΞΦ(s,n)Λ(s,n) and Ψ(s,n) = −K

(s,n)−1

ΞΞ K
(s,n)
ΞΓ . (6)

By reducing the amount of retained component modes Φ(s,n) in the transformation matrix T
(s,n)
cms , a low order

modal representation for each component s is obtained,(
u

(s,n)
Γ

u
(s,n)
Ξ

)
= T(s,n)

cms

(
u

(s,n)
Γ

η(s,n)

)
where T(s,n)

cms =

[
I 0

Ψ(s,n) Φ(s,n)

]
. (7)

Subsequent to the transformation in Eq. (7), the disk and blading are reassembled along the interface Γ yielding a
reduced order model of the completely bladed disk. Mode-specific frequency mistuning is directly applied to the
reduced spectral matrix of each blade.
At this point it should be noted that the transformation matrix T

(s,n)
cms in Eq. (7) includes mode sets Φ(s,n)

and Ψ(s,n) which in turn are dependent on the stiffness matrix K(s,n). Since a change in rotational speed Ω
leads to a stiffness variation, the eigenproblem in Eq. (6) has to be solved for each operating point n.
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2.2 Wave-Based Substructuring

After the CMS transformation, the internal displacement u
(s,n)
Ξ is represented by a reduced amount of general-

ized coordinates η(s,n). The amount of interface degrees of freedom u
(s,n)
Γ , however, remains unreduced in the

model. Therefore, a limited modal basis W(n) of orthogonal displacement waves along the blade-disk-boundary
is extracted from a modal analysis of the tuned CMS-reduced blisk model,(

uΓ

uΞ

)
=

[
I 0

Ψ(n) Φ(n)

]
T

(n)
wbs

(
ξ(n)

η(n)

)
where T

(n)
wbs =

[
W(n) 0

0 I

]
. (8)

The orthonormalization of the interface modes Φ(n) is achieved by a Singular Value Decomposition (SVD) as
described by Donders (2008) and Hohl et al. (2009),

Φ(n) = Q(n)Σ(n)V(n)T
and W(n) =

{
q

(n)
i

}
for σ

(n)
i ≥ σ(n)

tol . (9)

The symbol Σ(n) denotes a rectangular matrix, while Q(n) and V(n)T
depict unitary matrices formed column-

wise by the left-singular and right-singular eigenvectors of the matrix Φ(n). Each column q
(n)
i of the matrix Q(n)

represents an orthogonal basis function and is associated to a singular value σ(n)
i . Based on a tolerance σ(n)

tol ,
the amount of column vectors is reduced and the wave basis W(n) is obtained (see section 3.5). Again, the
matrix T

(n)
wbs in Eq. (8) depends on the operating point n and has to be adapted to each rotational speed Ω.

2.3 Secondary Modal Truncation

The last reduction step is based on a modal analysis of the CMS/WBS-reduced model (superscript ∗). By retaining
a limited set of blisk modes Φ(n)∗ in the matrix T

(n)
smt, the transformation to the final modal subspace is achieved,

u
(n)
cms,wbs = T

(n)
smtη

(n) where T
(n)
smt = Φ(n) and K(n)Φ(n)∗ = MΦ(n)∗Λ(n)∗ . (10)

As outlined in the preceding sections, the Secondary Modal Truncation (SMT) in Eq. (10) requires repetitive modal
analyses at each operating point n.

3 Multi-model Extension

To account for the rotation-induced variation of the mode shapes, the modal bases for the CMS, WBS, and SMT
transformation have to be adapted to each operating point of interest. In order to avoid a repetitious passing
through the full reduction process for each rotational speed, the modal bases are enriched by mode samples at
various operating points. For this purpose, each reduction step is reformulated in terms of a multi-model approach
proposed by Balmès (1996), Sternchüss and Balmès (2008), and Sternchüss (2009). In summary, the procedure
comprises the following steps:

1. Enrich the modal basis by adding mode samples at various operating points in the relevant speed range.

2. Orthonormalize the enriched modal basis by means of a Singular Value Decomposition.

3. Reduce the dimension of the orthonormal basis by retaining a limited subset of relevant modes.

Following these general steps, the detailed reformulation of the CMS, WBS, and SMT transformation is outlined
in the following sections. To account for the stiffness variation by centrifugal forces, a second-order approximation
of the reduced stiffness matrix is applied.

3.1 Interpolation of the Stiffness Matrix

Besides the change in mode shapes, the change of the structural eigenfrequencies has to be taken into account.
The eigenfrequencies of a rotating bladed disk may either increase (stress stiffening) or decrease (spin softening)
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with rotational speed. To this end, the following interpolation of the reduced spectral matrix Krom is applied
(Sternchüss, 2009),

Krom (Ω) =

2∑
n=0

Ω2nP(n)
rom = P(0)

rom + Ω2P(1)
rom + Ω4P(2)

rom . (11)

In the present study, a fourth-order polynomial in rotational speed Ω (upper limit nmax = 2) is sufficient to
represent both stiffening and softening effects. The coefficient matrices P(n)

rom are obtained from three samples of
reduced stiffness matrices K(n)

rom at various rotational speeds Ω. In combination with the enriched reduction bases
presented in the following sections, the interpolation in Eq. (11) allows an efficient vibration prediction at constant
and variable rotational speed. It should be noted that this interpolation may be performed at any reduction level.
Since the reduced stiffness matrix features the smallest dimension after CMS, WBS, and SMT transformation, the
interpolation is preferably performed at this final stage of the reduction process.

3.2 Extended Component Mode Synthesis

According to section 2.1, the enriched CMS basis is formed by dynamic component modes Φ(s,n) and static
constraint modes Ψ(s,n) at various operating points. With respect to the second order polynomial in Eq. (11), three
sets of modal samples are used,

T(s)
cms =

[
I 0 I 0 I 0

Ψ(s,0) Φ(s,0) Ψ(s,1) Φ(s,1) Ψ(s,2) Φ(s,2)

]
. (12)

Relating the additional static modes to a reference modal set Ψ(s,0), the transformation matrix T̃
(s)

cms becomes,

T̃
(s)

cms =
[
T̃

(s)

i T̃
(s)

m

]
where T̃

(s)

i =

[
I

Ψ(s,0)

]
and

T̃
(s)

m =

[
0 0 0 0 0

Ψ(s,1) −Ψ(s,0) Ψ(s,2) −Ψ(s,0) Φ(s,0) Φ(s,1) Φ(s,2)

]
.

(13)

Next, the obtained modal basis is orthonormalized by a Singular Value Decomposition and reduced by retaining
only modes associated to singular values above a tolerance σ(s)

tol ,

T̃
(s)

m = Q(s)Σ(s)V(s)T
and T̃

(s)

m,red =
{

q
(s)
i

}
for σ

(s)
i ≥ σ

(s)
tol . (14)

A synthesis of the reduced basis T̃
(s)

m,red and its reference T̃
(s)

i leads to the enriched transformation matrix T̃
(s)

cms,red,

T̃
(s)

cms,red =
[
T̃

(s)

i T̃
(s)

m,red

]
. (15)

3.3 Extended Wave-Based Substructuring

Enriching the set of interface waves in Eq. (8) with samples at different rotational speeds

Twbs =

[
W(0) 0 W(1) 0 W(2) 0

0 I 0 I 0 I

]
(16)

and performing the rearrangement

T̃wbs =
[
T̃m T̃i

]
where T̃m =

[
W(0) W(1) W(2)

0 0 0

]
and T̃i =

[
0
I

]
(17)

yields the reduced WBS matrix T̃wbs,red,

T̃wbs,red =
[
T̃m,red T̃i

]
where T̃m = QΣVT and T̃m,red = {qi} for σi ≥ σtol . (18)
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3.4 Extended Secondary Modal Truncation

Modal analyses of the reduced blisk model at three different rotational speeds provide the SMT basis

Tsmt =
[
Φ(0)∗ Φ(1)∗ Φ(2)∗

]
where T̃smt = T̃m (19)

which is orthonormalized and reduced to form the enriched SMT matrix T̃smt,red,

T̃smt,red = T̃m,red where T̃m = QΣVT and T̃m,red = {qi} for σi ≥ σtol . (20)

3.5 Singular Value Tolerance

To illustrate the feasible range of the parameter σtol, the singular values for a bladed disk at different rotational
speeds Ω are analyzed. The effect of choosing a specific tolerance is assessed in terms of the maximum relative
difference ∆frel,max of the lowest 100 eigenfrequencies fi between the reduced and full finite element model,

∆frel,max = max

{
from,i − ffull,i

ffull,i

}
. (21)

In the following, the singular values σ(n)
i of the interface waves in Eq. (9) are presented. For simplicity, the

values σ̃(n)
i are normalized with respect to the largest singular value σ(n)

1 ,

σ̃
(n)
i =

σ
(n)
i

σ
(n)
1

. (22)

Despite different operating points n, a similar decrease of the singular values for the analyzed rotational speeds of
0 rpm, 6,000 rpm, and 12,000 rpm is shown in Fig. 1. Consequently, a common tolerance σ̃(n)

tol = 0.1 is chosen for
all three angular velocities. Exemplary values for some tolerance levels are listed in Tab. 1.

Table 1: Maximum relative frequency difference ∆frel,max between ROM and FEA as a function of the normalized
singular value tolerance σ̃(n)

tol

Tolerance σ̃(n)
tol Interface waves i Max. frequency difference ∆frel,max

0.1 100 waves < 2%
0.3 75 waves < 5%
0.7 20 waves < 10%

50 100 150 200
0

0.5

1

 = 0 rpm (n = 0)

 = 6,000 rpm (n = 1)

 = 12,000 rpm (n = 2)

0 0.2 0.4 0.6 0.8 1
0

50

100

 = 0 rpm (n = 0)

 = 6,000 rpm (n = 1)

 = 12,000 rpm (n = 2)

Figure 1: Normalized singular values σ̃ of the interface waves (left) and maximum frequency difference ∆frel,max

between the FEA and ROM with various tolerances σ̃
(n)
tol for the first 100 tuned blisk modes (right) at

constant rotational speeds Ω of 0 rpm, 6,000 rpm, and 12,000 rpm
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4 Comparison with the Full Model

To assess the accuracy of the reformulated modeling approach, the reduced order model of a sample blisk com-
prising ten bladed segments is compared to its full finite element representation. First, an appropriate discretiza-
tion of the blisk by finite elements has to be chosen by comparing the results obtained from successively refined
meshes. Since this study is focused on modeling the evolution of dynamic properties under rotation, the rela-
tive change ∆frpm,k of the eigenfrequency fk in the speed range from Ωmin = 0 rpm up to Ωmax = 15,000 rpm is
chosen as a convergence criterion between the meshes,

∆frpm,k =

∥∥∥∥fk (Ωmax)− fk (Ωmin)

fk (Ωmin)

∥∥∥∥ . (23)

The results of the mesh convergence study in Fig. 2 indicate that the maximum frequency change ∆fmax
rpm,k of

about 70% in the analyzed speed range is well predicted by meshes with at least 5,000 degrees of freedom (dof). A
detailed study of 10 mode families with two nodal diameters shows that the maximum frequency change ∆fND2

rpm,k

is related to the first mode family. In view of the computational expense to solve the unreduced finite element
model, a medium mesh size with 9,300 dof is chosen for the subsequent model verification.
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3,060 dof

9,300 dof

23,340 dof

Figure 2: Relative change ∆frpm,k of eigenfrequencies in the rotational speed range from 0 rpm to 15,000 rpm for
different finite element meshes and various nodal diameters ND

The comparison between the reduced and full model in Fig. 3 is performed at different steady operating points with
constant rotational speeds. The reduced order approximation is based on three samples of prestressed stiffness
matrices at speeds Ω of 0 rpm, 6,000 rpm, and 12,000 rpm. The number of retained modes in the enriched
CMS, WBS, and SMT bases is listed in Tab. 2. Prior to addressing a mistuned configuration under rotation, the
tuned dynamics of the blisk are discussed. In conclusion, the effectiveness of the presented approach in terms of
computational time saving is highlighted.

Table 2: Parameters of the reduced order model
CMS WBS SMT

10 modes per blade / 10 modes per harm. index 200 waves 100 blisk modes

Nodal diameter ND
0 1 2 3 4 5
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Rotational speed Ω in rpm
0 5000 10000 15000

F
re
q
u
en
cy

f
in

H
z

0

500

1000

1500

2000
Nodal diameter ND2

Ω-sample (ROM) EO2

Figure 3: Finite element model, nodal diameter diagram, and ND2-Campbell diagram of the tuned blisk (stiffness
samples for ROM taken at constant rotational speeds Ω of 0 rpm, 6,000 rpm, and 12,000 rpm)
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4.1 Tuned Blisk under constant Rotation

First, the mode shape approximation by enriched CMS, WBS, and SMT bases is evaluated in terms of the Modal
Assurance Criterion (MAC) presented by Allemang and Brown (1982). The interpolation of the reduced stiffness
matrix within a limited range of rotational speeds is rated by means of the relative eigenfrequency difference ∆frel
between the reduced and full finite element model,

MACi,j =
|ΦT

rom,iΨfull,j |2

ΦT
rom,iΦrom,iΨT

full,jΨfull,j
and ∆frel,i =

from,i − ffull,i

ffull,i
. (24)

Since slight frequency differences between the full and reduced order models may lead to a different order of
the associated mode shapes i, the resulting modal assurance criterion MACi,i undergoes abrupt changes between
maximum and minimum values. This circumstance is illustrated by a progressively increasing scatter of large
MAC values for higher modes in the contour plot of Fig. 4.
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Figure 4: Modal assurance criteria and relative frequency differences of the tuned blisk for a constant rotational
speed of 9,000 rpm

Consequently, a modified criterion MAC∗
i,j is defined which yields a gradually decreasing mode correlation for

increasing frequency deviations in Fig. 4,

MAC∗
i,j = max

j

{
|ΦT

rom,iΨfull,j |2

ΦT
rom,iΦrom,iΨT

full,jΨfull,j

}
. (25)

The accuracy of the parameterized multi-model formulation is assessed at the sample speeds of 0 rpm, 6,000 rpm,
and 12,000 rpm as well as intermediate and extended speeds of 3,000 rpm, 9,000 rpm, and 15,000 rpm. A MAC
level above 0.96 and a relative frequency difference below 1% for the first 110 modes in Fig. 5 demonstrates the
accurate approximation of free blisk vibrations at different rotational speeds by the reduced order model. While
this decent approximation is expected for operating points which are included as stiffness samples in the model,
the good correlation at intermediate and extrapolated rotation speeds demonstrates the validity of the underlying
stiffness interpolation in Eq. (11) and the multi-model extension.
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Figure 5: Modal assurance criteria and relative frequency differences of the tuned blisk for constant rotational
speeds ranging from 0 rpm to 15,000 rpm
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This conclusion is substantiated by the excellent agreement of the forced EO2 response of the full and reduced
blisk models at a rotor speed of 9,000 rpm in Fig. 6. The depicted amplitude û∗ is normalized with respect to
the maximum displacement of the tuned blisk at rotor standstill. To illustrate the stiffening effect on the forced
response, an amplitude comparison for various rotational speeds is provided in Fig. 7. Again, the amplitudes of the
full and reduced order models match well in the analyzed range of frequencies and rotational speeds. A detailed
view of the stiffening effect on the resonance of the first flapwise bending mode is provided in Fig. 7.

Figure 6: Forced EO2 response of the reduced and full finite element models of the tuned blisk for a constant
rotational speed Ω of 9,000 rpm

Figure 7: Forced EO2 response of the reduced and full finite element models of the tuned blisk for constant
rotational speeds Ω ranging from 0 rpm to 15,000 rpm

4.2 Mistuned Blisk under constant Rotation

To assess the accuracy of the reduced order prediction for mistuned bladed disks, the stiffness of each blade k
is multiplied by an individual mistuning factor κk in Tab. 3. It should be noted that this frequency mistuning is
applied to the blading at rotor standstill. Consequently, the ratios of tuned and mistuned blade frequencies may
change for various operating points. In the presented reduced order model, this evolution of mistuning factors
with a variable speed Ω is covered by considering the reduced stiffness matrices of each individual blade at three
different rotational speeds and applying the interpolation in Eq. (11).
A comparison between the full and reduced models by means of a mistuned EO2 response at 9,000 rpm is presented
in Fig. 8. Again, an excellent agreement in terms of amplitude and phase approximation is highlighted. The accu-
racy of the reduced order model for various rotational speeds ranging from 0 rpm to 15,000 rpm is demonstrated
in Fig. 9.

Table 3: Frequency mistuning factors of the blisk at rotor standstill (Ω = 0 rpm)
Blade k 1 2 3 4 5 6 7 8 9 10
κk 0.84 0.98 1.05 0.81 1.49 1.05 1.12 0.52 1.41 1.12

Figure 8: Forced EO2 response of the reduced and full finite element models of the mistuned blisk for a constant
rotational speed Ω of 9,000 rpm
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Figure 9: Forced EO2 response of the reduced and full finite element models of the mistuned blisk for constant
rotational speeds Ω ranging from 0 rpm to 15,000 rpm

4.3 Computational Time Saving

To highlight the effectiveness of the presented approach, the computational times required for the forced response
analysis of the previously introduced blisk sample are shown in Fig. 10. The computational setup used for all
simulations is summarized in Tab. 4. First, the time tFEA required for solving the full finite element model is
compared to the overall computation time tROM,total of the reduced order model (including the model reduction as
well as the solution process). This direct comparison demonstrates that the reduced order approach outperforms
the full model by a factor of almost four (saving 73% of computational time).
In addition, the amount tROM,reduction of 48 s indicates that the reduction process takes up more than half of the
overall computation time tROM,total of 77 s. Since the model reduction has to be performed just once prior to the
actual solution process, the reduced order approach provides a computational saving of 90% for the forced response
prediction in comparison to the full finite element model.

Table 4: Computational setup used for all simulations
Operating system CPU RAM

Windows 7 Professional (64 Bit) Intel Core i5-4590 (3.3 GHz) 16 GB
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Figure 10: Comparison of the computational time required for a mistuned forced response prediction (1,000 fre-
quency samples per response curve) by the full finite element model and the reduced order approach
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5 Analysis of Blisks under variable Rotation

Besides the vibration prediction for various constant operating points, the presented model allows the analysis of
bladed disks at variable speeds of rotation. In the following, the resonance of the first flapwise bending mode for
a synchronous stimulus according to Eq. (4) is analyzed. Since each frequency f is related to a specific rotational
speed Ω via the engine order EO, the structural properties are adapted to each operating point in the analyzed
frequency range according to Eq. (11). It should be noted that despite the variation of rotor speed, the response at
each frequency is assumed as a steady operating state and no transient run-up or coast-down effects are considered.
In Fig. 11, the forced response of the tuned blisk under variable rotor speed (indicated by the tilted line) is com-
pared to its amplitudes at constant rotation for the engine orders EO2, EO6, and EO10. It becomes clear that the
frequencies at the crossings of the synchronous response (tilted line) and the amplitudes at constant rotation meet
the condition in Eq. (4) according to the specific engine order. For example, the amplitude response at 15,000 rpm
(corresponding to Ω = 250 Hz) is crossed by the variable EO2 response at a frequency f of 500 Hz. In addition,
the stiffening effect modeled by Eq. (11) is identifiable as an increase of the resonance frequency with growing
rotor speed.

Figure 11: Forced response of the tuned reduced order model for constant and variable rotational speeds (tilted
line)

A comparison between the forced EO2, EO6, and EO10 responses of a mistuned blisk (see Tab. 3) under variable
rotation and its responses at constant rotational speed is shown in Fig. 12. For simplicity, the mistuned response is
depicted in terms of the overall envelope of the maximum amplitudes. Again, the response crossings for variable
and constant rotational speeds meet the relation in Eq. (4).

Figure 12: Maximum amplitudes of the mistuned reduced model for constant and variable rotor speeds (tilted line)

To study the effect of constant and variable rotor speed Ω on the amplification of mistuned vibrations, the following
ratio between the maximum amplitude of the tuned (superscript tu) and mistuned blisk (superscript mt) is defined:

aΩ =
ûmt,max

Ω

ûtu,max
Ω

. (26)

While the maximum amplitude ratio at constant rotational speed is obtained by division of the amplitude maxima
along the response curves aligned with the frequency abscissa f in Fig. 11 and Fig. 12, the amplification factor aΩ

under variable rotation results from the ratio of the tilted response curves in mentioned figures. It should be noted
that the frequency range which is considered for the determination of the maximum amplitudes ûmax

Ω under variable
rotation depends on the actual rotor speed Ω and the analyzed engine order EO through Eq. (4). Consequently, the
analysis of EO1 is limited to excitation frequencies below 250 Hz since this value corresponds to the upper limit
of the rotational speed range (Ω = 15,000 rpm) validated in section 4.
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The corresponding amplification factors for engine orders EO1 to EO10 are depicted in Fig. 13. It is indicated that
the amplitude amplification ratios for all analyzed engine orders at constant rotor speed tend to decrease for an
increase in Ω. This result is in accordance with the mitigation effect of rotation on mistuning reported by Moyroud
et al. (2002) and Nipkau (2011).

Figure 13: Amplitude amplification of the mistuned reduced order model for constant and variable rotational speed

In comparison, the maximum amplitude amplification for engine orders EO5 to EO10 under variable rotor speed
(indicated by circles in Fig. 13) is of the same order as the ratios at constant rotational speed. For EO1 to EO4 the
assumption of constant rotational speed leads to an overprediction of the mistuning effect. This result can be traced
back to Eq. (4), Fig. 11, and Fig. 12: Since the synchronous stimulus response (tilted line) approaches the response
at rotor rest (Ω = 0 rpm, line aligned with frequency axis) for large EO levels, the amplitude amplification for an
increasing engine order converges towards the corresponding maximum value at rotor standstill.

6 Summary and future Work

The extension of a reduced order model to account for the rotational speed dependence of mistuned bladed disk
dynamics has been presented. By usage of a multi-model formulation presented in Balmès (1996), Sternchüss and
Balmès (2008), and Sternchüss (2009), the reformulated substructural approach allows efficient blade vibration
predictions at constant and variable rotor speeds. The accuracy of the model has been demonstrated in terms of
modal assurance criteria, relative frequency differences, and a forced response comparison. Comparing the compu-
tational times for solving the reduced model and the full finite element representation of a mistuned blisk reveals a
time saving of 90%. The applicability of the proposed approach has been shown by the study of a mistuned bladed
disk at various rotational speeds. The analyses indicate that the rotational motion has a mitigating effect on the
amplitude amplification caused by mistuning.
In future work, the evolution of the speed-dependent mistuning coefficients will be incorporated in the presented
model. Finally, the numerically predicted response may be compared to experimental measurements in an operat-
ing turbomachinery test rig.
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Rotordynamic Computation of a Permanent-Magnetic excited 
Synchronous Machine due to Electromagnetic Force Excitation 
 
M. Clappier, L. Gaul 
 
 
For the acoustical computation of electromagnetic noise, it is very important to consider both, the rotor and 
stator vibrations of the electrical machine. Rotor vibrations can be transmitted as structure-borne sound to 
connected systems which might be excited at their resonances and radiate airborne sound. In order to predict 
the dynamical behaviour of complex electrical machine rotors (such like rotors of permanent-magnetic excited 
synchronous machines) in frequency domain, finite element (FE) computations can be efficiently applied using 
rotating coordinates. Hereby, it has to be taken into account that rotor vibrations are mainly influenced by 
stiffness and damping of the built-in laminated stacks and mechanical joints. Therefore, a FE model of the rotor 
is required which takes these parameters into account. In order to obtain the material properties, two 
experimental set-ups are considered. On the one hand, a generic lap joint is considered to determine the stiffness 
and damping of mechanical joints. On the other hand, a test rig for laminated stacks is presented which allows 
for the determination of direction-dependent stiffness and damping of laminated stacks by a shear and dilatation 
test. All identified parameters are included into the FE model. Thereby, local stiffness and damping of 
mechanical joints are modelled by so-called thin-layer elements. In order to prove the quality of the rotor FE 
model, a numerical modal analysis without considering rotor spin speed is carried out and compared to 
experimental results. Electromagnetic force densities are computed in the air gap of the electrical machine using 
an electromagnetic FE model. To cover different FE meshes of the mechanical and electromagnetic model, a 
method is presented which allows for converting force densities into equivalent nodal forces on the rotor 
surface. These excitation forces are used to compute electromagnetically caused rotor vibrations dependent on 
rotor spin speed by a frequency domain rotor dynamic analysis. 
 
 
1 Introduction and Aim of this Work 
 
Acoustical noise of electrical machines is made up of three different types of sources: electromagnetically, 
mechanically and aerodynamically excited vibrations/noise (Gieras et al., 2006). Electromagnetically caused 
vibrations result from electromagnetic forces in the air gap between rotor and stator (Gieras et al., 2006). These 
forces are mainly affected by the magnetic design and operational conditions of the electrical machine. 
Mechanically caused vibrations are e.g. due to rotor dynamic loads, bearing defects or tolerances and shaft 
misalignments (Gieras et al., 2006). Aerodynamic noise normally occurs due to the noise of cooling fans (Gieras 
et al., 2006). For totally enclosed and water-cooled machine housings, the last type of source does not occur. For 
acoustical computations both, vibrations of the stator housing as well as rotor vibrations must be taken into 
account in order to model all structure-borne and airborne sound paths. Especially rotor vibrations can be 
transmitted to connected systems where airborne sound can be radiated additional to the sound radiated by the 
electrical machine housing. 
 
The acoustical behavior of electrical machines has already been considered in many publications. Most of them 
are only related to vibrations and sound radiation of the machine housing caused by electromagnetic force 
excitation on stator teeth (with/without eccentricity effects), cf. (Dupont et al., 2014) and (Shiohata et al., 2011). 
Only in few works the rotor is included as additional component into the structural finite element (FE) model 
(see Humbert et al. (2012), McCloskey et al. (2014) and Pellerey et al. (2012)) and magnetic forces are applied 
on the rotor (see McCloskey et al. (2014) and Pellerey et al. (2012)).  
 
So far, no publication has been found by the authors which considers the numerical computation of rotor 
dynamics due to distributed electromagnetic forces on the laminated stack (obtained from magnetic FE analysis) 
using structural three-dimensional (3D) solid FEs. Available works are based on either analytical rotordynamic 
models with one or a few degrees of freedom or FE models built up by beam elements, cf. (Arkkio et al., 2010), 
(Pellerey et al., 2012) and named references in (Pellerey et al., 2012). Therefore, this work is concentrated on 3D 
FE rotordynamic analysis in order to examine electromagnetically caused rotor vibrations. 
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As application case, the rotor of a permanent-magnetic excited synchronous machine (PMSM) is considered 
which consists of many single electrical sheets stacked together and positioned between two balancing discs onto 
the rotor shaft, see Figure 1. Thereby, the laminated rotor stack is pre-tensioned by both balancing discs.  
 

 
 
       Figure 1. Rotor cross section of the considered PMSM rotor, cf. (Clappier and Gaul, 2016) 
 
In order to carry out rotordynamic computations, it is very important to know the direction-dependent stiffness 
and structural damping of the laminated stack because both parameters mainly influence the dynamical behavior 
of the rotor. Normally, both quantities are unknown and estimated numerically via model updating, cf. (Gieras et 
al., 2006) for stators. The axial stiffness can also be determined load-dependent by a static compression test 
(Siegl, 1981). A detailed overview about literature and available approaches is given in (Clappier and Gaul, 
2015). However, none of the named methods allows for the determination of structural damping and direction-
dependent stiffness using only one experimental set-up. 
 
In this paper, an experimental set-up is presented which allows for the determination of the direction-dependent 
stiffness and structural damping of laminated rotor stacks for certain pre-stress conditions using a shear and 
dilatation test. Based on these parameters, a FE model of the rotor is created. Thereby, so-called thin-layer 
elements (TLEs) are used to take the dynamics of several mechanical interfaces into account, cf. (Desai et al., 
1984), (Gaul et al., 2011) and (Gaul and Schmidt, 2014). The computed eigenfrequencies, mode shapes and 
modal damping factors of the rotor (without spin speed) are compared to results of an experimental modal 
analysis (EMA). Finally, rotordynamic analyses are carried out to compute the response due to electromagnetic 
force excitation with and without taking dynamical rotor eccentricity into account. Thereby, a new method is 
presented to transform airgap forces from a two-dimensional (2D) electromagnetic computation onto a 3D 
structural mechanic FE mesh. 
 
 
2 Experimental Determination of the Properties of Mechanical Joints and Laminated Rotor Stacks 
 
2.1  Stiffness and Structural Damping of Mechanical Joints 
 
Figure 2(a) depicts the experimental set-up of the considered generic lap joint (Gaul et al., 2015). Thereby, two 
masses m1 and m2 are supported by two thin wires at their center of gravity (Bograd et al., 2008). 

 
       Figure 2. (a) Generic lap joint and (b) damping hysteresis, cf. (Bograd et al., 2008), (Gaul et al., 

2016), (Gaul et al., 2011), (Gaul et al., 2015) and (Gaul et al., 1997) 
 
Both masses are connected by a screw connection on a lap joint in order to define a certain interface contact 
pressure. Mass m1 is excited harmonically with a certain excitation frequency and amplitude by an 
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electromagnetic shaker, cf. (Bograd et al., 2008) and (Gaul et al., 2015). Because of the leaf spring attached to 
mass m1, a longitudinal system resonance is excited allowing to evaluate the structural damping of the 
mechanical joint up to high tangential forces (Bograd et al., 2008), (Gaul et al., 2015). When the set-up is in 
steady-state, the accelerations �̈� and �̈� of both masses are measured by two accelerometers (Bograd et al., 
2008), (Gaul et al., 2015). Twice integration of both acceleration signals with respect to the time leads to the 
displacement signals x1 and x2, from which the relative displacement Δx = x1 - x2 can be computed (Bograd et al., 
2008). Plotting the transmitted tangential force FT,x = m2 · �̈� in the mechanical interface representing the inertia 
force of mass m2 versus the relative displacement Δx leads to a hysteresis (Figure 2(b)), from which the 
tangential joint stiffness kT and structural damping loss factor η can be derived by equations given in (1), see 
(Bograd et al., 2008), (Gaul et al., 2011) and (Gaul et al., 2015). Thereby, WD,x and Umax,x are the dissipated 
damping energy and the maximum stored potential energy ((Bograd et al., 2008), (Gaul et al., 2011) and (Gaul et 
al., 2015)).  
 

 ( )
max

max,

x
xF

k xT
T ∆

∆
=        ,       

x

xD

U
W

max,

,

2 ⋅
=

π
η              (1) 

 
As it is shown in (Clappier et al., 2015b) and (Gaul et al., 2015), the joint damping loss factor strongly depends 
on the relative displacement, tangential force FT,x and normal force. Thus, this load dependency must be taken 
into account in FE models for applications with inhomogeneous contact pressure distributions, cf. (Clappier et 
al., 2015b) and (Gaul et al., 2016). 
 
2.2 Stiffness and Structural Damping of Laminated Rotor Stacks 
 
In (Clappier and Gaul, 2015), (Clappier et al., 2015a) and (Clappier and Gaul, 2016), a measurement set-up is 
presented for the determination of the direction-dependent stiffness and structural damping of arbitrarily shaped 
laminated structures. The experimental idea goes back to Crandall et al. (1971). The measurement concept is 
transferred and enhanced for measurements on laminated rotor stacks. A brief description of the measurement 
principle is given in the following according to Figure 3. 
 

 
       Figure 3. Measurement set-up for laminated rotor stacks. (a) Dilatation test and (b) shear test 

(Clappier et al., 2015a) 
 
In order to determine the axial stiffness and structural damping of a laminated rotor stack, a dilatation test is 
applied (see Figure 3(a)) whereas a shear test is used for the determination of shear stiffness and structural 
damping (Figure 3(b)). Thereby, the measurement and evaluation idea is quite similar. In both configurations, 
one test specimen is axially pre-tensioned between two adjacent steel plates by screw connections (chain lines in 
Figure 3(a,b)). Thus, certain rotor prestress conditions can be considered. The masses of the steel plates 
(including the mass of the test specimen in distributed form) are denoted according to Figure 3(a,b) by m1, m2 
and m3. Both set-ups are supported at the metal plates by two thin wires as indicated by the crossed circular 
symbols. In order to examine the dissipative effects of the laminated stack, both set-ups are excited harmonically 
by an electromagnetic shaker. Thereby, the excitation direction differs by 90°. When the set-ups are in steady-
state, the excitation force and acceleration of each metal plate are measured by a force sensor and 
accelerometers. Then, the relative displacement Δx = x3 - x2 (dilatation test) and Δzi = z1 - zi with i = 2, 3 (shear 
test) can be calculated by integrating the acceleration signals twice with respect to the time and subtracting them 
from each other. Plotting the transmitted normal force ��,� = �� ∙ �̈� (index “T” denotes “transmitted”) versus 
the relative displacement Δx (dilatation test) or ��,�,� = �� ∙ �̈� versus Δzi with i = 2, 3 (shear test) leads to a 
hysteresis curve, cf. (Gaul and Schmidt, 2014) and Figure 2(b). Based on this hysteresis, the structural damping 
loss factors ηx (dilatation test) and ηz,i (shear test) can be computed using the equations given in (2). Thereby, the 
dissipative damping energy WD,x or WD,z,i (from the dilatation or shear test) is divided by 2π times the 
corresponding maximum stored potential energy Umax,x or Umax,z,i, cf. (Bograd et al., 2008) and (Gaul and 
Schmidt, 2014). 
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The normal stiffness of the laminated stack for a certain pre-load FN can be derived by the slope of the 
hysteresis, cf. (Gaul and Schmidt, 2014). The Young's modulus E can be computed using the normal  stiffness kx, 
initial thickness h0 and cross section A of the test specimen. The shear modulus G is attained analogously using 
the shear stiffness kz,i (Gaul and Schmidt, 2014), see equations in (3). Further details can be found in (Clappier 
and Gaul, 2015) and (Clappier et al., 2015a). 
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3 Finite Element Computation of electromagnetically caused Rotor Vibrations 

 
3.1 Mechanical Finite Element Model of the Electrical Machine Rotor 

 
The FE model of the rotor is created in ABAQUSTM, cf. (Clappier and Gaul, 2016). Figure 4(a) shows the FE 
model which consists of the laminated stack, rotor shaft, inner bearing rings and two balancing discs. The 
geometry is slightly simplified to reduce the number of finite elements. The mesh is created as a complete 
conform FE mesh using mainly linear brick elements with incompatible modes and a few linear wedge elements. 
 

 
       Figure 4. FE rotor model. (a) Mesh, (b) mechanical interfaces modelled by thin-layer elements  

(Clappier and Gaul, 2016) 
 

Figure 4(b) depicts all mechanical interfaces. At these interfaces, so-called thin-layer elements are inserted to 
incorporate the joint stiffness and damping, cf. (Bograd et al., 2008) and (Gaul and Schmidt, 2014). Here, the 
TLEs are represented by linear brick elements with a small thickness to length ratio which can be as low as 
1:1000, see (Bograd et al., 2008) and (Gaul and Schmidt, 2014). The dynamical behavior of each mechanical 
interface is described by one thin layer (TL) using a linearized orthotropic material model (cf. Section 3.2) 
(Bograd et al., 2008). All TLEs in one thin layer get the same stiffness and damping properties which can be 
identified experimentally on a generic lap joint (Gaul et al., 2011). In general, joint properties are load-
dependent, cf. (Clappier et al., 2015b), (Gaul et al., 2016) and (Gaul et al., 2015). However, for applications with 
homogeneous contact pressure distributions at the interfaces, a homogenized parametrization of the TLEs can be 
efficiently applied (Bograd et al., 2008), (Clappier et al., 2015b). Otherwise, a load-dependent parametrization of 
the TLEs is necessary, see (Clappier et al., 2015b) and (Gaul et al., 2016). Figure 5 shows that the application 
requirement of a homogeneous contact pressure is fulfilled for the considered rotor. Due to the homogeneous 
contact pressure on the laminated stack in the set-up of Section 2.2 (Clappier and Gaul, 2015), the rotor 
application is well-suited for further investigations. 
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       Figure 5. (a) Contact pressure measured via Fujifilm Prescale films at (b) different rotor positions 

(Clappier and Gaul, 2016) 
 

3.2 Numerical Modal Analysis without Rotor Spin Speed 
 

In order to prove the quality of the FE model, a numerical modal analysis (NMA) without boundary conditions 
and inner bearing rings is done. The equation of motion for free undamped vibrations 
 
 0=⋅+⋅ xKxM &&                (4) 
 
is transformed into the frequency domain by assuming time harmonic vibrations. This leads to the following 
eigenvalue problem (cf. Dassault Systèmes Simulia Corp. (2014)) 
 
 ( ) .02 =⋅+⋅ kk KM φα                (5) 
 
M is the mass matrix, K the real-valued stiffness matrix, x the displacement vector and �̈ the acceleration vector 
of the whole system. αk and ϕk are the purely imaginary eigenvalue and real-valued eigenvector of mode k, 
respectively. Because the structural damping of mechanical joints, materials and laminated stacks can be 
considered to be frequency-independent in a wide frequency range ((Bograd et al., 2008), (Clappier and Gaul, 
2015) and (Gaul et al., 2011)), the model of constant hysteretic damping can be efficiently applied to describe 
the damping of the system by a complex stiffness matrix K* (cf. (Bograd et al., 2008), (Clappier et al., 2015a) 
and (Gaul and Schmidt, 2014)) 
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The first term of K* represents the real-valued system stiffness matrix. The second and third terms are imaginary 
terms and represent the material and joint damping of all mechanical components (index c) and interfaces 
(index i). The last two terms are built-up by a summation over all products of the real-valued component or 
interface stiffness matrix (Kc, Ki) and its corresponding structural damping loss factor ηc or ηi. Values for ηc 
(excepted for the laminated rotor stack) and ηi are taken from (Gaul et al., 2011). Substituting K in equation (5) 
by K* leads to a complex eigenvalue problem with complex eigenvalues and eigenvectors (Bograd et al., 2008). 
These are different from those of equation (5). 
 
The joint stiffness of each interface is modeled by an orthotropic elasticity matrix Di, cf. (Bograd et al., 2008) 
and (Gaul and Schmidt, 2014). 
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The values of Di are chosen according to Figure 6(a) such that the normal and tangential behavior of the joint is 
represented. The normal contact stiffness D33 is chosen to be 10…50% of the Young’s modulus of the contacting 
materials, cf. (Netzmann, 2013). The shear moduli D55, D66 are equal in their magnitudes and can be computed 
by equation (8) based on the contact area A and tangential stiffness kT (both from the generic lap joint) and the 
TLE thickness h (Bograd et al., 2008). Thereby, the elasticity law for shear is used by assuming only small 
deformations γ<<1 (Figure 6(a), cf. (Bograd et al., 2008)). Data for kT are taken from (Gaul et al., 2011). 
 

 
h

AkDD T ⋅
== 6655                (8) 

 
For physical reasons, all other diagonal terms of Di should be zero. However, for numerical reasons values 
nearly zero are chosen (Bograd et al., 2008). Because of the interface geometries, it is necessary to use local 
Cartesian coordinates for one part of the TLEs and local cylindrical coordinates for the other part. In the case of 
using cylindrical coordinates, the diagonal terms of Di have to be re-sorted. 

 
       Figure 6. (a) Deformed thin-layer element (Bograd et al., 2008), (Clappier and Gaul, 2016), (b)  

        illustration of laminated rotor stack properties (Clappier et al., 2015a) 
 
The loss factor ηc, Young’s modulus Et in axial direction and shear modulus Gt of the laminated rotor stack can 
be obtained from measurement results of a dilatation and shear test which are carried out at a pre-stress condition 
corresponding to the rotor pre-stress condition. In order to define the component stiffness matrix Kc of the 
laminated stack, a transversely isotropic material model is used (Clappier et al., 2015a). The inverse of the 
elasticity matrix Dc is shown in equation (9), cf. (Clappier et al., 2015a) and (Dassault Systèmes Simulia Corp., 
2014). 
 
 ccc D σε ⋅= −1  
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εc, σc, E and G are the strain vector, stress vector, Young’s modulus and shear modulus (Dassault Systèmes 
Simulia Corp., 2014), respectively. The indices t and p denote ‘transverse’ and ‘in-plane’ (Dassault Systèmes 
Simulia Corp., 2014). While Et and Gt can be identified experimentally, all other quantities are given by the 
properties of a single electrical sheet, see (Clappier et al., 2015a). This becomes clearer by the illustrations in 
Figure 6(b). Further details are given in (Clappier et al., 2015a). 
 
3.3 Rotor Dynamics Simulation 
 
In this section, rotordynamic computations are done dependent on rotor spin speed. Thereby, further matrices in 
the equation of motion must be taken into account. Because of the asymmetric rotor geometry, rotordynamic 
analyses are carried out meaningfully in rotational coordinates fixed to the rotor, see (Friswell et al., 2012), 
(Genta, 2005) and (Vollan and Komzsik, 2012). Thus, the rotor stiffness matrix stays constant in time for a fixed 
rotor speed, cf. (Friswell et al., 2012). According to (Genta, 2005) and (Vollan and Komzsik, 2012), the equation 
of motion in the rotating coordinate system is given by 
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Thereby, M represents the general mass matrix, D the viscous damping matrix, C the gyroscopic matrix 
containing Coriolis effects, K the general stiffness matrix, Z the centrifugal matrix, KG the geometric stiffness 
matrix, KD the circulatory matrix, � the displacement vector, �̈ the acceleration vector and F(t) the excitation 
force vector in rotating coordinates. In this work, the viscous damping matrix D (containing internal and external 
damping described by a viscous model) is not applied. Therefore, the matrix KD also drops out. Internal damping 
is included by the complex stiffness matrix (see equation (6)). External damping is not considered because of the 
generally small damping of ball bearings (Gasch et al., 2006). For ball bearings, a (transversely) isotropic elastic 
bearing model is assumed for simplicity. In general, the bearing stiffness is different in vertical and horizontal 
direction, see (Gasch et al., 2006) and (Krämer, 1993). The radial bearing stiffness kB is computed by equation 
(11) (Krämer, 1993) as a function of rotor spin speed dependent on the occurring unbalance forces (which act in 
the planes of both balancing discs), gravity force and speed-dependent external application forces. Thereby, z, d 
and F are the number of ball elements, ball diameter and bearing force. The bearing stiffness is included by 
connector elements in ABAQUS (Dassault Systèmes Simulia Corp., 2014) representing a “spring” stiffness 
which is incorporated into K during FE matrix assembling process. The bearing A is modeled to be axially rigid 
(using either a displacement boundary condition or a very high connector stiffness) and the bearing B without 
axial connector stiffness. 
 
 3/13/13/23.1 FdzkB ⋅⋅⋅=  [N/μm]                        (11) 
 
3.4 Computation of Electromagnetic Forces 
 
For the computation of electromagnetic airgap forces and torque at a certain operational point of the electrical 
machine, a 2D magnetic FE model is built up (cf. also (Arkkio et al., 2010), (Funieru and Binder, 2014) or 
(Pellerey et al., 2012)) using the software FEMAG (Reichert, 2011). Thereby, it is assumed that both, stator and 
rotor are of equal axial length and perfectly aligned to each other (in axial direction). In addition, it is assumed 
that no noteworthy axial forces occur in the airgap. Figure 7(a) depicts the created and used FE model which is a 
full model over 360° in order to examine the effects of dynamical rotor eccentricities. The considered PMSM has 
six pole pairs, 36 stator teeth and three phases. 
 
In order to compute the magnetic force densities, a fine FE mesh is required in the airgap (cf. (Humbert et al., 
2012) and (Reichert, 2011)) to attain sufficient computation accuracy. It is also recommended to use rectangular 
finite elements of equal size along the circumference for better accuracy, see (Cai et al., 2001), (Funieru and 
Binder, 2014) and (Reichert, 2011). In this work, first-order rectangular elements are used (Reichert, 2011) to 
mesh the airgap. Thereby, a mesh of equidistant increments of 0.25° is created along the circumference. For 
meshing rotor and stator first-order triangular elements are used. Rotor movement is modelled by the moving 
band technique, see (Funieru and Binder, 2014). Hereby, the airgap is remeshed for each rotor position after a 
rotational step (Funieru and Binder, 2014). For the computation of electromagnetic force densities in the airgap, 
different methods are discussed in literature, like Maxwell stress tensor, virtual work / co-energy method, 
Coulomb virtual work or Arkkio method, cf. (Cai et al., 2001), (Funieru and Binder, 2014), (Gieras and Wing, 
2002), (Popescu, 2006) and (Wang et al., 2008). In this work, radial and tangential force densities are calculated 
using FEMAG based on Maxwell stress tensor (Reichert, 2011). This method is the most popular one and 
commonly used for excitation force computations in vibro-acoustic analyses of electrical machines, see (Funieru 
and Binder, 2014), (Gieras and Wing, 2002) and (Popescu, 2006).  
 
During FE computation, the magnetic vector potential �⃗ is solved for all FE nodes as primary field variable, see 
(Gieras and Wing, 2002) and (Wang et al., 2008). Thereby, only the normal/radial flux density is satisfying 
continuity at the interface of different media/materials (e.g. interface air/iron) (Cai et al., 2001). Because of 
discontinuous tangential flux densities at the interface (see (Gieras and Wing, 2002) and (Popescu, 2006)), the 
global torque and local force densities are evaluated in this work on a circular path in the middle of the airgap, 
see Figure 7(b). This procedure is also recommended by other authors (Cai et al., 2001), (Funieru and Binder, 
2014), FEMAG (Reichert, 2011) and (Wang et al., 2008). Furthermore, three FE layers of squared first-order 
rectangular FEs are used to mesh the airgap, cf. Figure 7(b) and (Cai et al., 2001), (Funieru and Binder, 2014), 
(Reichert, 2011), (Wang et al., 2008). The layer in the middle is used to apply the moving band technique 
(Funieru and Binder, 2014). 
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       Figure 7. (a) 2D electromagnetic model (FE mesh not depicted because of the fine resolution), (b) 

evaluation path, (c) flux densities along evaluation path 
 
Based on the magnetic vector potential  �⃗  in the airgap (which only has one z-component in 2D, cf. Gieras and 
Wing (2002)), the magnetic flux density  ��⃗   is evaluated by 
 
 ��⃗ = �����⃗�                            (12) 
 
(Gieras and Wing, 2002) for all finite elements along the circular evaluation path. Due to the used linear 
elements, the 2D magnetic flux density vector has constant components within an element, see (Gieras and 
Wing, 2002) and (Popescu, 2006). From these values, the radial and tangential flux densities are interpolated at 
the interpolation points (feedback FEMAG support) on the evaluation path (cf. PLT1-file), Figure 7(c). Based on 
radial and tangential flux densities (Br, Bt) at the interpolation nodes and magnetic permeability of air μ0, the 
radial and tangential force densities (pr, pt) can be computed by the equations in (13) using Maxwell Stress 
Tensor, see (Cai et al., 2001), (Gieras and Wing, 2002) and (Humbert et al., 2012). 
 

 ( )22

02
1

trr BBp −⋅=
µ

       ,       trt BBp ⋅⋅=
0

1
µ

            (13) 

 
Physically, the computed force densities in the airgap middle represent stresses which cause attraction or 
repulsion forces between rotor and stator. In mechanics, stresses are internal quantities that describe the internal 
loading of a material and are therefore not visible without any body cuts. To deal with that issue and make the 
“internal” airgap forces “visible”, a “magnetic-mechanical coupling element” is introduced, see Figure 8(a,b). 
 

 
       Figure 8. (a) Force density distribution, (b) magnetic-mechanical coupling element and (c) stator and rotor  

         orientated “internal” airgap forces 
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This coupling element represents a mechanical stress element between the rotor and stator surfaces and includes 
the computed electromagnetic force density as internal load, see Figure 8(b). Thus, this model enables to 
interpret physically actio-reactio forces in the airgap (between rotor and stator) by means of internal forces 
which can be computed along the evaluation path (Figure 8(c)) through multiplication of force densities with the 
corresponding action area, Figure 8(a,c). The sum of rotor and stator oriented internal airgap forces Figure 8(c) 
have to be zero. 
 
In order to carry out vibro-acoustic computations, the “internal” rotor and stator forces have to be transformed 
from the airgap middle onto the rotor and stator surfaces where they physically act. Thus, the internal forces 
become active forces on the mechanical structure. The applied transformation process is presented exemplarily 
for “internal” forces acting at one interpolation point i on the evaluation path, see Figure 9(a). Firstly, rotor 
oriented radial forces are moved along their action line onto the rotor surface. Secondly, the tangential forces are 
moved parallel to their force action line onto the rotor surface. In order to yield the same force conditions after 
parallel translation of tangential forces, an additional moment has to be added, see Figure 9(b). The superscript 
“LS” denotes the location in the airgap middle while “Sz” and “Ra” characterize forces on stator teeth and rotor 
surface. 

 
       Figure 9. Transformation of internal “airgap forces” (a) into rotor and stator surface forces (b) 
 
This procedure is done on both sides, for the rotor and stator. However, the focus of this paper is given to rotor 
dynamics and the corresponding excitation forces. Therefore, the process describing the transformation of 
surface forces into nodal forces for the structural FE model is only explained for the rotor side. At any rate, the 
same procedure can also be applied on stator side. However, the force transformation step into the rotating 
coordinate system is not required to examine stator or housing vibrations. 
 
For reasons of computational accuracy and efficiency, the electromagnetic FE mesh is usually designed much 
finer (due to the considered small airgap) as the vibro-acoustic FE model, cf. (Humbert et al., 2012). To carry out 
rotor dynamic computations, the transformed rotor surface forces (Figure 10(a)) have to be summarized in a 
suited way at the nodes of the mechanical rotor FE model. Firstly, all moments ��,��� in Figure 10(a) are replaced 
by equivalent tangential force pairs which are summarized with the already given tangential loads in Figure 
10(a). Secondly, all radial and modified tangential rotor surface forces are transformed into the rotating 
coordinate system (Figure 10(b)) which is used for rotor dynamics computation. Lastly, all rotor surface forces 
within equidistant angular distances are summarized as resultant components at the surface FE nodes of the rotor 
model taking equivalent force pairs into account (Figure 10(c)). 
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       Figure 10. Rotor surface loads in (a) stationary coordinates (x,y), (b) in rotating coordinates (x’,y’)  

and (c) summarized rotor forces acting on FE nodes of the structural model 
 

The FE mesh of the rotor is extruded in the region of the laminated stack. Thus, the transformed resultant nodal 
forces (see Figure 10(c)) can be equally distributed along FE nodes in axial direction for mapping on a 3D 
structural FE mesh. In other words, the resultant force at one angular position (Figure 10(c)) is divided by the 
number of corresponding axial nodes at this position. Thus, all nodal forces are equal in magnitude and direction 
at one angular position (cf. (Pellerey et al., 2012) and (Shiohata et al., 2011)). The advantage of the proposed 
force transformation algorithm is the conservation of resulting torque as well as radial and tangential forces 
(originally obtained in the middle of the air gap), even after the transformation what is in contrast to available 
projection methods, like given in (Dupont et al., 2014). 
 
 
4 Computational Results 
 
4.1 Numerical Modal Analysis without considering Rotor Spin Speed 
 
Table 1 shows the results of a NMA and EMA for two equivalent built-up rotors. A good agreement for the first 
five eigenfrequencies and mode shapes can be obtained. The experimental grid is fine enough to resolve all 
considered modes reliably. The modal damping of the first two modes is also predicted quite well but the 
prediction error increases at higher frequencies. However, the ‘general’ trend (except mode 3) is predicted 
correctly. 
 
       Table 1. Comparison of numerical and experimental rotor eigenfrequencies, mode shapes and 

damping   
  (Clappier and Gaul, 2016) 

 
 
4.2 Rotordynamic Vibration Response due to Electromagnetic Force Excitation 
 
In general, magnetic forces consist of many time and spatial harmonics (Gieras et al., 2006). Figure 11 shows for 
example the vibration response (in rotating coordinates) due to electromagnetic force excitation (on the 
laminated stack) for the 36th time harmonic order (k=36) without and with dynamical rotor eccentricity εd. The 
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magnetic forces of the 36th time harmonic order are obtained by a one-dimensional fast fourier fransformation 
(FFT) of the nodal rotor surface forces. Without rotor eccentricity, the radial forces acting on the rotor cancel 
itself and only a torsional excitation occurs (Figure 11(a)). With eccentricity, a resultant radial force, the so-
called unbalanced magnetic pull (UMP) (Friswell et al., 2012), occurs in addition to the torsional excitation 
leading to a superimposed radial rotor deflection. Thus, the rotordynamic response has to be determined within 
acoustical computations of electrical machines because the vibrations are transmitted to connected systems and 
the motor housing where undesirable sound can be caused. 
 

       
       Figure 11. Rotor vibration response due to electromagnetic forces for time harmonic order k = 36 in   

  rotating coordinates for dynamical rotor eccentricity (a) εd = 0 mm and (b) εd = 0.25 mm   
  (Clappier and Gaul, 2016) 

 
 
5 Conclusions and Outlook 
 
Stator housing and rotordynamic vibrations must be taken both into account if acoustical computations of 
electrical machines are carried out. Especially rotor vibrations can be transmitted to connected systems of the 
powertrain and affect its overall acoustical behavior. Therefore, a finite element model of the rotor is presented 
in order to predict rotordynamic responses. The material properties of the laminated rotor stack are determined 
experimentally and incorporated by a transversely isotropic material model. Mechanical joints are modeled by 
thin-layer elements and damping by the model of constant hysteretic damping. A numerical modal analysis leads 
to a good agreement with the experiment. Furthermore, rotordynamic responses due to electromagnetic force 
excitation with and without dynamical rotor eccentricity are examined. Thereby, a new method is presented to 
transform the magnetic forces from a 2D electromagnetic onto a 3D mechanical finite element mesh. 
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Selected operational Problems of high-speed Rotors supported by 
Gas Foil Bearings 
 

 
 G. Żywica, P. Bagiński, J. Kiciński 
 
 
In this paper, several issues related to the operation of gas foil bearings were discussed. The description of the 
foil bearings' operation was performed, with a special focus on the following issues: the friction processes 
taking place between the bearing elements together with the friction-generated heat, the appropriate selection of 
structural and coating materials, ensuring the bearing preload, and the vibration amplitudes in run-up and run-
down of the rotor. The operational problems discussed are supplemented with practical examples. A very 
thorough understanding of the issues at stake makes it possible to specify more precisely the potential areas of 
application for foil bearings and take into account their operational properties in the contemplated 
implementations. 
 
 
1 Introduction 
 
With the development of high-speed fluid-flow machinery, there is a growing need for innovative bearing 
systems. Foil bearings are ideally suited for such applications as they allow stable and high-speed operation of 
the rotors at elevated temperatures (Agrawal, 1997; Bonello and Pham, 2014a). They do not require an external 
lubrication system to be applied for their proper functioning, even under such conditions. Excellent dynamic 
properties of foil bearings are achieved by using additional elastic-damping elements (usually made of thin metal 
foils in which a properly modified surface layer is of particular significance). Such bearings have many 
advantages that make them the preferred option for fluid-flow machines such as gas and vapour microturbines, 
compressors or expanders (Agrawal, 1997; Bruckner, 2010; DellaCorte, 1997). In their typical applications foil 
bearings are used to damp vibration, even at high rotational speeds, which is far more difficult to accomplish 
using gas bearings with high radial rigidity. This results from the fact that the vibration-damping element in such 
bearings is a specially shaped set of foils which, during operation, interact with each other and with the internal 
surface of the bush (Bonello, 2014b; Larsen and Santos, 2013; Żywica et al. 2016c). Therefore, a very important 
issue is the selection of the appropriate shape and thickness of the top and bump foils (Hoffmann et al., 2014; 
Kim et al., 2009; Larsen et al., 2014). Classical gas bearings operating at high rotational speeds support their 
loads solely on a thin layer of gas, the vibration-damping properties of which are rather poor. This disadvantage 
of classical gas bearings is not present in foil gas bearings. 
 
Obviously, foil bearings also have some disadvantages which render them unsuitable for some types of rotating 
machinery. As foil bearings are still a long way from widespread use, their availability is limited. They are 
usually manufactured on request and have to be adapted to the actual conditions of use. As the experience gained 
by the authors of this article has shown, such bearings are also the origin of operational problems that have been 
reported in the scientific literature only rarely until today. Chief among these problems are wear of the mating 
surfaces, high starting torque and significant journal displacements occurring during speed and load changes. 
Many engineers and scientists all over the world constantly work to eliminate as many of these problems as 
possible, and the subsequent generations of foil bearings are characterized by better and better load capacities 
(Agrawal, 1997; Heshmat et al., 2005). In general, significant attention is placed on optimization of bearing 
design and tribological issues, including the selection of suitable constructional and functional materials. Sliding 
layers in foil bearings may be made of different metals including metal-ceramic composites and plastics 
(DellaCorte, 1997; Żywica et al., 2016b). Based on the literature review and the authors’ experience, it can be 
concluded that in the case of bearings operating at low temperatures the best results are achieved by using soft 
sliding coatings for top foils which come into contact with a hard and wear-resistant journal (Kiciński and 
Żywica, 2014; Żywica et al., 2016b). When bearings are exposed to high temperatures (above 200°C) metal-
ceramic composites are often used (DellaCorte, 1997; Jahanmir et al., 2009). 
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A foil bearing is a mechanical system, the modelling of which is extremely difficult. A model of such a bearing 
has to take into account several physical phenomena such as non-linear deformations of thin foils having a 
complex geometry, friction and wear processes on the contact surfaces, heat exchange, thermal deformations, 
flow-related phenomena taking place within the lubricating gap and fluid-structure interactions (Kozanecki et al. 
2011; Żywica et al., 2016c). Therefore, in this case, computational models have limited reliability and are usually 
used only at the initial design stage. In practice, this means that each manufactured foil bearing goes through a 
series of tests before application in a target machine. This is done on specially designed test rigs, allowing 
simulating real operating conditions (DellaCorte, 1997; Tkacz et al., 2015). An effective implementation of foil 
bearings requires a lot of experience and long-lasting pre-implementation tests during which the bearings operate 
under extreme conditions, i.e. they are subjected to maximum loads at various rotational speeds. All the problems 
discussed herein were encountered by the authors of this article in the process of developing and testing new foil 
bearings. It is worth familiarising yourself with the issues covered here because the knowledge about them should 
facilitate the elaboration of new bearing systems and their implementation. 
 
 
2 Temperature Distribution and Wear in Foil Bearings 
 
The experimental research was carried out for the foil bearing consisting of a single top foil and three bump foils. 
The photo showing all parts of the disassembled bearing is presented in Figure 1. The journal diameter is 34 mm 
and the bush width 40 mm. The foils were manufactured using sheet metals with 0.1 mm thickness and are made 
of a nickel-chromium alloy (Inconel). The top foil is coated on one side with the coating made of a synthetic 
polymer (PTFE) that has supreme sliding properties. The molybdenum-coated bearing journal (made of steel) is 
plasma sprayed. The foil was profiled by cold forming and the journal surface was subjected to grinding in order 
to achieve the surface roughness average of 0.63 Ra. The bearing bush (made of bronze) has been prepared in 
such a way that it can be mounted on a bearing support and the temperature can be measured in 12 locations 
inside the bearing. Thermocouples were inserted into the bearing through gaps and holes in the bush; all of them 
operated at a sampling rate of 128 Hz. 
 

 
Figure 1. Parts of the foil bearing prepared for assembling 

 

 
Figure 2. Foil bearing test rig (1 – electro-spindle, 2 – bearing support, 3 – journal) 
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The experimental studies were carried out on the test rig at the IMP PAN in Gdańsk. The test rig is adapted to 
testing multi-supported rotors, but only one bearing support was used for this research. The journal of the tested 
bearing was mounted directly on the electro-spindle shaft. A picture of the test rig is shown in Figure 2. The 
maximum rotational speed of the electro-spindle is 24,000 rpm. All parts of the test rig were fixed to a solid steel 
plate, which was equipped with anti-vibration rubber pads. The planned experimental research consisted in 
increasing the journal's speed up to 15,000 rpm within 55 seconds and then maintaining the same speed until the 
thermal equilibrium of the bearing node is reached. The operating temperature of a foil bearing is a very good 
diagnostic symptom since in the case of improper bearing operation its value rapidly increases (Żywica et al., 
2016b).  
 
The temperature values measured in the central part of the bearing during its start-up are presented in Figure 3, 
taking into consideration the circumferential positions of the measurement points. The highest temperature 
occurred at the lower part of the bearing (200°) and was 59 °C. The lowest temperature increase was observed at 
the upper part of the bearing (20°), where the temperature was 25 °C. The temperature values measured by the 
thermocouples positioned at 90° and at 290° were 52 °C and 31 °C, respectively. The temperature increases at 
different parts of the top foil are between 5 °C and 39 °C, during time duration as small as 55 seconds. 
 
The highest temperature rise in the lower part of the bearing resulted from the movement of the journal in the 
direction of the lower part of the bearing support, as in the case of a bearing subjected to heavy loads. The 
differences between the temperatures measured at three different locations situated on the same angular position 
of the bush were small and did not exceed 2 °C. For this reason, only the measurement results relating to the 
centrally located thermocouple are presented. 
 

 
Figure 3. Thermocouples’ location (left) and measured temperature of the central part of the foil bearing during 

acceleration of the rotor (right) 
 
Operating the rotor at 15,000 rpm resulted in further rises in temperature, especially in the lower part of the 
bearing. During operation of the foil bearing, the temperature differences between various measuring points 
distributed circumferentially in the bush continued to increase. Despite the expected stabilization of the bearing 
temperature, its temperature was still rising and – after ca. 300 seconds of operation – reached very high values. 
The top foil had the temperature of 130 °C and 60 °C at its lower and upper part, respectively.  
 

 
Figure 4. Foil bearing temperature measured using a thermal imaging camera: a – temperature on the external 

part of the journal, b – temperature in the journal opening 
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The temperatures of other parts of the bearing were measured using an infrared camera. The results of these 
measurements are presented in Figure 4. The shaft temperature measured on its cylindrical surface (near the 
bearing) was around 100 °C. However, the highest temperature value (about 200 °C) was observed in the shaft's 
hole. Given that there was a serious risk of rapid damage to the bearing, the electro-spindle was stopped. The 
thermal resistance of the coating covering the top foil was defined by the manufacturer at approx. 200 °C.  Its 
damage may have led to a direct contact between the two raw surfaces not adjusted to such operation. That 
situation could be dangerous for the bearing and test rig, including electro-spindle. 
 
The bearing was then disassembled in order to evaluate the technical condition of its components. A quick visual 
inspection of the top foil revealed that it sustained permanent damage at several locations (Figure 5). In those 
locations in which the top foil was supported by the bump foil, the slide coating was ground down, which caused 
the friction between the journal and the top foil's construction material. This is why so high operating 
temperatures had been recorded. The technical condition of the bearing made its further operation impossible. 
Since the slide coating was ground down only at the lower part of the bearing, it can be said that the reason for 
this was the journal and bush eccentricities. The deliberate movement of the journal towards the bush caused that 
the bearing became overloaded. Some skewing of the journal and bush was also observed. Under such 
conditions, a lubricating film did not form itself in the lower part of the bearing and the journal and top foil 
surfaces were not properly separated. Only the material covering the surface of the top foil was ground down 
because it has lower thermal resistance and hardness than the molybdenum coating of the journal.  
  

 
Figure 5. Damage of the sliding surface in the top foil 

 
The analysis of the results obtained from the research showed that the bearing was not operating properly in the 
test run configuration applied. Accordingly, the bearing load had to be reduced to increase its lifespan. In order 
to reduce the bearing load in this system, the precise alignment of the electro-spindle shaft and the bush should be 
carried out. A similar effect can be achieved by using the so-called floating bush bearing, in which the bush 
position is adjusted to actual operating conditions. The implementation of this type of solutions is rare and one of 
the preconditions for this to happen is a small bearing load. When it comes to foil bearings testing, it may be 
observed, however, that sometimes there is a rapid wear of the sliding layer covering the foils, despite the 
relatively high compliance of the set of foils. Therefore, one cannot exclude the need to precisely align a rotor 
supported by foil bearings before running any tests.  
 
Another important issue is the appropriate selection of both structural and sliding materials. In the case discussed 
above, the sliding layer of the top foil was made of a soft polymer and it was in contact with the journal covered 
with molybdenum layer. Although this pair of materials successfully underwent testing with lower loads, the test 
discussed herein resulted in a significant damage to the sliding material. This was caused by too high level of 
bearing load and the problem of forming a gaseous lubricating film. The bearing operation under such conditions 
led to a sharp rise in temperature to a level at which the sliding layer no longer possessed its sliding properties. 
This was obviously followed by an almost immediate wear of this layer.  
 
An interesting result of this work is the observation of a substantial increase in the journal temperature, while 
there was a relatively low increase in the temperatures of the bush and the bearing support. This was indicative of 
the problem with a poor heat transfer from the sliding surface of the bearing towards the bush. The thorough 
analysis of this issue by using a numerical model has demonstrated that the problem is mainly linked to the 
bearing structure, and more precisely to the small cross-section of the bump foil (Żywica et al., 2016a). The thin 
bump foil separating the top foil from the bush forms a barrier for heat flow towards the bush. This causes fast 
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heating of both the top foil and the journal. It should be borne in mind that a local temperature rise in a foil 
bearing can lead to a rapid wear of the sliding layer and a bearing itself. Furthermore, it can happen as the result 
of even temporary overloads. 
 
 
3 Vibrations of the Rotor with Foil Bearings 
 
Sets of foils, which are the structural components of foil bearings, improve dynamical properties of the rotors 
supported by such bearings. In classical gas bearings consisting of a journal and a bush (which are both rigid 
components), the gaseous lubricating film is the only vibration-damping element, which, at high relative speeds 
between the sliding surfaces, forms a thin and rigid layer separating a journal and a bush from each other. Such a 
construction has very limited vibration-damping abilities. The addition of an elastic-damping element between a 
journal and a bush makes it possible to obtain more desirable dynamic properties. The change of the properties of 
a set of foils can be carried out by the careful selection of foils geometry and their constructional materials, so as 
to achieve a stable operation of the rotor–bearings system at high rotational speeds and at different loads. 
 
Experience with foil bearings so far showed that the rotors supported by such bearings are characterized by a 
reliable operation, even at very high rotational speeds (Bonello, 2014; Bruckner, 2010). In general, this matched 
what our expectations were. Foil gas bearings also have some drawbacks compared to classical gas bearings, 
among which the most important are the following: high vibration levels at some speeds and shift of the critical 
speed towards lower values. These drawbacks mean that serious operational problems might arise in certain foil 
bearing configurations. This is of particular relevance for microturbines' constructions aiming at decreasing the 
gaps above vanes in such a way as to improve total efficiency by reducing energy losses. Similar problems we 
can encounter when designing bearing systems for high-speed electric generators in which there are very small 
gaps between the rotor and the stator. In such systems, the application of foil bearings may not be able to make 
up for losses resulting from lower efficiency of the machine and/or its shorter life span, because when the 
machine operates under extreme conditions, the damage to its rotating elements, and as a consequence of that, 
damage to the machine itself is likely to happen. 
 
In this part of the article were presented the results of research aimed at the determination of vibration amplitudes 
at different rotational speeds of the rotor. Additionally, we conducted the analysis of the impact of ambient 
temperature on the operation of the rotor supported by two foil bearings. The rotor is propelled by the electro-
spindle and rotation of the spindle shaft is conveyed by the coupling (Figure 6). The electro-spindle and bearing 
supports rest on a steel plate. The smooth rotor (shaft without any disc) is made of stainless steel. The rotor 
diameter is 34 mm, its length is 435 mm and the distance between the bearings is 245 mm. In order to protect the 
shaft against wear, the bearing journals were coated with chromium oxides and then grinded. The characteristic 
of the foil bearings was discussed in the previous part of this article. The elevated temperature was obtained by 
the use of the so-called heat gun (which acted as a hot air blower) and the infrared illuminators shown in 
Figure 6. In order to check the system’s vibrations at different temperatures and for the whole range of rotational 
speeds, the measurements were conducted during the run-up of the rotor, increasing its speed up to 24,000 rpm at 
a constant acceleration. 
 
The measurement results obtained for both room and elevated operation temperatures are presented in Figure 7 
and Figure 8, respectively. In these graphs, the resonance area can be clearly identified, which occurred around a 
rotational speed of 8,000 rpm. The analysis of the results shows that the change in ambient temperature of the 
system resulted in a change of the resonant speed. When the bearing operated at room temperature (approx. 
25°C), the highest vibration amplitudes were observed at a rotational speed of around 8,400 rpm. After the 
temperature was increased to 100°C, the highest vibration amplitudes were recorded at approx. 7,800 rpm. The 
decrease of the resonant speed can be explained by a higher compliance of the bearing’s foils when operating at 
an elevated temperature. In this context, attention must also be given to the increase in the maximum vibration 
amplitude levels in both bearings. Looking at Figure 7 and Figure 8, it can be observed that the maximum peak-
to-peak vibration amplitude, relating to a horizontal direction, changes from 0.18 to 0.28 mm for bearing number 
1 and from 0.09 to 0.13 mm for bearing number 2. Similar differences can be observed as regards the vibration 
amplitudes in the vertical direction recorded in bearing number 1. However, the maximum vibration level in 
bearing number 2, measured in the vertical direction, was less dependent on the ambient temperature level. 
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Figure 6. Configuration of the test rig for the rotor with two foil bearings (1 – electro-spindle, 2 – coupling, 3 – 

bearing support no. 1, 4 – shaft, 5 – bearing support no. 2) 
 
At lower and higher rotational speeds (outside the resonance range), the rotor supported by foil bearings was 
characterized by a stable operation and the maximum vibration level did not exceed a few dozen micrometres. 
There was no increase in the vibration level or any signs of unstable operation, even at maximum speed (24,000 
rpm). Thus, it can be concluded that independently of ambient temperatures, a very stable operation of the rotor–
bearings system has been achieved, under the condition that the current rotational speed remains outside the 
resonance area of the rotor. In the case of a real machine having a similar rotor–bearings system, it is apparent 
that only the speeds above the resonant speed (i.e. from approximately 12,000 rpm) could be taken into 
consideration for determining the operating speed range. A stable gaseous lubricating film did not form itself in 
any of the bearings operating below the rotational speed of 8,000 rpm. A continuous and reliable operation in this 
speed range would, therefore, be impossible. 
 

 
Figure 7. Peak-to-peak vibration amplitude of the shaft vs. rotational speed at 25°C (B1 – bearing no. 1, B2 – 

bearing no. 2, X – horizontal direction, Y – vertical direction) 
 

 
Figure 8. Peak-to-peak vibration amplitude of the shaft vs. rotational speed at 100°C (B1 – bearing no. 1, B2 – 

bearing no. 2, X – horizontal direction, Y – vertical direction) 
 
The obtained results show that the amplitudes of peak-to-peak vibrations were at a level of 0.3 mm under the 
least favourable operating conditions. It means that radial displacement of the bearing reached a level of 0.15 
mm. For microturbines used in power engineering systems, such a high level of radial vibration is not acceptable 
on the ground that there are very small radial clearances near the seals and in a blade system. When both the shaft 
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and the disks have small diameters the radial clearance is usually below 0.1 mm (Kiciński and Żywica, 2014; 
Tkacz et al., 2015), and it depends on the flow system of a turbine (axial-flow, radial-flow or diagonal-flow 
turbine). In such a machine, the use of foil bearings would be likely to lead to a number of negative consequences 
(e.g. damage to the rotor or the seal during the first start-up). In the case in which axial foil bearings would be 
used, these side effects are even more likely to occur, since, in such bearings, the axial displacements caused by a 
load change can have even higher values than that of the lateral foil bearing types.  
 
In order to avoid the above-mentioned problems, we would like to present a few approaches we use in our 
research. One such approach is the design of bearings equipped with a set of foils that is very compact and very 
rigid. However, this often comes at the cost of worsening vibration-damping properties. It is also possible to 
design flow systems in such a way, that they are more clearance resistant (but only with respect to the preferred 
directions). Such an effect may be obtained, for example, in axial-flow microturbines in which the blade tips are 
connected by a ring, which rotates inside a casing. This creates higher clearance at the ring's location, but it does 
not cause considerable losses since the ring is protected from the working medium flow. It is clear that the 
application of foil bearings in such machines requires a lot of interference in the construction of a machine 
embodying our idea.  
 
 
4 Conclusion 
 
The article discusses the selected issues related to the application of gas foil bearings in modern fluid-flow 
machinery. Compared to conventional gas bearings, foil gas bearings stand out through their ability to operate at 
very high rotational speeds and the lack of external lubrication system. However, their application must be 
preceded by a detailed analysis of a particular machine, i.e. the machine itself must be adapted to the operation 
with such a bearing system. The main problems existing in foil gas bearings that must be taken into account 
during the selection process are the following: low load capacity, poor overload resistance, high vibration levels 
at some speeds, large impact of ambient temperature on the bearing's operational characteristics, a very high 
dimensional accuracy and assembly accuracy must be maintained. The issues presented on the pages of this 
article relate to many problems connected with the operation of foil gas bearings. However, they are still spoken 
of as a bearing system of the future whose best days are still to come. 
 
The first case study concerns the wear of a foil bearing that happened very fast and was caused by the overload 
which occurred as the result of a wrong position of the bush in relation to the journal. In such operating 
conditions, there occurred a rapid rise in temperature and the damage to the sliding layer on the top foil. The foil 
bearing could not be operated any longer because the top foil was so damaged that it was clear that it required 
replacement. The second case study is focused on the assessment of the impact of temperature and rotational 
speed on the vibration amplitudes of the rotor supported by foil bearings. Its results show that high vibration 
levels observed at some rotational speeds can cause the rubbing between the rotating and stationary bearing 
elements, and as a consequence of that, the damage to the machine itself is very likely to happen. 
 
The authors of the article want to point out that the examples provided do not cover all operational problems 
related to foil bearing applications. It is also worth mentioning that when designing a foil bearing, manufacturing 
technology for foils should be developed. It must also be remembered that a proper operation of the rotor at high 
speeds requires the use of an initial clamp, which unfortunately impedes the run-up. The presented case studies 
aim to provide an accurate picture of the scale and type of the problems, which may be encountered by all those 
who want to design and construct fluid-flow machines equipped with foil bearings.  
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Simple Electromagnetic Motor Model for Torsional Analysis of 
Variable Speed Drives with an Induction Motor 
 
T. P. Holopainen, A. Arkkio 
 
 
Torsional vibrations must be considered in the design of all high-power drive-trains including an induction 
motor. Electromagnetic (EM) field in the air gap of an induction motor generates additional magnetic stiffness 
and damping between the rotor and stator. The inclusion of these magnetic effects is limited by the availability of 
simple and portable motor models. The main aim of this paper is to introduce a motor model including the speed 
and torque variation. The presented model is based on the linearization of the common space-vector models of 
induction motors. The parameters of this model are identified for the rated operating condition. This motor 
model can be extended to include variable speed and torque operation. The numerical results demonstrate that 
this model describes accurately the magnetic effects over the large speed and torque range. In addition, the 
numerical results demonstrate the significance of magnetic stiffness and damping in variable speed motor-driven 
compressors with a soft coupling. 

1 Introduction 

Induction motors rotate process machines by converting electric energy to mechanical work. The power is 
transmitted by a drive train including couplings and optional gears and branches. An essential part of the drive 
train design is the torsional vibration analysis. This analysis requires the inertia and stiffness data of all the drive 
train components with loading and damping parameters. 
 
Increasing power density, together with increasing demands of reliability of industrial systems, has led to the 
increased requirements of calculation accuracy. With motor driven reciprocating compressors, this has resulted 
in the inclusion of magnetic stiffness and damping in torsional analysis (Anon., 2015). Due to this need, simple 
models, based on the motor characteristic data, have been presented for the evaluation of these magnetic 
parameters; see Knop (2012) and Hauptmann et al. (2013). These models are based on the space-vector theory, 
developed to describe the steady-state and transient motor behaviour, and used for the evaluation of magnetic 
stiffness and damping, see Concordia (1952), Jordan et al. (1979, 1980), Shaltou (1994) and Brunelli et al. 
(2015). Space-vector models, or the simplified versions of them, are well suited for the torsional analysis of 
drive trains. Using these models, the parameters required to describe the magnetic stiffness and damping can be 
calculated in advance by the motor manufacturer and submitted to the suppliers, e.g. compressor manufacturer, 
responsible for the drive train design. 
 
Simultaneously, numerical methods have been increasingly applied for the analysis of induction motors. This 
trend has been expanded also to the determination of magnetic stiffness and damping parameters (Repo 2008) 
and the effect of these has been evaluated in calculation examples of actual drive trains (Holopainen et al. 2010). 
 
The accuracy and modelling capability of numerical models exceeds clearly the potential of space-vector 
models. However, the accuracy is only one, though significant, requirement of feasible models for torsional 
analyses. A remarkable shortcoming of numerical models is the portability. The numerical models are usually 
non-linear and the application requires the integration of particular codes for electromagnetic fields. Thus, the 
portability of numerical motor models is poor, or at least limited. By contrast, the space-vector model is simple 
and the number of model parameters is small, and thus, the portability excellent. 
 
The main aim of this paper is to introduce a simple linearized motor model including the speed and toque 
variation. The second aim is to show the significance of the magnetic stiffness and damping particularly in 
motor-driven reciprocating compressors with a soft coupling. 
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This paper is based strongly on the methods and findings of two previous papers, see Arkkio et al. (2016) and 
Holopainen et al. (2016). The paper starts by reviewing the linearization of the space-vector model in the 
operating point. Next, the inclusion of the speed and torque variation is presented. These two parameters define 
the steady-state operation of an induction motor. After this, the developed models are applied for a 3.7 MW 
induction motor. The obtained magnetic stiffness and damping values are compared to the results calculated 
numerically by a refined finite element (FE) method with time-stepping analysis. Finally, the motor model is 
applied to evaluate the magnetic effects on a reciprocating compressor drive train. All the calculations are carried 
out with a steady-state sinusoidal voltage supply of the motor. Thus, all the effects induced by the frequency 
converter control are neglected and the scope is restricted purely to the motor. 
 
 
2 Methods 

 
2.1 Space-vector Model of Induction Motor 

 
A single-cage space-vector model for an induction motor written in a reference frame rotating at the synchronous 
angular speed �� is 
 

 

�s = �s�s + d�sd� + j�s�s           0 = �r�r + d�rd� + j(�s − �)�r�e = ���Im�� s*�s�                        (1) 

 
where �s, �s and �s are the space vectors of stator voltage, stator current and stator flux linkage, �r and �r are the 
space vectors of rotor current and rotor flux linkage, �s is the stator resistance, �r is the rotor resistance, � is the 
angular speed of the rotor, � is the number of pole pairs, j is the imaginary unit, and asterisk denotes complex 
conjugation. The angular speeds are given in electrical radians, i.e. � = ��, where � is the mechanical 
rotational speed. 
 
The linear relation between the flux linkages and currents is 
 

 
�s = �s�s + �m�r�r = �m�s + �r�r  (2) 

 
where �s and �r are the self-inductances of the stator and rotor windings and �m is the mutual inductance 
between them.  
 
 
2.2 Linearization of Space-vector Model in Operation Point 

 
The system of equations (1) is non-linear because of the product of angular speed and rotor flux linkage in the 
second equation. In addition, the electromagnetic torque in the third equation is non-linear due to the product of 
stator flux linkage and stator current. However, the torsional vibrations are manifested by small oscillations 
around the equilibrium point. Thus, the calculation of torsional vibrations can be carried out by linearizing the 
equations at the operation point. The linearized system of equations in the synchronously rotating reference 
frame is (Arkkio et al. 2016) 
 

 

∆�s = �s∆�s + �s d∆�sd� + j�s�s∆�s + �m d∆�rd� + j�s�m∆�r0  =   �r∆�r + �m d∆�sd� + j(�s − ��)�m∆�s + �r d∆�rd� +  +j(�s − ��)�r∆�r − j��m�s0 + �r�r0�∆� ∆�e = �� ��mIm�� r0* ∆�s + �s0∆��∗�                                        
 (3) 
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where the currents have been chosen as the free variables, ∆ denotes a small variation from the steady state 
value, i.e. a linearized variable, and �s0, �r0 and �� are the steady-state stator current, rotor current and angular 
speed. 
 
The resistance and inductance parameters of the non-linear and linearized space-vector models, (1) and (3), were 
obtained from a time-harmonic FE analysis (Repo et al. 2006). A non-linear effective permeability of operating 
point was used to get the parameters to calculate the steady-state currents of equation (1). A differential 
permeability was used to get the linearized parameters for equation (3).  
 
 
2.3 Improved Space-vector Models 

 
The simple space-vector model of equations (1) and (3) can be improved to include skin effect of rotor bars by 
increasing the number of rotor branches. Figure 1 shows a steady-state equivalent circuit having three rotor 
branches or cages. The corresponding dynamic space-vector model is (Arkkio et al. 2016)  
 

 

�s = �s�s + d�sd� + j�k�s              0  =  �r�r + d�rd� + j(�s − �)�r 0  = �q�q + d�qd� + j(�s − �)�q0  = �p�p + d�pd� + j(�s −�)�p�e  = ���Im�� s*�s�                         
  (4) 

 
where subscripts q and p refer to the second and third rotor branches. A double- and triple-cage linearized model 
can be constructed in a similar way as the single-cage model above. Again, the resistance and inductance 
parameters were obtained from a time-harmonic FE analysis (Repo et al. 2006)  
 

 
 

Figure 1. Steady-state space-vector equivalent circuit with three rotor branches (Arkkio et al. 2016) 
 
The number of real-valued parameters, i.e. original and linearized model resistances and inductances, is 10, 18 
and 26 in single-cage, double-cage and triple-cage models, respectively. The number of complex-valued 
variables, i.e. electromagnetic degrees-of-freedom, is 2, 3 and 4 in single-cage, double-cage and triple-cage 
models, respectively. Because the number of variables in a typical FE model used for the identification of 
parameters is thousands, the reduction grade is remarkable. 
 
 
2.4 Variable Speed and Torque Operation  
 
A large share of the new motors is used in variable speed applications. In these applications the motor speed and 
torque is adjusted according to process requirements. A common approach is to keep the fundamental flux of the 
machine constant independently of the actual speed and torque. This means that the supply voltage is directly 
proportional to the supply frequency up to the field weakening point, which is often above the maximum speed. 
It can be mentioned that modern frequency controllers may adjust the torque based on the feedback. However, 
all the calculations of this paper are carried out with a steady-state sinusoidal voltage supply of the motor, and 
thus, all the effects induced by the frequency converter control are neglected. 
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In this paper, the model parameters, i.e. inductances and resistances, are identified for the rated operating 
condition. These model parameters are extended to an arbitrary speed and torque by adjusting first the supply 
voltage according to the constant flux approach 
 

 �s = �s�s,��� ∙ �s,rat  (5) 

 
where the subscript “rat” refers to the rated values. The rotational speed and torque are connected by the slip of 
the rotor with respect to the rotating magnetic field  
 

 � = (�s − ��) �s⁄   (6) 

 
This slip must be solved iteratively from the non-linear equation (1) using the pre-set values of speed and torque. 
In addition, the inductances of the linearized model, equation (3), must be divided by the synchronous speed 
ratio �s �s,rat⁄ . All other parameters of the non-linear and linearized models remain unchanged.  
 
 
2.5 Calculation of magnetic Stiffness and Damping 
 
The analytical expression for the frequency response function for the single-cage space-vector model is obtained 
from equation (3) by replacing the small variations by phasor variables of oscillation frequency �d and solving 
the relation between the torque and rotation angle of the rotor.  
 
The magnetic stiffness �m and damping coefficients �m can be associated with the real and imaginary parts of 
the frequency response function �frf 
 

 
�m = −Re��frf(�d)�        �m = −Im��frf(�d)� �d⁄   (7) 

 
where �d is the angular frequency of oscillation. 
 
  
2.6 Reference results by Finite Element Analysis (FEA) 

 
In the 2D FEA models, the magnetic field in the core region of the motor is assumed to be two-dimensional. 
End-winding impedances are added to the circuit equations of the windings to approximatively model the 3D 
end-winding fields. The field and circuit equations are discretized and solved together (Arkkio 1990). Moving-
band technique in the air gap of the machine is used for rotating the rotor (Davat et al. 1985). The torque is 
computed using Coulomb’s method (Coulomb 1983). The resistive losses of the windings were included in the 
model when solving the field equations within FEA. 
 
The frequency response function was needed for the reference result. Two time-stepping simulations in steady-
state are used. In the first one, the rotor is rotated at a constant speed. In the second one, the rotation speed is 
forced to oscillate at a frequency �d and small amplitude around the constant speed of the first simulation. The 
results of the two simulations, particularly the electromagnetic torque and the rotation angle of the rotor, are 
subtracted from each other. The component varying at frequency �d is extracted from the torque and rotation 
angle differences by complex Fourier analysis, and finally, the complex value of the frequency response function 
at frequency �d is obtained by dividing the Fourier components of the torque and rotation angle. This process 
was repeated at about 30 different excitation frequencies between 10 Hz and 100 Hz to collect data for the 
comparison of the analytically and numerically obtained frequency response functions. 
 
Another way to get the frequency response function numerically is to excite the machine by a single pulse in the 
rotation angle (Repo 2008). In this way, all the interesting frequencies can be obtained from two simulations, one 
with the pulse and another one without it. This method is applied to obtain the reference results for the variable 
speed and torque comparison.  
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3 Results 
 
3.1  Magnetic stiffness and damping 
 
A 3.7 MW induction motor is used in all the calculation examples. The main parameters of this motor are shown 
in Table 1.  
 

Table 1. Rated parameters of the example motor. 

 
 
Figure 2 shows the magnetic stiffness and damping calculated by an analytic formula presented by Hauptmann et 
al. (2013), by single- and triple-cage models with parameters based only on the non-linear models, and FEA 
results. The FEA results are assumed to be most accurate and will be used here and later as reference values. In 
this case, the analytic equation underestimates the EM stiffness and damping and neglects the effects close to the 
supply frequency. Similarly, all the cage models underestimate the EM stiffness and damping. The triple-cage 
model gives the best prediction. 
 

 

 
 
Figure 2. Magnetic stiffness and damping in rated operating condition with non-linear model parameters in 

cage models. 

Parameter Value Unit
Power 3551 kW
Frequency 60 Hz
Speed 895.3 rpm
Number or poles 8
Connection star
Voltage 4000 V
Current 620 A
Rated torque 37.88 kNm
Breakdown torque 82.71 kNm
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Figure 3. Magnetic stiffness and damping in rated operating condition with linearized space-vector model. 
 
Figure 3 shows the magnetic torsional stiffness and damping in the rated operating condition calculated by 
linearized space-vector models and by FEA. The parameters of the space-vector models are identified for the slip 
frequency 1.2 Hz (Holopainen et al. 2016). As can be seen the single-cage model underestimates the stiffness 
and damping. In the contrary, the double- and triple-cage models overestimate somewhat the stiffness and 
predict the damping accurately. The difference between the double- and triple-cage models is small.  
 
 
3.2 Effect of Speed and Torque 
 
The synchronous speed range of the example motor in the variable speed operation is 450 – 900 rpm. This 
corresponds roughly to the supply frequency range 30 – 60 Hz. The field weakening point of this motor is at 60 
Hz and the load torque of reciprocating compressors depends on the process medium and pressure ratio, and is 
independent of the speed. Thus, it is assumed that the torque varies between 50 – 100 % of the rated torque. 
Table 2 shows the calculation points. These points are the corner points of the speed-torque domain. However, 
for simplicity the calculation points are defined by the supply frequency and electric power. The slip, torque and 
speed values in table 2 are calculated by iteration during the space-vector and FEA solutions. 
 
Figure 4 shows the magnetic stiffness and damping for these four operating points calculated by the linearized 
triple-cage space-vector model. It can be clearly seen that both the speed and torque affects the magnetic 
parameters.  
 
Figure 5 shows the same information in the form of the complex frequency response functions (FRFs) between 
the torque and rotor oscillation, see equation (5). In this figure, the FRFs are plotted as functions of the relative 
oscillation frequency. This presentation format gives a better overview of the speed and torque effect on the 
magnetic stiffness and damping. It can be seen that the effect of speed (50% reduction) is slightly larger than the 
effect of torque (50% reduction). In addition, it can be seen that the change of torque changes the real part of the 
FRF, i.e. magnetic stiffness, but leaves the imaginary part of FRF, i.e. magnetic damping, almost intact.  
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Table 2. Calculated operation points of the example motor used in FEA. 
 

 
 
 

 

 
 

Figure 4. Magnetic stiffness and damping calculated by the linearized triple-cage space-vector model. 
 
Figure 6 shows the corresponding frequency response functions for the example motor calculated by the FEM in 
time domain and the pulse method (Repo 2008). It can be concluded that the behaviour of the linearized space-
vector model (Figure 5) and the FE model (Figure 6) correlates well over the whole speed range.  
 
 
3.3  Motor driven reciprocating Compressor 
 
The example motor drives a reciprocating compressor. The drive train consists of the following components: 
Motor, flexible coupling, flywheel and reciprocating four-cylinder compressor. This compressor can be used in 
direct-on-line operation with constant speed 895 rpm and in variable speed operation (450 – 900 rpm) supplied 
by a frequency converter. The mechanical drive train was modelled with 26 inertias with connecting torsional 
stiffness elements. The viscous damping was added to the motor and compressor cylinder locations. The 
damping induced by the flexible coupling was neglected due to the missing input data. 
 

Case
Slip Torque Speed Slip Torque Speed

[Hz] [kW] [%] [kNm] [rpm] [%] [kNm] [rpm]
1 60 3729 0.546 39.78 895.1 0.543 39.78 895.1
2 60 1864 0.257 19.83 897.7 0.259 19.83 897.7
3 30 1864 1.114 40.01 445.0 1.108 40.00 445.0
4 30 932 0.518 19.88 447.7 0.521 19.88 447.7

Freq. FEASpace-Vector ModelPower
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Figure 5. Frequency response function between the magnetic torque and rotor oscillation calculated by the 
linearized space-vector model. The real parts of the complex valued functions are below and the imaginary 

parts are up. 
 

 
 

Figure 6. Frequency response function between the magnetic torque and rotor oscillation calculated by the 
FEA. The real parts of the complex valued functions are below and the imaginary parts are up. 

 
Table 3 shows the natural frequency and damping ratio for the lowest modes without and with magnetic effects. 
The calculations are carried out by adding the magnetic stiffness and damping to the mechanical model. The 
calculation was carried out iteratively in order to use the magnetic stiffness and damping values corresponding to 
the natural frequencies. The first mode without magnetic effects is the rigid body mode. The main deformation 
of the second mode occurs in the flexible coupling. The third mode is an internal mode of the coupling, and in 
the fourth mode the flywheel and the compressor line are in the opposite phase without angular displacement of 
the motor.  
 
Table 3 shows that the electromagnetic interaction increases clearly the natural frequency and damping ratio of 
the two first modes. The effect on modes 3 and 4 is negligible. This is logical due to the modal amplitudes of the 
modes 1 and 2 in contrast to the amplitudes of the modes 3 and 4.  
 
Due to the variation of supply frequency, the magnetic stiffness and damping changes though the torque is 
assumed to be constant. Figure 7 shows the natural frequency and damping ratio of the two lowest modes as a 
function of the motor speed. In addition, the first and second order excitations are shown in this Campbell 
diagram. It can be seen that the natural frequency and damping ratios are only slightly dependent on the speed 
above 300 rpm. Below that speed the effects of the supply frequency on the second mode are clearly visible.   
Actually, the damping factor is negative in the speed rage 140 – 190 rpm. The second mode crosses the first 
order excitation frequency at about 600 rpm. The response of the system on this torsional critical speed depends 
on the first order excitation amplitude and the total damping. In this case the damping factor is predicted to be 
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8.6%. The amount of damping provided by the electromagnetic system is significant compared to the mechanical 
damping (Table 3). 
 

Table 3. Natural frequency and damping ratio for the four lowest modes without and with electromagnetic 
coupling at rated operation. 

 

 
 

 
 

 
 

Figure 7. Natural frequency and damping ratio of the motor compressor train. 
 
 
4  Discussion and Conclusions 
 
The obtained results show that the linearized space-vector models can be used to predict the magnetic stiffness 
and damping of induction motors. Particularly, the prediction capability of the double- and triple-cage models in 
the rated operating condition is good. However, there seems to be a difference in magnetic stiffness compared to 
the FEA results. The triple-cage model yields about 5% higher stiffness values than the FEA. The origin of this 
discrepancy is not known.  
 
The parameters of the presented non-linear and linearized space-vector models are obtained from the time-
harmonic FEA. The number of parameters is 10, 18 and 26 in single-cage, double-cage and triple-cage models, 

Mode

f  [Hz] ζ  [-] f  [Hz] ζ  [-]
1 0.00 0.00 4.14 10.09
2 6.35 1.60 10.03 8.63
3 37.27 0.01 37.29 0.02
4 130.29 0.92 130.29 0.92

With
Magnetic Effects

Without
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respectively. Because the number of variables in a typical FE model, used for the identification of parameters, is 
thousands, the reduction grade is remarkable. More importantly, the space-vector model is portable to be a part 
of standard torsional analyses without direct coupling to solvers of electromagnetic fields. 
 
The calculation results indicate that the space-vector model can be extended to variable speed and torque 
operation. The results of the simple three-cage model are well compatible to the results obtained by the non-
linear FEA in the time domain.  
 
The calculation example for a reciprocating compressor train shows that the inclusion of magnetic effects is 
significant with flexible coupling. This follows from the two effects: The magnetic stiffness increases the natural 
frequencies and the magnetic damping decreases the oscillation amplitudes of torsional modes. The magnetic 
damping is particularly advantageous and can be exploited in the design of torsional drive trains. 
 
The calculations were carried out with a steady-state sinusoidal voltage supply of the motor. Thus, all the effects 
induced by the frequency converter control are neglected and the scope is restricted purely to the motor.    
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Prediction of Instability in Rotor-Seal Systems using Forward Whirl
Magnetic Bearing Excitation

C. Wagner1, W. Tsunoda2, O. Matsushita3, T. Berninger1, T. Thümmel1, D. Rixen1

To separate different fluids and pressure levels in high-speed turbomachinery or pumps, mostly contactless seals
are used. The leakage flow inside the seal gap applies forces to the vibrating rotor system in deflectional and tan-
gential directions, that are dependent on the rotational speed. Above a speed limit, mainly tangential seal forces
can lead to self-excited vibrations and, ultimately, rotor instability. This is similar to the “oil whip” phenomenon in
journal bearings. To predict the speed limit, two methods are shown and compared: Simulations based on the bulk
flow assumptions and an experimental method. To demonstrate the application, a test rig is used. The experimental
method uses measured transfer functions, utilizing an active magnetic bearing for forward whirl excitation in the
safe operational range. The speed limit can be predicted by analyzing and extrapolating the vibrational behavior
of the rotor-seal system.

1 Introduction

Seals in pumps or compressors are used to minimize leakage flow between areas of different pressure levels. Due
to the high rotational and relative speeds between rotor and stator in modern turbomachinery, mostly contactless
seals like labyrinth, floating ring or gap seals are used. The seal clearance causes a fluid flow through the gap. For
an eccentric rotor position, the fluid flow distribution in the gap becomes unsymmetrical and leads to forces on the
rotor. These can be modeled similar to additional stiffness, damping and inertia coefficients. The critical speeds
can be clearly differentiated compared to the dry rotor ones. This makes dry calculations of the dynamic behavior,
like natural frequencies or damping, useless for real operating conditions. The seal gap shown in fig. 1 provides
the source of the acting forces, according to Gasch et al. (2006) and Childs (1993).

1. Force pressure velocity relation
The relation between a fluid velocity v and the static pressure is provided by BERNOULLI’s equation:

ps = pt − pd = pt −
1

2
ρv2 (1)

With the total pressure pt, the dynamic pressure pd and the static pressure ps, which acts on the surface. The
integration of the pressure distribution ps across the rotor surface leads to the acting forces ~F :

~F =

∫
A

psdA (2)

2. Restoring force
The restoring LOMAKIN force ~FL acts against the rotor deflection. It is developed by the axial fluid velocity
~u, which is a pressure-driven POISEUILLE flow, Black and Jenssen (1969). For an eccentered rotor position,
the axial fluid flow velocity ~u is higher at the expanded side because of the lower wall-friction influence.
This leads to a lower static pressure ps and a restoring, stiffening force ~FL, see fig. 1 left. At the seal’s
entrance, the inlet pressure loss increases this effect and causes the kink of ps.

3. Destabilizing, deflecting force
Fluid flow in circumferential direction ~v creates the BERNOULLI force ~FB , which acts in the direction of the
rotor eccentricity. The flow is driven by the rotor rotation and evolves into a COUETTE flow for higher seal
lengths. Because of mass conservation, the flow speed becomes higher in the narrowed area. This induces a
deflecting, destabilizing force ~FB , see fig. 1 right.
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Figure 1: Contactless annular seal, pressure drop and reaction forces, Gasch et al. (2006)

4. Tangential Force
The tangential forces ~FT pose the highest risk to self-excited rotor vibrations. They act like skew symmetric
parts in the stiffness matrix and can induce a rotor instability, similar to the “oil whip” phenomenon in
journal bearings, Muszynska (1986). The forces are created by shear stresses between the fluid and the wall,
as well as the pressure distribution at the narrowed area of the eccentered rotor.

For a rotordynamic analysis, seals are commonly modeled as a spring-mass-damper system using rotordynamic
seal coefficients:

−~hs =

[
mxx 0

0 myy

]
~̈q +

[
cxx cxy
cyx cyy

]
~̇q +

[
kxx kxy
kyx kyy

]
~q (3)

~q = (x y)T is the cross deflection (bending) of the rotor, ~hs is the seal force using the seal coefficients m, c and k
for added mass, the fluid’s inertia, damping and stiffness with cross-coupled parts. The cross coupling in the mass
matrix is neglected. For the rotordynamic analysis, the various geometries and types of seals are simplified to a
plain annular seal.
To calculate critical speeds, vibration amplitudes and rotor instability at the design phase of the machine, validated
seal simulation models and experimental methods for component testing are needed. Therefore, two approaches
are shown below. The applied simulation models are based on the bulk flow theory and use simplifications made
by Black and Jenssen (1969) and Childs (1983) to solve the fluid equations.
To examine the rotordynamic influence of liquid annular seals at the test rig, the authors apply a modern stability
diagnosis method that uses measurements in an uncritical speed range to predict the onset speed of instability. The
methodology’s origin is the experimental stability diagnosis of oil-film-bearing rotor systems, well described in
Matsushita and Fujiwara (2014) and Tsunoda et al. (2016). Here, this method is applied to a flexible rotor with
rigid ball-bearing support with plain annular seals. The phenomenology of rotor instability is similar to the journal
bearing case. The experimental methodology uses an active magnetic bearing (AMB) as an actor to excite the rotor
system. Other investigations using AMB excitation in rotor-seal systems, mainly for coefficient determination, are
Kwanka (1999), Gaszner (2015) or Wagner et al. (2016). Another solution for identifying the seal is a levitating
AMB-supported rotor, like Zutavern (2006).
In contrast to those, the presented methodology predicts the onset speed of instability to determine the safe opera-
tional range of the machinery, using measurements that can be done in the real machine in an uncritical range.

2 Modeling

Here, we provide a brief introduction to the used seal and rotor models. The description of the self-excited rotor
vibration phenomenon is based on the work of Muszynska (1986) and Bently et al. (2002). A reduced LAVAL rotor
model, according to Gasch et al. (2006), provides the basis to show the model coupling and the seal-rotor behavior.

359



2.1 Rotor Model

The LAVAL rotor model with a flexible, massless shaft and a symmetrical arranged disk is shown in fig. 2, according
to Gasch et al. (2006). The Index I indicates the inertial frame. The disk’s center of mass S is displaced by the

M

O, A, B

S

A B
zI

xI

yIFz(t)

xI

yI

~ε

~rM

~rS
EI

L/2 L/2

O

Figure 2: LAVAL rotor model, parametrization to Thümmel et al. (2015) and Roßner (2015)

eccentricity ~ε from the geometric center M. The coordinate q = ~rM is the position of M according to the inertial
bearing connection line A-B. Substituting ~rS = ~rM + ~ε, the dynamic equilibrium of the rotor can be written with
mass mr and stiffness (bearing and shaft) kr:

M~̈q =
∑
i

~Fi = −K~q + ~h (4)

[
mr 0
0 mr

]
~̈q +

[
kr 0
0 kr

]
~q = ~h (5)

Using ~h = ~hu +~he +~hs... (unbalance, external forces, seal forces, etc.) as equivalent forces. The unbalance force
with rotational angular frequency Ω of the rotor results in:

~hu = mr~ε Ω2

(
cos(Ωt)
sin(Ωt)

)
(6)

The rotor’s natural angular frequency is ωcrit =
√

kr
mr

, its critical speed.

2.2 Seal model

The seal is coupled to the rotor system using forces ~hs, eq. (3) and fig. 3. As mentioned in the introduction, the
rotordynamic seal coefficients are calculated using models and simplifications of the bulk flow theory according to
Black and Childs.
Black developed a simple model considering the pressure gradient and the squeeze film. The wall friction is
modeled using a constant friction loss factor for both, rotor and stator. Assuming a constant circumferential fluid
velocity and neglecting the inertia terms are further simplifications of this model.
Child’s model differs in formulating a more complete bulk flow model. The use of semi empirical shear stress
formulations for both walls gives the possibility to model different surfaces for rotor and stator (e.g. for damper
seals). The fluid’s inertia is taken into account to develop the circumferential velocity of the fluid element proceed-
ing along the seal. Further, the inlet swirl (rotational fluid velocity at the seal entrance, see Diewald and Nordmann
(1989)) whereas a full developed COUETTE flow is assumed here (due to the long retention time at the rotor
surface ahead the seal entrance in our test rig). The detailed description of the theory and the solving process of
the fluid equations is well written in Black and Jenssen (1969) and Childs (1983).
The coupled rotor-seal equation of motion is:[

mr +mxx 0
0 mr +myy

]
~̈q +

[
cxx cxy
cyx cyy

]
~̇q +

[
kr + kxx kxy
kyx kr + kyy

]
~q = ~h (7)

It is simplified with the assumption of an isotropic, centered rotor using: M = mr + mxx = mr + myy, C =
cxx = cyy , c = cxy = −cyx, K = kr + kxx = kr + kyy and k = kxy = −kyx, (Gasch et al. (2006), p.468 ff.),
eq. (7) becomes: [

M 0
0 M

]
~̈q +

[
C c
−c C

]
~̇q +

[
K k
−k K

]
~q = ~h (8)
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Figure 3: Simplified model: LAVAL rotor coupled to seals

We substitute ~q and ~h with complex coordinates z = x+ jy and Fz = hx + jhy:

Fz = Mz̈ + Cż +Kz − j(cż + kz) (9)

This equation is used to describe the dynamic behavior of the coupled, isotropic LAVAL rotor system.

3 Rotor Instability

A linear oscillation system becomes unstable if the real part of the eigenvalues of the equation of motion becomes
positive. The seal coefficients, and eq. (9), are dependent on rotational speed. An eigenvalue analysis of the system
for stability analysis is common; z = ẑeλt and Fz = 0 are used:

Mλ2 + Cλ+K − j(cλ+ k) = 0 (10)

with the eigenvalues λ = δ + jω:

M(δ + jω)2 + C(δ + jω) +K − j(c(δ + jω) + k) = 0 (11)

Instability occurs for δ > 0. This leads to a unstable rotor vibration at the system’s first natural frequency. The
onset speed of instability is determined at the transition of negative (stable) to positive (unstable) real part δ. At
this point, δ = 0 follows:

−Mω2 + cω +K + j(Cω − k) = 0 (12)

Separated into real and imaginary parts:

−Mω2 + cω +K = 0 (quadratic curve) ∧ Cω − k = 0 (linear curve) (13)

If both parts of eq. (13) are simultaneously satisfied, so the quadratic and linear curve have a crossing point, the
onset speed of instability is reached. Because of the rotational speed dependency of the seal coefficients, this occurs
above the speed limit nlimit. If the solution for eq. (13) can be found at a stable and safe operating condition, a
prediction of nlimit is possible. This experimental estimation is done at the test rig and shown in the chapters
below.

4 Test Rig: Description and experimental Methodology

The used test rig is shown in fig. 4. It consists of a flexible shaft 9 with a mass disk, the seal rotor 2 and two
stiff ball-bearings 6 , driven by a servo motor 8 . The two seals 1 , clearance s, are symmetrically arranged to
an injection ring 3 in the middle. The fluid is injected and flows through the gaps into the environment. An active
magnetic bearing 4 is used as an actuator to excite the system at determined frequencies and whirls. The rotor’s
movement is detected by two eddy-current sensors 5 in the disk’s center plain. The seal forces are measured by
a piezo dynamometer 7 under the seal stator. Furthermore, the fluid temperature, pressure, fluid volume flow and
torque are recorded. The dimensions, fluid parameters and operation conditions of the test rig are summarized by
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Figure 4: Seal test rig, Wagner et al. (2016)

Table 1: Test rig and fluid parameters

Name Description Value

s clearance seals 0.17 mm

si clearance injection ring 2 mm

n rot. speed 0− 6000 rpm

Ω unbalance angular frequency 1/s

l seal length 20 mm

li length injection ring 40 mm

∆p pressure drop at the seal 2 · 105 Pa

ν kinematic viscosity at 40◦C 4.05 · 10−2 Pa · s
ρ density at 40◦C 880 kg/m3

d diameter seal rotor 0.1 m

mr mass disk 5 kg

kr shaft stiffness 2.93 · 105 N/m

ω0 “dry” 1.natural frequency 38.6 Hz

table 1.

Figure 5 shows the run-up response of the rotor-seal system. Compared to the seal-less system, whose behav-
ior is like an ideal LAVAL rotor, the seal dominates the system dynamics. The unbalance response looks like an
overdamped system with a first natural frequency at about half the rotational speed. Due to this, the rotor is always
in an overcritical range.

This measurement result shows a strong rotational speed depending of the first natural frequency, induced by the
rotational speed dependency of the rotordynamic seal coefficients m(n), c(n), k(n).

5 Prediction of Rotor Instability

To predict the speed limit at the instability, two methods are shown. The first one uses the eigenvalue calculation
of simulated seal coefficients. The second one is an experimental method, which uses a separation, a CO-QUAD
analysis, and a zero-crossing search of the measured frequency response function G(ω) at stable operating points.

5.1 Simulation: Eigenvalue Analysis

Using the coupled equation of motion (7) and simulated seal coefficients, the eigenvalues λ = δ ± jω can be
calculated for a stability analysis according to the rotational speed. Figure 6 shows the plots of the eigenvalues of
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Figure 5: 3D-Campbell diagram of the test rig

the system for two implemented simulation models, Black and Jenssen (1969) and Childs (1983) model. The zero
crossing of the real part δ detects the onset speed of instability to nlimit = [160 and 124 ]rps for the two models.
The imaginary part, the natural frequency, shows a strong rotational speed dependency, like the measurement in
fig. 5. It is about Ω/2 at the stability limit. The simulation results are just used for verification of the experimental
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Figure 6: Eigenvalue analysis of the simulated rotor-seal system

methodology. At this point, the test rig cannot reach the instability due to rotational speed restrictions.

5.2 Experimental Methodology: Co-Quad Analysis

Using the measured rotor displacement in frequency domain ẑ(ω), rotor response, and the exciting force (forward
whirl with AMB) F̂z(ω), the transfer function (TF) G(ω) can be calculated according to the model eq. (9):

G(ω) =
ẑ

F̂z
=

1

−Mω2 + cω +K + j(Cω − k)
(14)

Separated into real and imaginary parts, in CO-QUAD form:

Re{G(ω)} =
−Mω2 + cω +K

(−Mω2 + cω +K)2 − (Cω − k)2
(15)

Im{G(ω)} =
−Cω + k

(−Mω2 + cω +K)2 − (Cω − k)2
(16)
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The plots of the measured TF separated into real and imaginary parts are shown in fig. 7. The solution for eq.
(13) is the zero crossing of both parts, (Re{G(ω)} and Im{G(ω)}), at the same frequency ω. At this point, the
denominator of eq. (14) becomes zero, so the amplitude ẑ arises and the instability occurs.
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Figure 7: Measured TF G(ω) of the test rig as a CO-QUAD plot

Therefore, at constant rotational speed n, the system becomes excited in a forward whirl direction with AMB
at several frequencies ω and the TF G(ω) is calculated using discrete Fourier transformation. Then, the zero cross-
ing of the real and imaginary parts at every rotational speed must be found. These zero-crossing frequencies show
almost linear behavior according to the rotational speed, see fig. 8. The zero-crossing points of the real part are
the undamped natural frequency and are nearly constant. The imaginary ones increase linearly with the rotational
speed.

This occurs because the tangential forces, the cross-coupled parts in the stiffness matrix, are responsible for the
instability. These forces are created by shear stresses between the fluid and the wall, depending on the velocities
in circumferential direction, which are almost linear to the rotational speed (COUETTE flow assumption).

When both curves cross, the denominator of eq. (14) becomes zero, eq. (13) is fulfilled and the instability oc-
curs. A linear fit of the graphs with extrapolation, using the least squares method, provides the crossing, and the
instability can be predicted to nlimit = 122 rps.
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using linear fit and extrapolation
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6 Conclusion

This article examines the influence of contactless seals on rotor systems. The rotor instability phenomenon as
well as a simulative and an experimental methodology to predict the speed limit are shown. The experimental
prediction method uses transfer function measurements, curve fitting and extrapolation at a safe, low-speed range.
The measured transfer functions at several rotating speeds are separated into real and imaginary parts and a CO-
QUAD analysis is done to identify the zero crossing frequencies. Plotting the zero points of the real and imaginary
parts according to the rotational speed, one can predict the onset speed of instability. The comparison between the
simulation and the experimental-based prediction shows 24% for the Black simulation model and 1.6% discrepancy
for the Childs. Future works will include increasing the test rig’s rotational speed until instability as well as the
validation of the simulation model and the experimental prediction methodology.
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Wagner, C.; Berninger, T.; Thümmel, T.; Rixen, D.: Rotordynamic Effects in Turbopumps for Space Propulsion
Systems - First Minimal Models and Experimental Validation. Space Propulsion 2016 Conference, 3AF, Rome,
Italy (2016).

365



Zutavern, Z. S.: Identification of Rotordynamic Forces in a Flexible Rotor System Using Magnetic Bearings Iden-
tification of Rotordynamic Forces in a Flexible Rotor System Using Magnetic Bearings. Ph.D. thesis, Texas
(2006).

Address: 1 Chair of Applied Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748 Garching
email: {c.wagner, t.berninger, thuemmel, rixen}@tum.de
2 Department of Mechanical Engineering,Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, 226-
8503 Yokohama, Japan
email: tsunoda.w.aa@m.titech.ac.jp
3 Department of Mechanical Engineering, National Defense Academy, 1-10-20 Hashirimizu, 239-8686 Yokosuka,
Japan
email: osami@tiger.odn.ne.jp

366



DOI: 10.24352/UB.OVGU-2017-112 TECHNISCHE MECHANIK, 37, 2-5, (2017), 367 – 376
submitted: June 15, 2017

Stability Analysis of parameter-excited linear Vibration Systems with
Time Delay, using the Example of a Sheetfed Offset Printing Press

S. Neeb, N. Norrick

This article describes stability studies on parameter-excited linear vibration systems with time delay. A method
for stability analysis is presented. Therefore, the transcendental transmission element of the time delay e−sτ is
approximated as an all-pass element with the rational transfer function by means of the so-called Padé approxima-
tion. The system can be represented in the state space and the methods of the Floquet theory can also be applied
to the system with approximated time delay. The process can be implemented without great effort in a standardized
simulation environment such as MATLAB/SIMULINK, whereby existing models and methods can be reused. The
suitability of the method is shown in the well-known example of the Mathieu differential equation with time delay.
Variations between different solvers and approximation orders are described. An extended view and the transfer
to an industrial application take place with the example of the drive of a sheetfed offset printing machine. The
relevant vibration system is represented by an oscillator with several degrees of freedom. The belt, which couples
the degrees of freedom of the drive motor and the machine, leads to a periodic (harmonic) parameter excitation of
the system due to its inhomogeneous nature. The speed and position control of the drive motor (PI controller) is
associated with a time delay, resulting in a system of the type described above.

1 Introduction

Sheetfed offset printing machines print individual sheets of paper that are picked up from a pile in the feeder
and placed on a pile after they haved passed trough the machine. At present, production speeds of up to 18,000
sheets/hour (corresponding to 5 sheets/second) can be achieved. The Heidelberg Speedmaster XL162-6 + L is a
modern large-format press (sheet format up to 1,210 mm x 1,620 mm) with six printing units and a varnishing unit.

delivery inking unitsvarnishing unit feeder

Figure 1: Heidelberg Speedmaster XL162-6 + L sheetfed offset printing press with six inking units and one var-
nishing unit. The paper sheets pass through the machine from the feeder (right) to the delivery (left).

The hand-over of sheets within the machine takes place by an interconnection of cylinders. The individual cylinders
are equipped with grippers which hold the sheet on the cylinder. During the transfer of the sheet from one to the
next cylinder, the grippers open and close at defined times. The grippers are controlled by cam drives. All cylinders
are coupled by a continuous gear train, which is connected to the electric drive motor by means of a belt drive.
The drive control of the machine takes place via a controller with P and I components, which is implemented on a
central control unit.

The printing quality is essentially influenced by the position of the individual color separations relative to one
another, the so-called register (Kipphan, 2000). Deviations in the position of a few µm result in recognizable color
shifts and thus also in a reduction in print quality. Vibrations of the drive train result in relative motions of the
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cylinders which then also affect the register. The frequencies and the order of the machine vibrations are also found
in the register fluctuation on the sheet.

In operation, the machine is excited by a variety of interfering mechanisms to vibrate. In addition to the reaction
moments of the cam mechanisms for the control of the grippers, torque fluctuations from the inking unit, tolerance-
related residual moments of the cylinders and moments from the belt drive of the main drive arise. As drive belts,
ribbed belts are used, which are constructed from a material composite. Due to manufacturing tolerances, the
mechanical parameters of the belt fluctuate over the length of the belt, causing the drive train to vibrate (Langer,
2013; Dresig and Fidlin, 2013). With respect to printing machines, such vibrations were examined by Messer
(2012). Furthermore, it is known from the experience that in many cases the time delay in the control units can not
be neglected. The time delay has an effect on the machine vibrations such as negative damping.

In order to gain a better understanding of the acting effects as a result of excitation by the belt drive, a model is
built, which makes it possible to study the machine vibrations including the parametric system excitation and time
delay. This article focuses on the stability analysis of the system. The modeling and evaluation are realized in the
program environment of MATLAB/SIMULINK.

The investigations are carried out on a sheetfed offset printing machine Heidelberg Speedmaster XL162-6 + L, as
shown in Fig. 1.

2 Basic System Modeling

Mechanical systems, whose descriptive parameters are time-dependent, are important in many technical applica-
tions. The fluctuations in the mechanical parameters of the drive belt described in the previous section can also
be modeled by time-dependent system coefficients (see also Messer (2012) or Dresig and Holzweißig (2011)).
Further examples of this can be found in the case of unevenly translated mechanisms, rotors, gear transmissions,
and other fast-running traction drives (Dresig and Holzweißig, 2011; Dresig and Fidlin, 2013). In the present case
of the main drive of a sheetfed offset printing press, preliminary investigations were presented in Messer (2012).

As part of the heteronomous vibrational systems, systems with time-dependent coefficients are referred to as
parameter-excited or rheonomous systems (Deutsches Institut für Normung e.V., 2000). They can be represented
in their general form as a 2N -dimensional Ordinary Differential Equation (ODE) system with time-dependent
coefficients

ẏ(t) = A(t)y(t). (1)

Hierin, A(t) ∈ R2N×2N is the system matrix and y(t) ∈ R2N the state vector.

By means of an additional time delay τ , occuring for example, in the case of closed-loop systems for which the
time delay in the information processing system can not be neglected, Eq. (1) expands with the system matrix
B(t) ∈ R2N×2N to

ẏ(t) = A(t)y(t) + B(t)y(t− τ). (2)

Systems with time delay are represented by Delayed Differential Equations (DDE). In the case of an assumed
periodic time dependency, it also holds that

A(t) = A(t+ T ) and B(t) = B(t+ T ). (3)

The investigation of the stability is an important point in the study of the above mentioned applications. In the case
of heteronomous ODEs, as occur in the mechanical systems mentioned, the parameter excitation can cause the
system to have destabilizing resonances (e.g. Dohnal (2012); Dresig and Holzweißig (2011) or Gasch and Knothe
(1989)). They can be calculated according to

ωk,ln =
|ωk ± ωl|

n
, k, l = 1, 2, ... . (4)

Here, ωk and ωl denote the kth and lth eigenfrequencies of the time invariant system, and n the order of the
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resonance. It is called parameter resonance for k = l and of parameter combination resonances for k 6= l.

In the case of autonomous DDEs as they can be found for example in controlled systems, the time delay results in
a phase shift, which increases continuously with increasing frequency and can cause instability (Lunze, 2012).

3 Stability Analysis Methods

The stability studies of parameter-excited systems without a time delay Eq.(1), ie of heteronomous ODEs, can
be carried out with the help of the so-called Floquet theory (see, e.g. Dohnal (2012); Gasch and Knothe (1989)
or Tagawa (1967)). Based on a set of 2N linearly independent initial conditions y(0)1,y(0)2, ... ,y(0)2N , the
monodromy matrix Φ(T, t0 = 0) is obtained by numerical integration of the system equations (1) over the period
T . Based on the eigenvalues µn of the monodromy matrix, the stability of the system can be carried out. The
system is asymptotically stable if all 2N eigenvalues of the monodromy matrix are less than one in amount, and
thus lie inside the unit circle in the complex plane.

For autonomous DDEs, see Eq. (2) with (A(t),B(t)) = (A0,B0)(const), the stability statement can be made in
analogy to autonomous ODEs, see Eq. (1) with A(t) = A0(const), by means of the eigenvalues of the character-
istic equation (Gu and Niculescu, 2003; Wu et al., 2010). The stability is asymptotically given if all eigenvalues λn
have a negative real part and thus lie in the left half-plane of the complex plane. In contrast to autonomous ODEs,
for autonomous DDEs, the characteristic equation det(λI −A0 −B0e

−λτ ) is a transcendental equation, which
has an infinite number of solutions because of the term e−λτ . For a numerical stability analysis, it is necessary to
find a suitable approximation for e−λτ to obtain a finite number of solutions. Thus, in control engineering, rational
functions are often used (Lunze, 2012). One possible way to get a suitable model is the so-called Padé approx-
imation (see, e.g. Lam and Chung (1992); Lam (1996); Baratchart et al. (1995)).In Gu and Niculescu (2003), a
comprehensive overview of further procedures and the handling of time delay in the context of stability consid-
erations and the control of systems is given (see also Sipahi and Olgac (2006); Sipahi et al. (2011) or Wu et al.
(2010)). The functionalities that MATLAB offers in handling systems with time delays are explained in Gumussoy
et al. (2012).

In the case of heteronomous DDEs the Floquet theory can be extended, the result is a monodromy operator of
infinite dimension (Insperger and Stépán, 2003; Tweten et al., 2012). The stability of heteronomous DDEs can
be determined by various highly efficient discretization methods, which have been developed in recent years. The
general objective of the discretization methods is to approximate the monodromy operator of infinite dimension
by a monodromy matrix of finite dimensions. The semi-discretization method develops the DDE into a system of
piecewise autonomous ODE (Insperger and Stépán, 2002a, 2004; Insperger et al., 2004). The so-called temporal
finite element method and, in particular, the transition to the so-called spectral element method are presented in
Khasawneh and Mann (2011), see also (Khasawneh et al., 2010; Tweten et al., 2012; Ahsan et al., 2015a) or (Ahsan
et al., 2015b). While the temporal finite element method is a piecewise approximation of the DDE that has the full
flexibility of a spatial finite element method, the so-called collocation method is a global approximation over the
DDE domain (Khasawneh et al., 2010), see also (Khasawneh and Mann, 2011; Tweten et al., 2012; Butcher and
Bobrenkov, 2009) or (Breda et al., 2015).

The described methods for the stability analysis of heteronomous DDEs are numerically highly efficient, but they
are also complex and usually only to be implemented with some effort in an existing methodology. In the industrial
context it is necessary to use standardized methods and simulation environments. MATLAB/SIMULINK is such a
simulation environment. There is the possibility to model systems by graphical blocks. MATLAB/SIMULINK is
used in particular for time domain simulation and for controller design. If a mechanical system and its controller
is already modeled in MATLAB/SIMULINK, it is desirable to be able to carry out further investigations, such
as the stability analysis, also in this simulation environment. For this reason, a method for stability analysis on
heteronomous DDEs is presented in this thesis, which can be integrated into the existing methodology under
MATLAB/SIMULINK without much effort.

In the method described here, the time delay is approximated by a rational function (see also (Lunze, 2012)). Thus
the heteronomous DDE (2) becomes a heteronomous ODE

ẏ(t) = A(t)y(t) + B(t)C0y(t), (5)

where the approximated properties of the time delay are represented by C0. The dimension of the system increases
as a result of the approximation in Eq. (1) or Eq. (2). The stability of the so approximated system can then be
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determined for various parameter combinations according to the above-described Floquet theory.

The so-called Padé approximation is a common method for obtaining a suitable approximation of the propaga-
tion delay (see, e.g. Lam and Chung (1992); Lam (1996); Baratchart et al. (1995)). By applying the Laplace
transformation, the time delayed function y(t− τ) can be converted into the frequency domain

L{y(t− τ)} = Y (s) e−sτ . (6)

The aim of the approach is the approximation of the transcendental element e−sτ by a rational function of the type

RK,L(sτ) = PK,L(sτ)/QK,L(sτ), with deg PK,L = K, deg QK,L = L. (7)

This is a Padé approximation of the type (K,L). According to e.g. Baratchart et al. (1995), explicit formulations
are available for the numerator polynomial PK,L(sτ) and the denominator polynomial QK,L(sτ) with

PK,L(sτ) =

K∑
m=0

(K + L−m)!K!

(K + L)!m! (K −m)!
(−sτ)m, QK,L(sτ) =

L∑
m=0

(K + L−m)!L!

(K + L)!m! (L−m)!
(sτ)m. (8)

If the time delay is approximated in this way, Eq. (5) has the dimension 2N +L and the above-described steps can
be applied to perform the stability study on heteronomous ODE according to the Floquet theory. The monodromy
matrix Φ(T, t0 = 0) returns 2N + L eigenvalues µn, by which the stability statement is made. This approach can
also be found in Tagawa (1967).

The described method is implemented in MATLAB/SIMULINK. In order to prove its suitability, stability studies
are carried out on a known example, the delayed Mathieu differential equation. Furthermore, various numerical
solvers and approximation orders are examined.

As a further application example, the transfer to the sheetfed offset printing machine Heidelberg Speedmaster
XL162-6 + L described in section 1 is carried out. The influence of various parameters, which in particular concern
the control of the machine, is investigated.

4 Examples

4.1 Delayed Mathieu Differential Equation

The delayed Mathieu differential equation is one of the simplest equations, which maps the two properties of the
parameter excitation and the time delay, and still has a practical relevance (Stépán and Insperger, 2006)

q̈(t) + a1 q̇(t) + (a2 + a3 cos(Ωt)) q(t) = b q(t− τ). (9)

This differential equation can be interpreted as the system equation of a mechanical oscillator with one degree of
freedom and position control.

On the left side of this DDE are the system parameters; a1 is the damping and a2 and a3 are the mean value and
the amplitude of the harmonic stiffness, respectively. On the right is the controller parameter b, which amplifies
the τ delayed signal. For various combinations of the coefficients a1, a2, a3 and b, there are analytical and
numerical solutions in the literature. Therefore, this example is excellent for verifying the applicability of the
method described in section 3.

4.1.1 System with Parameter Excitation, without Time Delay (a3 6= 0, b = 0) (heteronomous ODE)

The stability map of Eq. (9) with b = 0 has been calculated for the first time by Strutt and Ince. Representations
can be found, for example, in Insperger and Stépán (2002b); Magnus and Popp (1997) or Klotter (1978), where
Klotter (1978) as well as Magnus and Popp (1997) provide detailed technical discussions.

The following Fig. 2 shows the computed stability map, stable areas are marked ’S’ herein.
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Since the system (9) does not have a delay time with b = 0, a Padé approximation is not performed. The
MATLAB/SIMULINK block to approximate the time delay is a constant of the magnitude one after Eq. (7) and
Eq. (8).
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Figure 2: Stability map in the (a2, a3)-plane with b = 0 for Ω = 1, τ = 2π, Padé type (0, 0), solver ode23tb.

The accordance of the results shown in Fig. 2 with those found in the literature (Insperger and Stépán (2002b);
Magnus and Popp (1997) or Klotter (1978)) is good. Only the narrow slopes of the unstable areas at a2 = 2.25
and a2 = 4 are not found through to the abscissa.

Since the stability maps are determined by numerical integration, the quality of the result is partly dependent on
the solver used. MATLAB/SIMULINK offers two classes of solvers, with constant step size and with variable step
size. Compared with constant-step solvers, variable-step equilibrators provide greater stability, whereas the cost
per unit of time to be calculated is usually greater (The Mathworks, Inc., 2008). Fig. 3 shows a comparison of a
section of the stability map shown in Fig. 2 for various solvers.
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Figure 3: Stability map in the (a2, a3)-plane with b = 0 for Ω = 1, τ = 2π, Padé type (0, 0), solver: a) ode45,
b) ode23, c) ode113, d) ode15s, e) ode23t, f) ode23tb.

There are clear differences in the results shown in Fig. 3. The solvers ode23 and ode23tb provide the best results
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as can be seen clearly. The maximum time step, which the solver is limited to, also has a strong influence on the
quality of the results. A reduction of the maximum time step leads to better results, an increase to poorer results.
The results shown in Fig. 3 are generated with a maximum time step size of 5 · 10−4 T , where T is the cycle time.
Since the solvers ode23 and ode23tb perform equally well, with respect to robustness of results against higher time
steps and computational time, and both provide slight nummerical damping, the decision is arbitrary. Therefore,
the simulations are performed using the equation solver ode23tb. The special features of the individual solvers can
be found in the MATLAB/SIMULINK help (The Mathworks, Inc., 2008).

4.1.2 System without Parameter Excitation, with Time Delay (a3 = 0, b 6= 0) (autonomous DDE)

An autonomous oscillator with time delay follows from Eq. (9) if a3 = 0 is set. In this case, the stability map is
shown in the (a2, b)-plane. For an undamped oscillator with a1 = 0, there is an analytical solution after Insperger
and Stépán (2002b). The boundary curves of the stability map are straight lines that have the slope ±1 for Ω = 1
and τ = 2π. They intersect the abscissa in the points (p/2)2, (p = 1, 2, ...).

The numerical solution according to the described method with a Padé approximation of the time delay of the type
(10, 10) is shown in Fig. 4.
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Figure 4: Stability map in the (a2, b)-plane with a3 = 0 for Ω = 1, τ = 2π, Padé type (10, 10), solver ode23tb.

The stability map in the (a2, b)-plane clearly shows the described properties of the analytical solution for a1 = 0.
The boundary curves with the slope±1 intersect the abscissa as mentioned in the points (p/2)2, (p = 1, 2, ...), see
also the solution in the (a2, a3)-plane (Fig. 2).

The quality of the approach of approximating the transcendental function e−sτ with the Padé approximation,
described by Eq. (8) and Eq. (7), is strongly dependent on the order of the approximation, i.e. the type. For this
example, the Padé approximations converge from type (10, 10), see also Fig. 5.
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4.1.3 System with Parameter Excitation, with Time Delay (a3 6= 0, b 6= 0) (heteronomous DDE)

The generalization or the combination of the two previous cases represents the solution of the heteronomous DDE.
Therefore, both parameters a3 and b are not equal to zero. In Fig. 6 the solutions for various values a3 are shown
in the (a2, b)-plane. Again, the consistency with already published data is very good (e.g. Insperger and Stépán
(2003)).
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For all of the cases described above, the data obtained with the described method very well agree with known
and published data. The approach of approximating the transcendental function e−sτ with a rational function, the
so-called Padé approximation, can thus be applied to convert a heteronomous DDE into a heteronomous ODE. The
stability of this heteronomous ODE can then determined by applying the Floquet theory. The procedure can easily
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be integrated into the simulation environment of MATLAB/SIMULINK and thus represents a process that can be
implemented in an industrial context.

4.2 Sheetfed Offset Printing Machine (system with N degrees of freedom)

The actual focus of the investigations is, as described above, on the stability analysis of the drive of the Heidelberg
Speedmaster XL162-6 + L sheetfed offset printing press. This is a sheetfed offset printing machine with six print-
ing units and a varnishing unit. In the course of modeling, the MATLAB/SIMULINK model of the actual printing
press is reduced to an oscillator with two modal degrees of freedom, ie the rigid-body mode an the first flexible
mode, and then coupled to the drive. The system equation

MS q̈(t) + DS q̇(t) + (KS + ε cos(ΩPE t)KPE) q(t) = GI q̇(t− τ) + GP q(t− τ) (10)

contains with MS , DS and KS the mass, damping and stiffness matrices of the mechanical system. In addition,
ε cos(ΩPE t)KPE describes the parameter excitation and GI q̇(t − τ) + GP q(t − τ) is the time delayed speed
and position control. For the parameter excitation KPE is the stiffness matrix of the drive belt and ε cos(ΩPE t)
describes the harmonic oscillation of the belt stiffness. For the control matrices, it is furthermore limited that they
are composed of scalar gain factors gI and gP as well as coupling matrices T I and T P which contain only zeros
and ones

GI = gI T I , GP = gP T P . (11)

Eq. (10) can be easily converted into Eq. (2) and by applying the Padé approximation it can be converted further
into Eq. (5).

The result of the stability consideration by varying the machine speed ν and the relative variation of the belt
stiffness ε for various gains of the speed control gI and time delays τ is shown in Fig. 7.
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It can be seen that the system can be stabilized by the additional damping due to the speed-proportional regulation.
The system with gI = 0 and τ = 0 serves as a reference. The time delay principally acts as a negative damping,
which can be clearly seen by the increase in the unstable ranges as a result of an increasing time delay. Furthermore,
the time delay still shows a different effect, the unstable areas are slightly shifted towards the higher machine speeds
compared to the reference system. Overall, it can also be seen that instability occurs only at very large amplitudes
of the parameter excitation (ε > 0.6).
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5 Summary and Conclusions

In this thesis, a method has been proposed which allows heteronomous DDEs to be converted into heteronomous
ODEs via the Padé approximation. The heteronomous ODEs can be modeled without great effort in a standard-
ized simulation environment such as MATLAB/SIMULINK. Using the Floquet theory, the stability maps can be
calculated by numerical integration of the system equations. The suitability of the method was shown in the well-
known example of the delayed Mathieu differential equation. Differences and influences of various solvers and
approximation orders were investigated and illustrated. Finally, the transfer of the method to a practical example
was carried out and the stability behavior of a sheetfed offset printing press was examined. The tests were carried
out as a function of the machine speed and the relative variation of the stiffness of the drive belt for various system
configurations. It is shown that time delay increases the unstable areas of the stability map because it has the effect
of a negative damping.
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Study of the Influence of a Delayed Yielding Phenomenon in 
Magnetorheological Damping Devices on the Vibration 
Attenuation of a Jeffcott Rotor 
 
J. Zapoměl, P. Ferfecki 
 
 
A frequently used technological solution for attenuation of lateral oscillations of rotating machines consists in 
inserting damping devices between the rotor and its stationary part. To achieve their optimum performance, 
their damping effect must be controllable. This is enabled by magnetorheological squeeze film dampers. As 
resistance against the flow of magnetorheological liquids depends on magnetic induction, the change of 
magnetic flux passing through the lubricating film enables to control the damping effect. The developed 
mathematical model of a magnetorheological squeeze film damper is based on assumptions of the classical 
theory of lubrication. The oil is represented by bilinear material. The pressure distribution in the damper gap is 
described by the modified Reynolds equation. The dependence of the stationary value of the yielding shear stress 
on magnetic induction is approximated by a power function. Its dependence on time is governed by a 
convolution integral, which enables to take into account that the yielding shear stress depends not only on the 
instant value of magnetic induction but also on its history in the past. In cavitated regions it is considered that 
the yielding shear stress drops to zero. The developed mathematical model of the damper was implemented in 
the computational procedures for analysis of lateral vibrations of a flexibly supported Jeffcott rotor loaded by 
the disc unbalance. The carried out simulations showed that the rising value of the delayed yielding time 
constant reduces the damping effect. The development of a novel model of a magnetorheological squeeze film 
damper based on representing the lubricating oil by bilinear material taking into account the delayed yielding 
phenomenon, its implementation into the procedures for analysis of oscillations of rotating machines, increasing 
their computational stability, and learning more on the effect of magnetorheological damping devices on 
behaviour of flexible rotors are the principal contributions of this article. 
 
 
1 Introduction 
 
The unbalance of rotating machines produces their lateral oscillation. A frequently used technological solution 
for its attenuation consists in inserting damping devices between the rotor and its stationary part. To achieve their 
optimum performance, their damping effect must be controllable. This is enabled by magnetorheological squeeze 
film dampers. The magnetorheological oils belong to the category of fluids with a yielding shear stress. The flow 
occurs only in those areas in which the shear stress exceeds a limit value - the yielding shear stress. In regions, 
called a core, where the shear stress is lower the magnetorheological oil behaves as solid matter. 
 
The principles of work of magnetorheological dampers and practical experience with their applications are 
reported in a number of publications (Gong et al, 2014; Aravindhan and Gupta, 2006; Carmignani et al., 2006). 
The mathematical model of a squeeze film magnetorheological damper, in which the lubricant is represented by 
Bingham material, is reported in (Zapoměl et al., 2012; Zapoměl and Ferfecki, 2010). The modelling of 
magnetorheological oil by bilinear material (Zapoměl et al., 2016b) arrives at increase of stability of the 
computational procedures, in which the mathematical model of the magnetorheological squeeze film damper is 
implemented. 
 
In this paper, the mathematical model of a magnetorheological squeeze film damper developed in Zapoměl et al., 
2016b has been extended. The model was completed with the phenomenon of the delayed yielding which takes 
into account the time history of magnetic induction on the yielding shear stress magnitude. Unlike of Zapoměl 
and Ferfecki, 2016a, the new mathematical model was implemented into computational procedures for 
investigation of lateral vibrations of flexible rotors. 
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The implementation of the delayed yielding phenomenon in the mathematical model of a magnetorheological 
squeeze film damper, its application into the computational procedures for analysis of vibrations of flexible 
rotors, increase of their numerical stability, and learning more on the effect of magnetorheological damping 
devices on the oscillations attenuation of flexible rotors are the principal contributions of this article. 
 
 
2 A Novel Model of a Magnetorheological Squeeze Film Damper 
 
The main parts of a magnetorheological squeeze film damper (Figure 1) are two concentric rings between which 
there is a layer of magnetorheological oil. The inner ring is coupled with the shaft through a rolling element 
bearing and with the damper housing by a squirrel cage spring. Lateral vibration of the shaft squeezes the oil 
film, which produces the damping effect. Magnetic flux generated in the damper coils passes through the 
lubricant and as its resistance against the flow depends on magnetic induction the change of the applied current 
changes the damping force. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1. MR squeeze film damper Figure 2. The damper coordinate system 
 
The developed mathematical model of the damper is based on assumptions of the classical theory of lubrication. 
The magnetorheological oil is represented by bilinear material the yielding shear stress of which is a function of 
magnetic induction. In addition it is assumed that both the geometric and design parameters of the damper make 
it possible to consider it as short (Childs, 1993; Hori, 2006). 
 
The pressure distribution in the full oil film is governed by the Reynolds equation (1) - (2) adapted for bilinear 
material (Zapoměl et al., 2016b) 
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p is the pressure, p' stands for the pressure gradient in the axial direction, Z is the axial coordinate perpendicular 
to the axes X, Y and defining position in the oil film (Figure 2), h is the film thickness, τy is the yielding shear 
stress, τC is the shear stress at the core border, ηC, η are the dynamic viscosities of the oil inside and outside the 
core area, respectively, ZC defines the axial coordinate of the location where the core touches the rings surfaces, 

Cp′  denotes the pressure gradient in the axial direction at that location ZC, and (.) denotes the first derivative with 
respect to time. 
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The thickness of the lubricating film depends on the position of the inner damper ring relative to the outer one 
Hori, 2006). 
 

)(ech H γϕ −−= cos . (5) 
 
c is the width of the gap between the inner and outer rings of the damper, eH is eccentricity of the rotor journal 
centre, φ is the circumferential coordinate, and γ is the position angle of the line of centres (Figure 2). 
 
In that part of the damper gap where the oil film thickness rises with time a cavitation is assumed. The pressure of 
the medium in cavitated areas is considered to remain constant and equal to the pressure in the ambient space. 
 
The y and z components of the magnetorheological damping forces Fmry, Fmrz are calculated by integration of the 
pressure distribution pd which takes into account different pressure profiles in noncavitated and cavitated regions 
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R is the mean radius of the damper gap, L is the damper length and φ is the circumferential coordinate (Figure 2). 
 
Based on experiments, dependence of the stationary value of the yielding shear stress on magnetic induction is 
approximated by a power function 
 

yn
yy Bk=τ . (8) 

 
B is magnetic induction and ky and ny are material constants of the magnetorheological oil. 
 
Due to the physical substance, the yielding shear stress of magnetorheological fluids depends not only on the 
instant value of magnetic induction but also on its history in the past. This time dependence is described by a 
convolution integral, which is consequently transformed to the differential form 
 

yn
yyyy BkT =+ ττ& . (9) 

 
Ty is the delayed yielding time constant, which expresses the rapidity of the change of the yielding shear stress on 
the change of magnetic induction. In cavitated regions it is considered that the yielding shear stress becomes zero 
there. 
 
In the developed mathematical model the damper housing is considered to be composed of a series of meridian 
segments and each segment is considered to be a divided core of an electromagnet with the gap filled by 
magnetorheological oil. This enables to determine magnetic induction as a function of the applied current and 
thickness of the oil film at any location in the oil film around the damper circumference 
 

h
IkB rB µµ0= . (10) 

 
μ0, μr are the vacuum and relative permeabilities of the magnetorheological oil, respectively, I is the applied 
current, kB is the design parameter that is defined as a product of the number of the coil turns and the magnetic 
efficiency. More details on its determination can be found in Ferfecki et al., 2017. 
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3 The Computational Model of the Studied Rotor 
 
The investigated rotor (Figure 3) consists of a flexible shaft and of one rigid disc. At both its ends it is coupled 
with the stationary part by two magnetorheological squeeze film dampers. The rotor rotates at a constant angular 
speed, is loaded by its weight and excited by the disc unbalance. The squirrel cage springs of both dampers are 
pre-bent to be eliminated their deflection caused by the rotor weight. The whole system can be considered as 
symmetric relative to the disc middle plane. 
 
The task was to study the effect of the delayed yielding phenomenon on performance of magnetorheological 
damping devices and on attenuation of vibrations of flexible rotors. 
 
 
 
 
 
 
 
 
 

Figure 3. Scheme of the investigated rotor system 
 
The rotor is implemented in the computational model by a Jeffcott one and the magnetorheological squeeze film 
dampers are represented by linear springs and nonlinear force couplings. With respect to the system symmetry, 
the lateral vibration of the rotor is governed by a set of four differential equations 
 

( ) ϑϑϑϑ cos2&&&&&&&
TBMMBSSBMMP mezbzbykykybybbym =−+−+−++ , (11) 

 
( ) mgmeybybzkzkzbzbbzm TBMMBSSBMMP −=+−−+−++ ϑϑϑϑ sin2&&&&&&& , (12) 

 
( ) mryBMMBBSSBMM Fzbzbykkykybyb 22 =+−++−+− ϑϑ &&&& , (13) 

 
( ) mrzBMMBBSSBMM Fybybzkkzkzbzb 22 =−+++−+− ϑϑ &&&& . (14) 

 
m is the disc mass, kS is the stiffness of the shaft, kB is the stiffness of each squirrel cage spring, bP and bM are the 
linear viscous coefficients related to the rotor environmental and material damping, eT is the eccentricity of the 
disc centre of gravity, g is the gravity acceleration, y, z, yB, zB are displacements of the disc and shaft journal 
centres in the horizontal and vertical directions, ϑ is the angle of the rotor rotation and (..) denotes the second 
derivative with respect to time. 
 
The solution of the governing equations was obtained by application of a numerical time integration method 
based on the Adams-Moulton one. 
 
 
4 The Results of the Computational Simulations 
 
The main technological parameters of the investigated rotor are: 250 kg the mass of the disc, 20 MN/m the 
bending stiffness of the shaft, 600 Ns/m is the shaft material viscous damping coefficient (material damping), 
10 Ns/m the disc viscous damping coefficient (external damping), 15 kgmm the disc unbalance, 5 MN/m the 
stiffness of each squirrel cage spring, 0.3 Pas the oil viscosity (if not effected by a magnetic field), 150 mm the 
mean diameter of the damper gap, 50 mm the damper land length, 0.8 mm the width of damper clearance, 60 the 
damper design parameter,  5, 10 000 PaT-1.1, 1.1 the oil relative permeability and the proportional and 
exponential constants, respectively. The rotor turns at constant angular speed of 150 rad/s. 
 
A simple dynamical analysis shows that the resonance frequencies of the rotor system related to the cases when 
the dampers exhibit no damping (e.g. no magnetorheological oil is supplied to the dampers) and when they work 
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in the overdamped regime are 163 and 283 rad/s, respectively. It implies the rotor operates below the first critical 
speed. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Time history of the yielding shear stress 
 
Time history of the yielding shear stress for the current of 0.2 A and two delayed yielding time constants (1 ms 
and 5 ms) referred to the specified location on the damper circumference are depicted in Figure 4. The results 
show that rising magnitude of the delayed yielding time constant makes the response of the oil on the change of 
the magnetic field slower and slightly reduces the maximum value of the yielding shear stress. During the time 
periods when the cavitation takes place at the investigated location the yielding shear stress drops to zero. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Time history of the disc displacement in the horizontal direction (time constants 1 ms, 5 ms) 

Time histories of the disc centre displacement in the horizontal direction are depicted in Figure 5 for two 
magnitudes of the time constant (1 ms, 5 ms). The analysis of the results shows that higher value of the time 
constant increases amplitude of the oscillations. It implies it reduces the damping effect. 
 
The steady state orbits of the disc centre for the applied current of 0.2 A and for two values of the time constant 
1 ms and 5 ms are drawn in Figure 6. The trajectories are circular which is caused by prestressing the squirrel 
cage springs. The weight of the disc shifts the orbits in the vertical direction. The results show that higher value 
of the time constant reduces the damping effect and increases amplitude of the disc vibration. 
 
The steady state trajectories of the rotor journal centre are drawn in Figure 7 for two values of the delayed 
yielding time constants of 1 ms and 5 ms and for the applied current of 0.2 A. Rising magnitude of the time 
constant arrives at increase of the orbit size. 
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Figure 6. Steady state orbits of the disc centre (time constants 1 ms, 6 ms) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Steady state orbits of the rotor journal centre (time constants 1 ms, 5 ms) 
 

 
 
5 Conclusion 
 
This paper presents a new mathematical model of a short magnetorheological squeeze film damper for 
rotordynamic applications in which the delayed yielding phenomenon is implemented. The model is based on 
assumptions of the classical theory of lubrication. The oil is represented by bilinear material. The pressure 
distribution in the full oil film in the damper gap is governed by the adapted Reynolds equation. The dependence 
of the stationary value of the yielding shear stress on magnetic induction is approximated by a power function 
and its dependence on time by a convolution integral. The developed mathematical model of the 
magnetorheological damper was implemented in the computational procedures for investigating lateral vibrations 
of flexible rotors. The results of the simulations show that rising magnitude of the delayed yielding time constant 
reduces rapidity of the response of the magnetorheological oil on the change of a magnetic field which arrives at 
reduction of the damping effect. The implementation of the delayed yielding phenomenon in the mathematical 
model of a magnetorheological squeeze film damper, its implementation into the computational procedures for 
analysis of lateral vibrations of flexible rotors, the increase of their numerical stability due to representing the 
magnetorheological oil by bilinear material, and learning more on the effect of magnetorheological damping 
devices on behaviour of flexible rotors are the principal contributions of this article. 
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The Effect of Field Damping on Rotordynamics of Non-salient Pole
Generators

F. Boy, H. Hetzler

This paper investigates the influence of magnetic field damping on lateral shaft oscillations of non-salient pole
generators. Field damping is caused by compensating currents affecting the magnitude and orientation of the
magnetic field and resulting lateral forces. These currents can either occur in especially constructed devices,
like a damper cage, or simply in the core material as eddy currents. While damper windings are used to reduce
torsional shaft vibrations by generating an asynchronous damper torque, this survey reveals that in contrary to
intuition, the field damping in general may cause self-excited lateral shaft oscillations leading to noise emission
and reliability issues. It is shown that the effect is strongly dependent upon the machine type and the nominal
rotational speed compared to the critical speed. The applied approach is analytical taking into account arbitrary
lateral rotor motion in the context of linear rotordynamics.

1 Introduction

The main purpose of an electric generator is the conversion of mechanical to electrical power. To do so an elec-
tromechanical torque is transmitted by a rotating magnetic field which originates from currents flowing in the
stator and rotor windings and from compensating currents in damper windings or the core material, respectively.
However, the magnetic field also causes reluctance stresses at the air gap surface. Especially when the rotor runs
eccentrically in the stator bore, these stresses are unbalanced, causing unbalanced magnetic forces. The most im-
portant one, pointing towards the direction of the smallest air gap is denoted as unbalanced magnetic pull (UMP)
and has been studied extensively in the past century, as summearised for example by Kaehne (1963). However, in
view of rotordynamics and the evolution of lateral shaft oscillations, especially the force component perpendicular
to the UMP plays an important role due to the fact that it can feed and remove comparably large amounts of energy
to and from the orbital motion of the rotor. Effects influencing the perpendicular force component have been inves-
tigated mainly in asynchronous machines due to the fact that squirrel cage rotors cause strong perpendicular forces
(Früchtenicht, 1982). Furthermore, there are a lot of additional influences changing the amplitude and direction
of the magnetic force. Among them are effects due to parallel paths in the windings, as investigated by Burakov
(2006), magnetic homopolar fluxes (Belmans, 1987) and saturation (Arkkio, 2000).
Damper windings are another interesting example affecting the force. Usually, their purpose is to reduce torsional
shaft vibrations (Jordan, 1970). However, as shown by Dorell et al. (2011) for asynchronous machines and by
Wallin et al. (2013) for salient pole generators, damper windings may also change the direction of the lateral
electromagnetic forces.
This study discusses the influence of field damping on the rotordynamics of non-salient pole generators as a sim-
ilar question to the studies mentioned above. The machines being considered here, usually run at higher speeds,
making effects due to dynamic rotor eccentricity more relevant. While only some of them actually posess damper
windings, field damping as a general qualitative phenomenon, might also be caused by eddy currents in the rotor
core material resulting in an analogous effects.
This study extends existing surveys by Kellenberger (1966) and the authors (Boy, 2016), which found that the
forces and thus the rotordynamics of turbogenerators are strongly dependent on the load condition. In the present
work, it is shown, that field damping might cause self-excited lateral shaft oscillations at higher rotational speeds.
Their dependency on the machine design, occurring homopolar flux and load condition will be outlined.

The applied modelling approach is an analytical one. Solving the combined electro-mechanical problem by space
vector theory and assuming stationary speed of operation, the forces of electromagnetic origin are derived for an
arbitrary orbital motion of the rotor. With this information a stability analysis of the steady state, indicating the
occurence of self-excited oscillations is carried out. All symbols introduced subsequently are explained in the text.
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Additionally a nomenclature is given in the appendix.

2 Model

Investigating electrical machine rotordynamics involves the solution of three subproblems (Fig. 1): The current
flowing in the electrical circuits are sources to the magnetic field in the air gap of the machine. The changing
magnetic flux in return induces voltage into these ciruits. Furthermore the magnetic field exerts forces on the rotor
of the machine, while the rotor motion in return distorts the air gap domain and thus affects the magnetic field.

Figure 1. Electro-mechanical machine model involving three subproblems.

2.1 Assumptions and Kinematics

To analytically solve the magnetic field problem several assumptions have to be made. Both stator and rotor
shall be perfectly aligned cylinders (radii r1 (stator) and r2 (rotor)). The material shall be infinitely permeable,
allowing to restrict the consideration to the air gap domain but excluding saturation effects. The problem shall
be two-dimensional, neglecting axial boundary effects and corresponding stray losses. The actual windings in the
slots are replaced by current sheets a1 and a2 for the stator (index 1) and the rotor (index 2) respectively. This
simplification is permissible according to the field equivalence principle for suffiently smooth surfaces, as it is the
case in non-salient pole machines. The involved compensating currents shall be represented by currents in damper
windings (index D), realised comparable to the squirrel cage of an induction machine with ND bars, which are
continuously connected by conducting rings at the axial ends of the rotor. Corrections in the air gap width due to
slotting or in the winding factors due to skewed damper bars etc. are left out here, as the study is concerned with
qualitative effects.

Fig. 2 shows an overview of the field domain and the involved kinematics. For the description of the problem
several frames of reference are introduced: A cartesian inertial frame of reference K1 = [O, {~ex1 , ~ey1 , ~ez1}], one
where the x-axis is pointing towards the direction of eccentricity (smallest air gap), denoted asK = [O, {~ex, ~ey, ~ez}]
and one, identified by K2 = [O, {~ex2

, ~ey2 , ~ez2}], where the x-axis shall be aligned with a distinct pole axis of the
rotor. Analogous to these coordinate systems, cylindrical systems Z1,Z and Z2 are defined. The magnetic field
problem in the air gap Ω will be stated in cylindrical coordinates, with the radial coordinate r and coresponding
angles θ1 = θ + γ = θ2 + ϑ.

Ω

O~ez

~ey2

~ex

~ex2

~ex1

~ey1

~ey
δ(θ) θ

θ1

θ2

e γ

ϑ

a1

a2

Figure 2. Kinematics and field domain.
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The rotor position can either be described by polar (e, γ), or cartesian coordinates (x1, y1), (x, y) and (x2, y2) in
the different frames of reference. The absolute angular orientation of the rotor is described by the angle ϑ. Note that
all angles θi (with some index i) represent spatial coordinates, while γ and ϑ are discrete mechanical coordinates.
Later on, different electrical angles ϕk will be introduced. They transform with ϕk = pϑk to a corresponding
mechanical angle ϑk.

With the kinematic definitions and physical simplifications stated before and assuming that the mean air gap width
δm = r1 − r2 is small compared to the rotor radius

(
ε = δm

r2
� 1

)
, it can be shown that the magnetic field of

order O(1) is orientated straight radially neglecting terms of higher order O(ε).
Due to circumferential periodicity the one dimensional magnetic flux density can be written as a Fourier series

B = B0 +

∞∑
ν=1

B̂ν cos(νθ2 − ϕBν)︸ ︷︷ ︸
Bν

= B0 +

∞∑
ν=1

Re
{
Bνe

−jνθ2
}
, (1)

here expressed in the frame of reference Z2, corotating with the rotor. In this equation each harmonic resembles a
rotating field wave of different circumferential velocity. In eq. (1) complex notation was introduced, where j is the
imaginary unit and Bν = B̂νe

jϕBν represents the complex amplitude of the ν-th field harmonic. Here and further
on underlining shall indicate complex variables A and overlining their complex conjugate A. In the context of this
work only the fundamental wave of order p (where p is the number of pole pairs) and the eccentricity waves of
order p±1 are regarded. This assumption is justified in machines with a sufficiently well arranged winding design.

Deriving an approximate solution to the magnetic field (which means finding B0, B̂p, B̂p±1 and ϕBp, ϕBp±1)
presumes solving of the voltage equations of the equivalent electrical circuits. These circuits are a representative
phase of the stator and a representative mesh of the damper cage. To derive the induced voltages, it has to be
considered that the field waves of order ν induces alternating voltages of different frequency in the stator windings
(index 1) and damper cage (index D) respectively. Thus, the voltage in an equivalent circuit (see e.g. Jordan
(1970)) can be written as

ui(t) =

∞∑
ν=1

ûiν cos(ωiνt+ ϕiν) =

∞∑
ν=1

Re
{√

2U iνe
jωνt

}
(2)

where i = (1, D) is an index and U iν =
√

2
2 ûiνe

jϕiν is the complex phasors of the ν-th voltage harmonic. The
frequencies are related by ωDν = sνω1ν . In synchronous operation the slip is sp = s = 0 and the higher field
harmonic slips become sp±1 = 1− p±1

p (1− s) = ∓ 1
p .

As the currents in the mentioned circuits are caused by these voltages, they can be expressed similarily. Each
order of these AC quantities can be treated seperately balancing only the complex phasors, which will be done
subsequently.

2.2 Fundamental Field Harmonics

The voltage equations of order p are

U1p = (R1p + jωL1p )I1p + U12p (stator), (3)

0 = (RDp + jsωLDp)IDp ⇒ IDp = 0, (damper cage). (4)

Here U1p = U1p is the phasor of the supply voltage, which shall be aligned with the real axis without loss of
generality. The phasor of the synchronous generated voltage in eq. (3) is U12p = U12pe

jϕ12p , with the effective
value U12p and the polar wheel angle ϕ12p. Note that there is no mutual induction of order p between the rotating
field and the damper cage, as they are assumed to move synchronously (s = 0).

Inserting U12p into eq. (3), neglecting the resistive component (as usual for larger machines (Jordan, 1970)) and
solving for I1p yields

I1p = −j U1p

ωL1p
+ j

U12p

ωL1p
ejϕ12p . (5)
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The fundamental field harmonic is

Bp =
µ0

δm
Re
{
k1pI1pe

j(ωt−pθ1) + k2pi2e
−jpθ2

}
, (6)

where µ0 is the magnetic constant, k1p and k2p are constants depending on the machine geometry and winding
design and i2 is the DC excitation current. Transforming to corotating coordinates Z2 using θ1 = θ2 + ϑ, with
pϑ = ωt− π

2 + ϕ12p, inserting I1p from eq. (5) and regarding k2pi2 = k1p
U12p

ωL1p
finally results in

Bp =
µ0

δm
Re
{
k1p

U1

ωL1
e−jϕ12pe−jpθ2

}
, (7)

where it is easy to identify the complex phasor Bp = B̂pe
jϕBp = µ0

δm
k1p

U1

ωL1
e−jϕ12p

2.3 Eccentricity Field Harmonics

The voltage equations of order p± 1 are

0 = (R1p±1 + jωL1p±1 )I1p±1 ⇒ I1p±1 = 0 (stator), (8)

0 = (RDp±1 + jsp±1ωLDp±1)IDp±1 + U21Dp±1 (damper cage). (9)

Here it is assumed that the field waves of order p±1 cannot induce voltage into the stator phases, which is the case
for integer-slot windings without parallel branches (Tüxen, 1941). The induced voltages U21p±1 originate from
the eccentricity fields and have to be calculated subsequently. Therefore a closer look at the formation of these
harmonics shall be taken here.

As it is well known, the eccentricity field harmonics arise from the multiplication of the magnetic excitation with
the air gap permeance Λ(θ) = µ0

δ(θ) = µ0

δm

(
1 + e

δm
cos θ

)
+ O(ε) (Frohne, 1968), where δ(θ) is the actual air

gap width at a certain circumferential position θ as shown in Fig. 2. Again, higher order terms were neglected.
Multipliying with the fundamental magnetic excitation one obtains

Λ(θ)k1p
U1

ωL1p
cos(pθ2 + ϕ12p) = B̂p

(
cos(pθ2 − ϕBp) +

1

2

e

δm
cos((p± 1)θ2 + ϕ12p ± (ϑ− γ))

)
, (10)

where θ = θ2 + (ϑ− γ) has been inserted. In complex notation these field components read

B̂p Re
{
e−j(pθ2+ϕ12p) +

1

2

e

δm
e∓j(ϑ+γ)e−j((p±1)θ2+ϕ12p)

}
. (11)

Here it is possible to identify the phasor z±2 = x2 ± jy2 = e e∓j(ϑ−γ), representing the rotor orbit position within
the corotating frame of reference (compare Fig. 2). Obviously, the components of the eccentricity field harmonics
shown in eq. (11) cause the mutual induced voltage in the damper cage, which is calculated by

u21Dp±1 =
dΨ21Dp±1

dt
=

1

2
B̂p

∫
M

∂

∂t
Re
{
z±2
δm

e−j(p±1)θ2+ϕ12p)

}
dS, (12)

where Ψ21Dp±1 is the linked flux of the field components of order p±1, caused by eccentricity into a representative
damper mesh surfaceM. Note that the second part of this equation refers to the moving frame of reference. Due
to the fact that the damper cage mesh represents a moving surface, the Helmholtz transport theorem (see e.g.
Rothwell (2008)) has to be applied. In this case the component porportional to the rotor orbital motion (motion of
the damper cage surface) is of order O(ε) and therfore neglected here.

Evaluating eq. (12) results in the voltage phasor

U21Dp±1 =
1

2
B̂pkDp±1

ż±2
δm

e−jϕ12p , (13)

where kDp±1 is a constant similar to k1p and k2p, depending on the machine geometry and damper cage design. At
this point a major drawback modelling the electrical voltages and currents as pure AC quantities shall be pointed
out: considering eq. (13) it is found that the voltage phasor depends on the time derivative of the rotor orbital
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motion ż±2 . This result contradicts the model assumption of a harmonic time dependency and would only be
permissible, if the time rate of change of ż±2 would be small compared to the frequency of u21Dp±1, what might
not be the case.

Nethertheless, inserting the result into the damper cage voltage equation (9) and solving for the current phasors
IDp±1 yields

IDp±1 = − jsp±1

β + jsp±1

U21Dp±1

jsp±1ωLDp±1
. (14)

Here the resistance to reactance ratio β =
RDp±1

ωLDp±1
for the damper cage has been introduced as it is usually done

in literature (Früchtenicht (1982), Jordan (1969)) and the complex number − jsp±1

β+jsp±1
= (ap±1 − 1) + jbp±1 is

identified as the complex field damping factor.

Finally, the field component of the eccentricity harmonics, caused by the damper cage reads

µ0

δm
Re
{
kDp±1IDp±1e

−j(p±1)θ2

}
= −1

2
B̂pRe

{
1

β + jsp±1

1

ω

ż±2
δm

e−j((p±1)θ2+ϕ12p)

}
. (15)

Adding this result to the eccentricity harmonics, caused by the air gap permeance (eq. (11)) results in

Bp±1 =
1

2
B̂p Re

{(
z±2
δm
− 1

β + jsp±1

1

ω

ż±2
δm

)
e−jϕ12pe−j(p±1)θ2

}
. (16)

With this result also the complex amplitudes Bp±1 = B̂p±1e
jϕBp±1 = 1

2 B̂p

(
z±2
δm
− 1

β+jsp±1

1
ω
ż±2
δm

)
e−jϕ12p are

known.

Considering eq. (1) for the magnetic field onlyB0 is left undetermined until now. As mentioned before it results in
a homopolar flux in 2-pole machines and can be calculated as proposed by Belmans (1987). Assuming maximum
homopolar flux leading to maximum electromagnetic forces, a worst case scenario considering rotordynamics will
be investigated in this work. This assumption leads to B0 = 0 completing the derivation of the magnetic field
formula.

2.4 Electromagnetic Forces

The electromagnetic forces can be calculated using the Maxwell stress tensor (Rothwell, 2008). For the sake of
simplicity, stress is integrated over the stator surface here. As higher order terms have been neglected (resulting in
a straight radial flux density) the force formula reads

~F2 = −~F1 = Fx2~ex2 + Fy2~ey2 =
1

2µ0

∫
∂Ω1

B2~erdS. (17)

The calcultation will be carried out in the rotor fixed frame of reference, where ~er = cos θ2~ex2
+ sin θ2~ey2 and

dS = r1`dθ2 with the effective length ` of the air gap.

Calculating the force components Fx2 and Fy2 involves some algebra and has to be done individually for the cases
p > 1 (machines with more than two poles) and p = 1 (2-pole machines). As it is usual in rotordynamics (Gasch,
2006), matrix notation will be used further on. In this context, a matrix M is displayed in bolt letters.
In the first case (p > 1) one finds[

Fx2

Fy2

]
=

[
Re
{

BpBp±1

}
Im
{
∓BpBp±1

}] and

[
Fx2

Fy2

]
=

[
Re
{

BpBp±1 +BpBp−1

}
Im
{
∓BpBp±1 +BpBp−1

}] (18)

in the second case (p = 1). Here, the field wave of order ν = p − 1 = 0 is homopolar, creating additional
force components. Note that the value of p for p = 1 is not inserted for the sake of comparability here and in the
following considerations.
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Evaluating the expressions in eqs. (18) respectively yields[
Fx2

Fy2

]
= celmI

[
x2

y2

]
︸ ︷︷ ︸

F UMP

− celm

ω
P 1

[
ẋ2

ẏ2

]
︸ ︷︷ ︸

F FD

, (19)

in the first case (p > 1), where FD stands for field damping and where I is the identity matrix and

P 1 =
1

2

 β
β2+s2p+1

+ β
β2+s2p−1

(
sp+1

β2+s2p+1
− sp−1

β2+s2p−1

)
−
(

sp+1

β2+s2p+1
− sp−1

β2+s2p−1

)
β

β2+s2p+1
+ β

β2+s2p−1

 . (20)

In the second case (p = 1) the result is[
Fx2

Fy2

]
= celm (I + T )

[
x2

y2

]
︸ ︷︷ ︸

F UMP

− celm

ω
(P 1 + P 2T )

[
ẋ2

ẏ2

]
︸ ︷︷ ︸

F FD

(21)

with

T =
1

2

[
cos(2ϕ12p) − sin(2ϕ12p)
− sin(2ϕ12p) − cos(2ϕ12p)

]
and P 2 =

[ β
β2+s2p−1

sp−1

β2+s2p−1

− sp−1

β2+s2p−1

β
β2+s2p−1

]
. (22)

The electromagnetic spring constant in eqs. (19) and (21) is celm =
πr1`B̂

2
p

2µ0δm
. There are additional forces propor-

tional to the rotor orbit velocity, which had not been considered in earlier works: these forces originate from field
damping. As they are due to induction and as the voltage equations have been solved for the induced currents
explicitly the forces usually proportional to the currents are now proportional to the rotor orbit velocity.
Components on the main diagonal can be considered as inner damping (compare Gasch (2006)), as the coefficients
in P 1 and P 2 are positive. Components at the secondary diagonal correspond to gyroscopic effects relative to the
moving frame of reference. As it is well known from classical rotordynamics, inner damping is a typical source of
self-excited oscillations and in fact it is the only possible source here.

2.5 Rotor Model

The mechanical system is modelled as a classical Laval-rotor (Jeffcott-rotor). With this model one mode shape of
the generator system can be depicted and analysed dynamically. The basic assumptions are that the rotor consists
of a massless elastic shaft (isotropic stiffness c) supported by isotropic rigid bearings with a circular rigid disk
on it. The centre of inertia S shall be eccentric causing imbalance. Combined with the forces of electromagnetic
origin the equations of motion read[

m 0
0 m

] [
ẍ2

ÿ2

]
+

[
d+ di −2mΩ
2mΩ d+ di

] [
ẋ2

ẏ2

]
+

[
cx −mΩ2 −dΩ

dΩ cy −mΩ2

] [
x2

y2

]
= mΩ2

[
eSx
eSy

]
+

[
Fx2

Fy2

]
(23)

in the rotor fixed corotating frame of reference. Here Ω = ω
p is the synchronous angular velocity of the rotor

and m is the rotor mass. In eq. (23) two different kinds of mechanical damping are introduced: one damping
force FD = −dẋ1, proportional to the inertial orbital velocity x1 of the rotor and another force FDi = −diẋ2,
proportional to the orbital velocity ẋ2 of the rotor relative to the corotating frame of reference. While the first
damping force accounts for air friction etc., the second one is due to internal friction, e.g. at joints on the rotor.
The mechanical spring constants cx (along a certain pole axis) and cy (perpendicular to that) are equal in machines
with more than two poles (cx = cy if p > 1) and different in machines with two poles (cx 6= cy if p = 1), due to
the rotor construction (Gasch, 2006). The values (eSx, eSy) = const. are the positional coordinates of the centre
of inertia in the rotor fixed frame of reference.
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In the following the parameters and variables

ω0 =

√
c

m
, τ = ω0t, η =

Ω

ω0
=

ω

pω0
, D =

d

2mω0
,

Di =
di

2mω0
, c =

cx + cy
2

, κ =
cx − cy
cx + cy

, ζ =
celm
c
,

are introduced. In this context ω0 is the angular eigenfrequency of the corresponding undamped system without
electromagnetical forces, τ is a dimensionless timescale, D and Di are mechanical damping ratios, c is the mean
spring constant and κ is a measure for the noncircularity of the rotor shaft. This parameter is κ = 0 for machines
with more than two poles (p > 1), and κ 6= 0 for 2-pole machines (p = 1). The parameters η and ζ will be
explained below. Using these definitions eqs. (23) transform to[
x
′′

2

y
′′

2

]
+

[
2(D +Di) −2η

2η 2(D +Di)

] [
x′2
y′2

]
+

[
1 + κ− η2 −2Dη

2Dη 1− κ− η2

] [
x2

y2

]
− ζ

celm

[
Fx2

Fy2

]
= η2

[
eSx
eSy

]
(24)

where ()′ indicates the derivative with respect to the nondimensional time τ . The factor ζ = celm
c represents the

relative strength of the electromagnetic forces, which are dependent on the electromagnetic machine design. Its
order of magnitude is usually below 10%. Additionally the term 1

ω in eqs. (19) and (21) becomes 1
pη = ω0

ω . Here
η is the mechanical speed of rotation compared to the critical speed of the system. Usually machines running far
below this critical speed (η = 1) are denoted as rigid shaft machines, while the ones running above it are known
as soft mounted (Dawson, 1983).

3 Results

Eq. (24) is an inhomogenous system of two ODEs of second order with constant coefficients for the orbital motion
q = [x2 y2]> of the rotor. Its solution is described by a homogenous- and an inhomogenous part (qh and qp).
The latter one represents the steady state solution, when free oscillations have vanished. In view of electromag-
netically excited oscillations especially the question of self-excited oscillations is of great interest (Früchtenicht,
1982). Therefore in this section a stability analysis will be carried out posing the question under which circum-
stances free oscillations (homogenous solution) of exponentially rising amplitude may occur. Therefore an ansatz
of the kind qh = q − qp = reλτ , where λ is an eigenvalue and r is a corresponding eigenvector, is made and the
characteristic polynomial in λ is derived. Applying Hurwitz’ criterion (see e.g. Merkin (2012)) inequalities for the
stability of the steady state can be found. These expressions describe regions in the parameter space where free
oscillations decay (stable steady state) or rise (unstable steady state).
Before presenting stability maps a short view on relevant system parameters shall be given: Besides the mechanical
parameters η, κ and D and Di, there are three electromagnetic parameters: ζ, ϕ12p and β. The parameter ζ for
the relative strength of the electromagnetic forces has already been explained. As it turns out in the following,
its influence on the stability is quite significant. Furthermore the electrical torque angle ϕ12p and the resistance
to reactance ratio β play a role in this context. For generators the torque angle is in between ϕ12p = 0 (no load)
and ϕ12p = π

2 (critical load). Despite that it will not exceed π
4 under normal load conditions. The resistance to

reactance ratio β has an order of magnitude of O(10−1). As the influence of the mechanical parameters D and
κ is known, their values are set to D = 0.002 (weak damping) and κ = 0.1 in the case of 2-pole machines. The
influence of all other parameters will be shown subsequently.

Fig. 3 shows two basic stability maps plotting the regions of stable and unstable states in the parameter space. In
the figure the force parameter ζ is plottet against the specific rotational speed η for a 4-pole machine (Fig.3 (a)) and
a 2-pole machine (Fig.3 (b)) considering homopolar fluxes, respectively. Each map shows stable regions in white
and unstable states in grey for a basic parameter configuration. Note that changing the specific rotational speed
η = Ω

ω0
does not mean changing to the absolute running speed of the machine, which is fix and given by Ω = ω

p ,
but changing the critical speed ω0 relative to Ω. Thus in Fig. 3 different machine designs are compared.

Analysing the stability behaviour different aspects raise the attention: As a first point both maps show an unstable
region at high rotational speeds and high electromagnetic forces. In both cases one finds, that the higher the
nominal rotational speed compared to the critical speed, the more likely it seems to be, that a stable state becomes
unstable. As a major difference, 2-pole machines (Fig. 3 (b)) have two additional reagions of unstable states. One
narrow region around the critical speed (η = 1), which corresponds to the one found in earlier works (Kellenberger
(1966), Boy (2015)) and one at very low running speeds and low values of ζ. The region around η = 1 originates
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Figure 3. Stability map for the steady state of a 4-pole (a) and a 2-pole machine (b).
Here D = 0.002, Di = 0, ϕ12p = π

8 and β = 0.1 were chosen.

from the shaft noncircularity. Fig. 3 (b) shows that it is affected by the electromagnetic forces, as the critical speed
is reduced with higher values of ζ. The second additional reagion is very small and seems not to be relevant for
normal operational conditions. It originates from homopolar fluxes.

As stated before additional forces due to field damping can be compared to inner mechanical damping. To analyse
their effect, consider Fig. 4, which shows a classical stability map considering the influence of inner mechanical
damping for the example of a 4-pole machine. Here the damping ratio D

Di
is plottet against the specific rotational

speed η. From literature (Gasch, 2006) it is known, that in presence of inner damping, a certain critical speed
depending on the damping ratio exists. Introducing electromagnetic forces to the system changes this map signifi-
cantly, as indicated by dashed lines in the map. These lines show the stability border, if the resistance to reactance
ratio β is increased from 0 by 0.025 to 0.1. Here it becomes obvious, that field damping may reduce the stability
of the steady state. However, it should be noted here that the shown effect becomes weaker, if the machanical
damping forces become stronger compared to the electromagnetical forces.
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Figure 4. Stability map for the steady state of a 4-pole machine comparing the mechanical and inner Damping
varying β from 0 by 0.025 to 0.1. All remaining parameters are chosen according to Fig. 3.

Having discussed the basic stability behaviour, a short view on parameter influence shall be taken as a last point of
this section. For the sake of brevity these results are not shown explicitly, but simply explained.
Rising the number of pole pairs moves the stability border (critical speed in Fig. 3) towards lower values of η.
This fact shows that self-excited oscillations become more likely in machines with a higher number of pole pairs.
Although this model is not well suited for non-salient pole generators (which have even more magnetic poles),
they might be even more sensitive to such oscillations.
Considering the stability conditions derived from Hurwitz’ criterion one finds that the load condition (torque angle
ϕ12p) does not affect generators with more than two magnetic poles. However, in 2-pole machines when homopolar
fluxes are present the picture changes. While in this case the narrow region of unstable states around η = 1 (Fig.3
(b)) grows with increasing torque angle, the border of critical speeds for the region caused by field damping is
slightly shifted towards higher rotational speeds. Furthermore the small region at very low speeds becomes larger.
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4 Summary and Conclusions

Within this contribution the effect of field damping on lateral rotordynamics of non-salient pole generators has been
investigated. The implemented electro-mechanical model comprises the electrical ciruits of the stator and the rotor,
as well as a damper cage, an approximation to the involved magnetic field problem and a Laval-rotor (Jeffcott-
rotor). It has been shown that the currents flowing in the damper cage are affected by the orbital motion of the
rotor and that there is a back coupling via electromagnetic forces exerted by the magnetic field. The mathematical
structure of these forces is similar to inner mechanical damping and depends on the rotational speed of the machine,
the machine design in general and the electrical properties of the damper cage. The survey has clearified that self-
excited oscillations might occur in machines operating under high nominal rotational speeds compared to their
critical speed. The stability behaviour is different for 2-pole machines and ones with a higher number of pole pairs
due to the occuring homopolar fluxes in the first case.

In future surveys it would be sensible to reconsider the modelling in detail. At the one hand side, a major model
contradiction concerning the assumptions of AC voltages in the damper cage has been found and at the other hand
side effects like saturation should not be neglected. As a further point the model should be validated by more
detailled numerical simulations and practical experiments.
Recently the authors pointed out, that rotational disturbances (e.g. hunting) may also significantly influence the
steady state stability (Boy, 2016). A combined investigation of field damping and these effects could also be
considered.
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Nomenclature

r1 stator radius a1 current sheet stator
r2 rotor radius a2 current sheet rotor
K cartesian coordinate system ND number of damper cage bars
Z cylindrical coordinate system ϕk electrical phase angle
~ex, ~ey, ~ez cartesian basis vectors p number of pole pairs
~er, ~eθ, ~ez cylindrical basis vectors ν number of field harmonic
r, θ, z cylindrical coordinates ε = δm

r2
small parameter

e rotor eccentricity B magnetic flux density
γ rotor eccentricity phase angle j imiginary unit
ϑ rotor angle A complex quantity
δ(θ) actual air gap width at angle θ A complex conjugate
Ω air gap region u(t) voltage
∂Ω air gap region boundary U voltage phasor (particular solution)
M representative damper cage mesh i(t) current
µ0 magnetic field constant I current phasor (particular solution)
k machine winding parameter ων angular frequency of ν-th harmonic
Λ(θ) air gap permeance at angle θ sν slip of ν-th harmonic
z± rotor eccentricity phasor ω supply angular frequency
Ψ flux linkage R resistance
~F1 force acting on the stator L inductivity
~F2 force acting on the rotor β specific resistance of damper cage
` effective air gap length S center of inertia
I unity matrix ω

p synchronous angular frequency
P 1,P 2 force matrix damper cage ω0 angular eigenfreq. (undamped system)
T transformation matrix (homopolar flux) η specific rotor speed
celm electromagnetic stiffness constant κ noncircularity parameter
c mechanical stiffness constant ζ specific electromagnetic stiffness
cx mechanical stiffness constant τ nondimensional time

(x-direction) ()′ nondimansional time derivative
cx mechanical stiffness constant q mechanical position matrix

(y-direction) qh homogenous solution
m rotor mass qp particular solution
d external damping constant λ eigenvalue
D specific external damping constant r eigenvector
di internal damping constant
Di specific internal damping constant
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On Behavior of a Double Rotor HAWT with a Differential Planet Gear

E. Shalimova, L. Klimina, K.-H. Lin

The mathematical model of a double disk horizontal axis wind turbine is constructed. The turbine has two pro-
pellers (actuator disks). One propeller is rigidly connected to a carrier of a planet gear, the other is rigidly
connected to an external ring of the same planet gear. A rotor of an electrical generator is rigidly connected to
a sun of the planet gear. The generator is included into a local electrical circuit with several consumers. The
quasi-steady model of aerodynamic action is used. The electromechanical torque acting on the rotor of generator
is assumed to be a linear function of an angular speed of the rotor. Existence and stability of steady motions are
studied. Analysis of characteristics of steady motions such as angular speed of each propeller and mechanical
power trapped from the flow is performed. A control strategy is suggested.

1 Introduction

Experimental tests and mathematical modeling have proved that using of two contra-rotating propellers in the
construction of a horizontal axis wind turbine (HAWT) improves its aerodynamic characteristics (Jung et al.,
2005; Shen et al., 2007; Farthing, 2010; Lee et al., 2012). Corresponding models of turbine aerodynamics are
well-developed (see Hansen (2015)). But only in few of them the influence on the turbine dynamics produced by
the interaction between mechanical and electrical parts of the HAWT is taken into account. Such an interaction is
very essential for a so-called small-scale turbine with the generator connected to a local electrical circuit. Changes
of electrical load influence such turbines greatly. In particular, the hysteresis of a trapped power with respect to
increase/decrease of electrical load appears. This fact was shown for a classical (one propeller) HAWT in the
frames of closed mathematical model by Dosaev et al. (2009).

In the current paper it is supposed that the generator of the double disk HAWT is connected to a local electrical
circuit. The closed dynamical model with taking into account electromechanical interaction in the system is con-
structed. One of the parameters of the model is responsible for the value of external resistance in the circuit, so it
describes the load from consumers upon the HAWT.

A special type of a double disk HAWT is studied: Propellers are installed at two rings of a differential planet gear
(DPG), a rotor of a generator is connected to the third ring of the gear. Thus, the dynamics of the system essentially
differs from that of a classical double disk HAWT, for which one propeller is joined to a rotor of a generator and
the other is joined to a stator.

The evident advantage of using the DPG is that the relative angular speed of the rotor of the generator can be much
higher than the relative angular speed of one propeller with respect to the other. Moreover, the DPG offers more
options for additional control devices.

2 Description of the Mechanical System

The mechanical system includes two propellers. The front propeller is rigidly joined to the carrier of a DPG, the
second propeller is rigidly joined to the external ring of the DPG (Figure 1). The front propeller is supposed to
produce good torque at high tip speed ratio (to be leading at a regular mode of the operation). The back propeller
is supposed to produce rather good torque at low tip speed ratio (to be leading at a starting stage of the operation).
A rotor of a generator is rigidly joined to the sun gear of the DPG. The generator is connected to a local electrical
circuit with a changeable external resistance.

Assume thatrc, rs, rr, rp are the radiuses of corresponding rings,Jc, Jr, Js, Jp are the central moments of inertia
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of rigid bodies “front propeller + carrier”, “back propeller +external ring”, “sun + rotor”, each planet,mp is the
mass of each planet.

Suppose that there is no slipping between elements of DPG. Then the mechanical system has two degrees of
freedom.

Figure 1. A general scheme of the system.

2.1 Model of External Forces

Assume that each propeller is under an aerodynamic action of an upcoming wind flow of a speedV , and the rotor
of the generator is influenced by an electromagnetic field presenting between the rotor and the stator. Let us use
the following model (similar to Dosaev et al. (2009, 2015)) for corresponding torques: Aerodynamic torquesTc ,
Tr and electromagnetic torqueTs with respect to the axis of rotation.

Tc = 0.5ρSbV 2fc(λ), λ = bωcV
−1,

Tr = 0.5ρSdV 2fr(η), η = dωrV
−1,

Ts = −c2ωs(R + r)−1,
(1)

whereωc, ωs, ωr, are the angular speeds of the carrier, the sun, and the external ring of the DPG,b is the radius
of the front propeller,d is the radius of the back propeller,S is the characteristic area of each propeller,ρ is
the air density,λ andη are the tip speed ratio of the front and back propeller respectively,c is the coefficient
of electromechanical interaction (responsible for conversion of mechanical energy into electrical energy),r is
the inner resistance of the generator,R is its external resistance.fc(λ), fr(η) are dimensionless functions of an
aerodynamic torque.

Examples of functionsfc(λ), fr(η) are represented in the Figure 2. The qualitative behavior of these functions for
λ > 0 andη < 0 respectively corresponds to results of experimental tests (see Dosaev et al. (2009)). Parts of the
curves, for whichλ < 0 andη > 0 respectively, correspond to non-desirable direction of the propeller rotation. It
is supposed that in these cases the aerodynamic torque increases or decreases exponentially. Thus, the functions
fc(λ), fr(η) are continuous, but not differentiable atλ = 0 andη = 0 respectively (Figure 2).

Further qualitative results are valid for a wide class of functions. For the front propeller, the productωcTc is positive
for λ ∈ (0, λ1) and forλ ∈ (λ2, λ3). For the back propeller, the productωrTr is positive forη ∈ (η1, 0). The
maximum absolute value of aerodynamic torque for the front propeller is larger than that for the back one. Thus, if
the front propeller starts from zero angular speed, it can not reach its optimal angular speed without external help.
On the other hand, if the back propeller works alone, it can not produce as high torque as the maximum torque of
the front one.
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Figure 2. Dimensionless aerodynamic torques (on the same scale).

In further calculations it is assumed for simplicity thatb = d (the radius of the front propeller is equal to the radius
of the back propeller).

3 Dynamical Equations and Statement of the Problem

Dynamical equations for a single-propeller HAWT with a DPG were derived in Dosaev et al. (2009). These
equations can be easily modified for the case of two propellers, taking into account the relations (1). The obtained
equations for a double rotor HAWT are as follows:

λ′ = a(A2 + A3)fc(λ) + kA3fr(η) − pa−1A2λ + pk−1A2η;
η′ = kfc(λ) + k2(a−1A3 + A1)fr(η) + pka−1A1λ + pA1η,

(2)
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All listed parameters are positive values. Parameterp is responsible for the electrical load in the circuit and for the
wind speed, parametersA1 , A2 , A3 , J are responsible for geometrical and inertia properties of the system.

Stable steady solutions of the system (2) correspond to operation modes of the wind turbine.

The task is to describe these steady solutions depending on parameters of the model, especially with respect to
the parameterp. This parameter is responsible for the changeable conditions of operation such as the wind speed
and the external resistance (e.g. if there are no consumers in the circuit,p is zero). The other parameters of the
model for a particular wind turbine are fixed. Another task is to design a control strategy that allows reaching the
operation mode with maximal trapped power.

4 Operation Modes

Each steady solution(λ∗, η∗) of the system (2) satisfies the following equations:

λ′ = a(A2 + A3)fc(λ) + kA3fr(η) − pa−1A2λ + pk−1A2η = 0;
η′ = kfc(λ) + k2(a−1A3 + A1)fr(η) + pka−1A1λ + pA1η = 0.

(3)
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Equations (3) define two curves:λ′ = 0 andη′ = 0. These curves divide the plane{λ, η} into domains with
determined signs ofλ′ andη′. Thus the direction of the trajectory(λ(τ), η(τ)) is determined in each domain. This
is enough to find steady points and check their stability.

An example is shown in the Figure 3. The curve “1” is given by{λ′ = 0}, the curve “2” is given by{η′ = 0};
the arrows represent qualitative direction of trajectories in corresponding domains; black points correspond to
attracting steady solutions, white points correspond to repelling steady solutions. The picture was constructed
numerically for the following values of the parameters:a = 0.125, A1 = 3.7, A2 = 2.8, A3 = 3.4, and
p = 0.0008.

Figure 3. An example of location of steady points in the plane{λ, η}.

In our example the system possesses three attracting steady states:Wi, i = 1, 2, 3 (Figure 3).

In the operation mode corresponding toW1 both propellers rotate in the same direction. The rotation speed of
the back propeller is high, and the rotation speed of the front propeller is close to zero. In the operation mode
corresponding toW2 the propellers rotate in opposite directions with a rather high speed. In the operation mode
corresponding toW3 the propellers rotate in opposite directions, the speed of the front propeller is high, the speed
of the back propeller is close to zero.

An attracting steady regime is preferable for practical applications, if a corresponding value(ωcTc + ωrTr) of
mechanical power taken from the flow is the largest. For the case shown in Figure 3, such a regime corresponds
to the steady pointW2 = {λ∗ = 6.4, η∗ = −3.7}. Notice, that maximal value ofλfc(λ) could be reached for
λ = 6.2, and maximal value ofηfr(η) corresponds toη = −3.4. Thus, in the operation mode corresponding to
the pointW2 , the power produced by both propellers is near the maximum. The valuep = 0.0008 is chosen for
the purpose to get closer to the maximum power taken from the flow.

5 Discussion and Control Strategy

The following problem is to reach a preferable operation mode from the starting state of the turbine, i.e.{λ =
0, η = 0}. For a single propeller small-scale HAWT, this problem can be solved by disconnecting consumers at
the stage of starting the turbine (Dosaev et al. (2009)). Consumers are to be connected when the turbine reaches
a rather high speed. This approach is suitable for a HAWT with aerodynamic torque function qualitatively similar
to the functionfr in Figure 2 (the equationfr(η) = 0 has only one root). But if the only propeller of a HAWT is
qualitatively similar to the front propeller, no high angular speed can be expected without additional starter.

In our double disk system, the back propeller acts as a starter for the front one. Still from the Figure 3 one can
notice that the point{0, 0} doesn’t belong to the domain of attraction of the preferable steady stateW2.

The following control strategy bringing the system to a preferable operation mode is proposed:

Step 1. The external load coefficientp is set to zero, that means the consumers are disconnected from the circuit of
the generator. (This first step is similar to the case of a single propeller HAWT.) The system will go to the steady
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state with smallλ and rather highη (see Figure 4). All parameters of the model in Figure 4 are similar to those
in Figure 3 except the value of external load coefficientp. Thus, Figure 4 characterizes the behavior of the same
turbine for disconnected electrical load.

Figure 4. An example of location of steady points forp = 0. Solid line shows an example of a trajectory.

From zero initial conditions, the system approaches the attracting steady stateW01, that is approximately{0.4,−4.3}
in our example. If we just connect the desirable electrical load (p = 0.0008), the task will not be fulfilled, be-
cause the pointW01 is not in the domain of attraction ofW2 (but in the domain of attraction of the stateW1). So
additional step of control switching is needed.

Step 2. Letp be zero and the system be already in the stateW01. Apply the brake torque to the external ring. Here
we assume that the brake system can be applied to any ring of the DPG, and it stops the corresponding ring very
quickly. Additionally, assume that the moment of inertia of the sun ring is much higher than the moment of inertia
of the carrier. So when the brake stops the external ring, the angular speedωs of the sun remains almost constant.
Neglect small deviations ofωs, and write down the kinematic relation (ωsrs = 2ωcrc − ωrrr) before and after
applying the brake:

ωs01rs = 2ωc01rc − ωr01rr,
ωs01rs = 2ωc03rc.

(4)

From equations (4) we obtain that the angular speed of the carrier after the second control intervention will be
ωc03 = ωc01 − 0.5ωr01rr/rc. In our examplerr/rc = 2. So we obtain:λ03 = λ01 − η01 ≈ 0.4 + 4.3 = 4.7.
Notice that forλ ≈ 4.7, as well as forη = 0, the aerodynamic torque acting upon the corresponding propeller
is accelerating (with respect to desirable direction of rotation). In our example for the casep = 0, the point
{λ03, 0} ≈ {4.7, 0} is in the domain of attraction of the pointW02 ≈ {8,−4.3} (Figure 4). So after the system
comes close to the state{λ03, 0} we switch off the brake, allowing the external ring to move free. Then the system
moves from the state{λ03, 0} to the stateW02.

Step 3. Now the system is in the stateW02. Connect electrical load, making the desirable valuep = 0.0008. For
p = 0.0008, the pointW02 is in the domain of attraction of the desirable steady pointW2. The task is fulfilled.

It is noticeable that for the classical double disk contra-rotating HAWT, for which one propeller is joined to a rotor
of a generator and the other is joined to a stator, and no DPG is used, the problem of accelerating one propeller
using another one has not such an easy solution. In that case there is no option for a brake to transmit the energy
of rotation of one propeller into the energy of contra-rotation of the other without special additional mechanism.

Thus, we confirmed one of the advantages of a DPG, that is to offer useful control options for reaching the desirable
operation modes.
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6 Conclusions

In this paper the closed dynamical model of a double propeller contra-rotating HAWT with a DPG is introduced.
Torsional behavior of the system under external loading is discussed. Steady operation modes are studied with
respect to a certain example of the configuration of the system. By this example it is shown that the system
possesses an operation mode for which mechanical power produced by each propeller is close to its maximum. To
obtain such an operation mode certain conditions on parameters of the model should be fulfilled.

It is the common situation, that the domain of attraction of this desirable operation mode does not include the
initial state of the system with zero angular speeds of both propellers. Due to this fact, the special control strategy
that makes the system reach desirable operation mode is constructed. This strategy involves two control actions:
Disconnection/connection of consumers in the local electrical circuit of the generator and switching on/off of the
brake applied to the external ring of the DPG. It was shown on the example, that this strategy provides the desirable
result.
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Transient Run-Up Simulations of Rotors in Journal Bearings Considering
Mass-Conserving Cavitation Approaches

G. Nowald, R. Schmoll, B. Schweizer

The influence of mass-conserving cavitation modeling approaches on the stability of rotors in journal bearings is
investigated. The model consists of a rotor represented by a flexible multibody system and the bearings discretized
with finite elements. An approach for the pressure-dependent mixture density and mixture viscosity is made. Due
to this mass-conserving cavitation approach, the Reynolds equation becomes explicitly time-dependent. Both sub-
systems – the multibody system for the rotor and the finite element system for the bearings – are coupled by means
of an explicit co-simulation approach. Two different axial boundary conditions for the bearings are considered,
namely a bearing submerged in an oil bath and an oil film free to air. The differences are studied in a stationary
simulation. Then, the results of transient run-up simulations of a Jeffcott rotor and a turbocharger are discussed.

1 Introduction

Rotors supported in journal bearings are nonlinear systems, which are prone to subsynchronous oscillations and
oil-whirl/whip instabilities, see e.g. Khonsari and Booser (2008); Szeri (2011). Especially lightweight rotors with
high rotation speeds – such as turbochargers – are characterized by subsynchronous oscillations, see for instance
Schweizer (2010). Numerical run-up simulations can be used to predict and to optimize the behavior of highly
nonlinear rotor systems. Usually, complex phenomena in the bearings – such as cavitation – are neglected in order
to reduce calculation times.
Cavitation in dynamic journal bearings occurs due to the limited ability of fluid lubricants to support tensile
stresses. The lubricant film ruptures locally, resulting in a cavity filled with gas and/or vapor, see e.g. Braun
and Hannon (2010); Dowson and Taylor (1979). Simple approaches to model cavitation are the well-known half-
Sommerfeld (Gümbel) or Reynolds boundary conditions, see Dowson and Taylor (1979); Khonsari and Booser
(2008); Szeri (2011). These approaches yield satisfactory results under stationary conditions and high bearing
loads, see e.g. Dowson and Taylor (1979), yet they do not take into account the conservation of mass.
The more sophisticated Jakobsson-Floberg-Olsson (JFO) boundary condition, ref. Floberg (1974), considers a
mass-conserving 2-phase flow. This boundary condition yields a complimentary problem: In the fully developed
film region, the pressure is unknown, while in the cavitated region – where the bearing gap is partially filled with
gas/vapor – the fluid fraction is unknown and the pressure is assumed to be equal to ambient pressure.
The cavitation algorithm of Elrod (1981), combines two separate differential equations – one for the cavitated re-
gion and one for the fully developed fluid film – into one single equation by means of a switch function. Since the
area of the cavity is not known a-priori, the switch function has to be updated repeatedly, yielding large calculation
times for transient run-up simulations. Furthermore, the type of the partial differential equation changes over the
spatial coordinates, which may result in numerical difficulties.
To handle the complimentary problem more efficiently, some modifications of the Elrod algorithm have been pro-
posed. Shi and Paranjpe (2002), introduced a universal variable, which incorporates the pressure and the fluid
fraction. Alakhramsing et al. (2015), replaced the switch function by Boolean expressions of the universal vari-
able. Nitzschke et al. (2016), proposed the smoothing of the switch function to reduce the mesh solution.
In this contribution, a modified Reynolds equation introduced in ref. Nowald et al. (2016) is used to study the influ-
ence of mass-conserving cavitation on the transient dynamic behavior and the stability threshold of rotor systems.
The complementary problem and the use of a switch function are avoided by introducing a pressure-dependent
fluid fraction. This yields a single differential equation for the unknown pressure, which is valid for both the cavi-
tated region and the fully developed fluid film. This enables a straightforward solution of the Reynolds equation in
a FEM package, which is well suited for complicated geometries and boundary conditions, see e.g. Dahmen and
Reusken (2006); Shi and Paranjpe (2002). A co-simulation scheme, see Schmoll (2015), permits a simple coupling
of the bearing model with different rotor models, implemented in a multibody software. Compared to a monolithic
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model, the co-simulation approach allows the modeling of the subsystems with specialized software tools.

2 Numerical Rotor-bearing Model

In this section, the numerical model used for the transient run-up simulations is described. The model consists of
a rotor and a bearing model, which are coupled by means of an explicit co-simulation approach.

2.1 Rotor Model

The turbocharger shown in figure 1 is modelled in the commercial multibody software (MBS) MSC Adams. The
compressor and turbine wheel are assumed rigid bodies and are connected with a flexible shaft. Unbalance masses
are considered at the compressor and at the turbine wheel. The forces from the journal bearings act on the shaft
as externally applied forces. The rotor is kinematically driven: the rotor-speed is linearly increased from 0 up to a
rotation speed of fmax during the simulation time Tsim.

The rotor system is represented by a nonlinear differential algebraic equation system, which has the following
structure, see Shabana (2013),

M(q)q̈ = f(q, q̇, t,uMBS)−GT (q, t)λ , 0 = g(q, t) , yMBS = yMBS(q, q̇) . (1)

In the above equation, M(q) terms the mass matrix. The vectors collecting the generalized coordinates and the
generalized velocities are denoted by q and q̇, respectively. The vector f contains the applied, gyroscopic and
elastic forces. The bearing forces/torques in the lubricant films are collected in the multibody input vector uMBS,
which is provided by the bearing model.
The algebraic constraint equations are summarized in the vector g. The resulting constraint forces are−GT (q, t)λ
with the Jacobian GT (q, t) = ∂g/∂q and the vector of Lagrange multipliers λ, see Shabana (2013). The term
yMBS(q, q̇) indicates the output vector of the multibody system, containing the relevant kinematical quantities for
the lubricant films, which are transferred to the bearing model.

2.2 Bearing Model

The dynamic forces in the journal bearings are calculated by integration of the pressure field p(φ, z̄, t) in the
lubricant film, which results from the displacement and the velocity of the rotor journal with respect to the bearing
shell. The compressible Reynolds equation is used for the calculation of p(φ, z̄, t), see e.g. Khonsari and Booser
(2008); Szeri (2011), which reads
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with the circumferential coordinate φ and the axial dimensionless coordinate z̄. The bearing has the radius R, the
axial width B and the nominal relative gap size ψ. H(φ, z̄, t) is the dimensionless gap function, ω denotes the

Figure 1. Turbocharger rotor
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angular velocity of the rotor. ρ and η are the density and the viscosity of the lubricant, respectively.
A 2-phase cavitation approach is implemented which assumes a compressible mixture flow with mixture density ρ
and mixture viscosity η. Since the mass of gas/vapor is negligible compared to the mass of the lubricant, the fluid
fraction ϑ in the cavitated region is approximately equal to the density ratio, ϑ = ρ/ρ0, with the lubricant density
ρ0, see Bartel (2010). Kumar and Booker (1991), proposed a proportional relation for the mixture viscosity

ϑ =
ρ

ρ0
=

η

η0
, (3)

where η0 is the lubricant viscosity. In literature, a complementary problem is usually considered: in the fully devel-
oped film region, ϑ = 1 and the pressure p is unknown, while in the cavitated film region p equals the atmospheric
pressure p0 and ϑ is unknown, see e.g. Kumar and Booker (1991); Alakhramsing et al. (2015); Nitzschke et al.
(2016). In these approaches, a pressure-dependent switch function is used to determine for each discretized node
separately, whether the fluid film is fully developed or cavitated.
Here, a pressure-dependent approach is made for the fluid fraction ϑ. For the fully developed fluid film, p ≥ p0

and ϑ = 1, while for the cavitated film region p < p0 and ϑ → 0. Thus, in the cavitated film region both p and
ϑ can change to fulfill the Reynolds equation. A steep gradient ∂ϑ(p)/∂p at p ≈ p0 causes the pressure p to only
drop slightly below p0 in the cavitated region, since the mixture density ρ is immediately reduced. A smoothed
step function is used for ϑ(p), see figure 2.
Inserting equation (3) into (2) and assuming that the fluid fraction ϑ is pressure-dependent yields
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Note that equation (4) explicitly depends on time t. Since ϑ(p) is a known function, the derivative ∂ϑ(p)/∂p can be
calculated a-priori. Equation (4) is discretized with the commercial finite element software Comsol Multiphysics.
The solution is stabilized by an artificial diffusion approach, see e.g. Kuzmin (2010).
The smoothing of Elrods switch function proposed in Nitzschke et al. (2016) smears the boundary between the
fully developed fluid film region and the cavitated region. The smoothed switch function and the ansatz for the
fluid fraction ϑ used in this contribution are both pressure-dependent and have a similar shape. However, they have
different meanings: While the fluid fraction ϑ changes the compressibility of the lubricant-gas/vapor-mixture, the
switch function changes the type of the differential equation. Furthermore, the switch function combines two
independent differential equations for easier treatment, while equation (4) is a single differential equation for the
mixture pressure, valid in both the fully developed fluid film region and the cavitated region.
For the solution of equation (4), axial boundary conditions of the pressure distribution p(φ, z̄, t) in the fluid film
are required. A simple and widely used assumption is constant ambient pressure p0, i.e.

p(φ, z̄ = 0, t) = p(φ, z̄ = 1, t) = p0 . (5)

With the use of a Dirichlet boundary condition, the axial pressure gradient ∂p/∂z̄ is not specified. For classical
cavitation models, the pressure p is never below ambient pressure p0 and thus the lubricant is always flowing out of
the bearing gap. Note that due to the assumption of a mixture flow, the pressure p can drop below ambient pressure

Figure 2. Pressure-dependent fluid fraction ϑ.
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Figure 3. Penalty function g(p) used for axial boundary condition (6).

p0, which results in a lubricant flow from the surrounding into the gap. Thus, the axial boundary condition (5)
describes a bearing, which is completely submerged in an oil bath.
More common in applications of journal bearings are lubricant films, which are free to air at their axial boundaries.
Here, the lubricant can only flow from the bearing gap to the surrounding. To prevent flow in the other direction,
the pressure gradient ∂p/∂z̄ has to be 0 for p < p0. This is achieved by applying a Neumann boundary condition,
which incorporates a pressure dependent penalty function g:(
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= −g(p) (6)

The shape of the chosen penalty function g(p) is shown in Figure 3. For p ≤ p0, the axial flow is nearly zero,
which determined by the parameter a. The flow increases sharply for p > p0, which is adjusted with the parameter
b. The nonlinear equation system resulting from the discretization of equation (4) is solved by an iterative Newton
method. A high axial outflow lowers the pressure p at the axial boundaries of the fully developed fluid film during
the solution process until p ≈ p0. Then the axial outflow suddenly diminishes according to Figure 3. It has been
found that a=0.01 and b=100 yield consistent results while still enabling a stable solution.
Equation (4) cannot be solved by only defining Neumann boundary conditions. This problem is solved by incor-
porating an inlet boundary condition with a prescribed feeding pressure pinlet, see section 3.

2.3 Co-simulation Approach

The rotor-bearing system is decomposed by means of a force/displacement coupling approach, see e.g. Schmoll
(2015); Schweizer et al. (2015). The MBS and the FEM software are coupled with an in-house interface using
an explicit co-simulation approach, see Schweizer et al. (2015). Since commercial solvers usually do not give the
possibility to save the current solver state and to repeat a time step, more stable implicit co-simulation techniques,
see e.g. Schweizer et al. (2015), cannot be used. Figure 4 shows the schematic procedure of the sequential Gauss-
Seidel master-slave scheme used in this paper. For simplicity, the subsystems are shown with only one output each,

Figure 4. Explicit co-simulation approach: sequential Gauss-Seidel scheme.
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Figure 5. Stationary results for the bearing submerged in an oil bath, see eq. (5).

namely y1 and y2. Firstly, subsystem 1 (master) is solved with the macro-time step Hm. At the time point Tn+1,
the output y2 from the second subsystem is required. Therefore, an approximation ỹ2 is carried out by applying
appropriate extrapolation techniques for the output vector y2 using the previous results. Then, subsystem 2 (slave)
is solved with micro-time steps h ≤ Hm. The required outputs y1 from the first subsystem are approximated by
the interpolation polynomial ỹ1. Generally, Lagrange-polynomials are used for the extra- and interpolation. In this
paper, both subsystems are solved using BDF-methods with variable time step size and variable integration order.
In contrast to the parallel Jacobi-scheme used in Nowald et al. (2016), the subsystems have to be solved sequentially
here. However, the bearing model has a substantially higher calculation time and requires smaller time steps to
achieve an accurate solution, reducing the advantage of a parallel implementation. Note that the sequential Gauss-
Seidel scheme usually exhibits a better stability behavior compared to the parallel Jacobi scheme, see Schmoll
(2015).

3 Simulation Results

In this section, simulation results obtained with the 2-phase cavitation model are shown. Firstly, stationary cal-
culations are performed to show the influence of the different applied axial boundary conditions. Then, results of
transient run-up simulations of a Jeffcott rotor and of a heavy turbocharger with single oil films are discussed.

3.1 Influence of axial Boundary Conditions under stationary operating Conditions

Equation (4) is solved with constant kinematic input variables to study the influence of the two different axial
boundary conditions (5) and (6) on the pressure distribution and the shape of the cavitated region. The shaft is
considered to have a rotation speed of ω= 100 Hz and a relative bearing eccentricity of ε= 0.7. The function H
is minimal at φ= π. The bearing parameters are B/R= 1.6, ψ = 2.8 % and η0 = 12 mPas. The dimensionless,
developed fluid film geometry is discretized using 40×40 quadratic elements and parabolic shape functions.
Firstly, the results with the Dirichlet boundary condition (5) are shown in Figure 5. A periodic condition is used
for the boundaries φ= 0 and φ= 2π, see Figure 6 a). The pressure in the fully developed fluid film region is not
influenced significantly by the mass-conserving cavitation approach. Note that the ambient pressure is p0 = 1 bar
and that the pressure p is slightly below ambient pressure in the divergent part of the lubricant film gap. This yields
a flow from the surrounding into the region of the divergent gap.
The fluid fraction ϑ represented in Figure 5 b) shows the change of the mixture properties in the lubricant film. In
the convergent part of the gap, ϑ=1, i.e. the mixture density ρ and mixture viscosity η equal the properties of pure
lubricant at ambient conditions, which is expected in the fully developed fluid film region. In the cavitated region,
ϑ drops below 1. Since an oil bath is assumed for the axial boundary condition, the fluid fraction is 1 at the axial
boundaries.
Secondly, results with the Neumann boundary condition (6) are shown in Figure 7. An axial feeding groove with
an opening angle of θgap = 15◦ is considered at φ = 0 = 2π. A constant pressure pinlet = p0 is applied at the
boundaries φ = θgap/2 and φ = 2π−θgap/2, see Figure 6 b). The pressure profile in Figure 7 a) resembles the
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Figure 6. Pressure boundary conditions for the test cases.

Figure 7. Stationary results for the bearing free to air, see eq. (6).

pressure distribution in Figure 5 a) in the convergent part of the gap. The difference of the maximum pressures
is 0.6%. In the divergent part of the gap, the pressure also drops slightly below ambient pressure p0. The same
minimal pressure is obtained for both boundary conditions. Note that in this case, the pressure is also below
ambient pressure at the axial boundaries, resulting in a zero pressure gradient in axial direction. Hence, lubricant
is not flowing at the axial boundary into the divergent part of the gap. This can also be seen in the fluid fraction
ϑ shown in Figure 7 b), which also drops below 1 at the axial boundaries. The cavitated area is open to the
surrounding.

3.2 Transient run-up Simulation of a Jeffcott Rotor

Transient run-up simulations of a symmetric Jeffcott rotor have been performed to study the influence of the cavi-
tation model on the stability of the rotor-bearing system and to investigate the differences between the two different
axial boundary conditions (5) and (6). The rotor has a mass of 6 kg and an unbalance of 3 gmm. The stiffness of the
shaft is 4000 N/mm and the internal shaft damping is 0.1 Ns/m. External, linear viscous damping of 500 Ns/m has
been applied on the center of mass of the rotor in order to enable passing through the subsynchronous oscillations.
Results with low external damping have been presented in Nowald et al. (2016). The bearing parameters and the
discretization are the same as in section 3.1. In the case that the bearings are free to air, axial feeding grooves with
an opening angle of ϑgap and a constant feeding pressure pinlet =p0 are considered at the top of the bearing shells,
see Figure 6 b). The rotor-speed is increased linearly from 0 to 800 Hz in 2 s.
Figure 8 shows the dimensionless eccentricity ε(t) of the journal. At approximately 640 ms, the system with
half-Sommerfeld cavitation boundary condition becomes unstable (oil whirl) and the journal eccentricity rises.
Due to the high external damping, the eccentricity stays moderate, until the subsynchronous oscillations vanish at
1400 ms, leaving only synchronous oscillations due to unbalance.
Both simulations with the cavitation approach according to equation (4) have the onset of the oil whirl at lower
rotation speeds and show higher eccentricities. The eccentricities of all three models are almost identical up to the
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Figure 8. Run-up of a Jeffcott rotor with high external damping: journal eccentricity ε(t).

onset of the oil whirl region. For all three cavitation models, the subsynchronous oscillations vanish at approxi-
mately the same rotor speed of 560 Hz.
The calculation time for one micro-step h of equation (4) using FEM discretization is approx. 10 ms on a standard
desktop PC (Intel i7 processor). In the above example, the calculation time for one run-up simulation is approx.
20−30 h, depending on the number of microsteps the BDF-method takes.

3.3 Transient run-up Simulation of a Turbocharger Rotor

Now, run-up simulations with a heavy turbocharger in single oil film bearings are performed. The weight and
unbalance of the rotor are the same as for the Jeffcott rotor. No external damping is applied. The bearing parameters
and the discretization are equal to the corresponding parameters in the previous sections. The rotor-speed is
increased linearly from 0 to 105 Hz in 7 s.
Figure 9 shows the dimensionless eccentricity ε(t) of the rotor journal at the compressor-side, Figure 10 the
dimensionless eccentricity ε(t) at the turbine-side. Since no floating-ring bearings are considered here and no

Figure 9. Run-up of a turbocharger rotor: journal eccentricity ε(t) on compressor-side.
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Figure 10. Run-up of a turbocharger rotor: journal eccentricity ε(t) on turbine-side.

external damping is applied, the onset of the oil whirl region is reached at a low rotation speed and the eccentricities
in the bearings become very large, preventing operation at higher rotation speeds. As for the Jeffcott rotor, the onset
of the oil whirl is predicted at lower rotational speeds when the 2-phase cavitation approach is considered. The
eccentricities of the three models are similar up to the onset of the oil whirl region. The whirl on the compressor-
side is more pronounced due to the higher weight of the turbine wheel, which applies a higher load on the turbine-
side journal.

4 Conclusion

In this contribution, transient run-up simulations have been performed to study the effect of mass-conserving cav-
itation algorithms on rotors in journal bearings. A modified Reynolds equation, which is based on a pressure-
dependent density and viscosity, has been obtained. Compared to more sophisticated cavitation models, this
straightforward approach can be implemented very easily within a FEM implementation. The rotor models, de-
scribed as multibody systems, are coupled to the bearing model using an explicit co-simulation approach.
For the axial boundary conditions of the lubricant films, two cases have been considered. It has been found that
the classical prescribed pressure (Dirichlet boundary condition) corresponds to a bearing, which is completely
submerged in oil. This is due to the fact that with the current cavitation approach, also pressure values below
the ambient pressure are possible, resulting in a lubricant flow from the surrounding into the divergent part of the
bearing gap. In many practical applications, the lubricant films are axially free to air. Thus, a second boundary
condition was implemented, which makes use of a penalty function to prevent flow into the cavitated region. The
two boundary conditions have been compared. While the pressure in the fully developed lubricant film is very
similar for both approaches, differences in the divergent part of the bearing gap and in the shape of the cavitated
area have been observed.
Finally, transient run-up simulations have been performed to study the influence of the cavitation approach on the
stability of the rotor bearing system. A symmetric Jeffcott rotor and an asymmetric heavy turbocharger with single
oil films have been investigated. For both rotors, the models that considered mass-conserving cavitation predicted
the onset of instability at a lower rotation speed than models using the classical half-Sommerfeld cavitation ap-
proach. For rotational speeds below the threshold of instability, all three models showed good agreement with the
half-Sommerfeld cavitation approach.
Current work is focused on the extension of the model to rotors in floating-ring bearings.
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Turbocharger Dynamic Analysis: Advanced Design Simulation in 
Time Domain Using CFD Predicted Thermal Boundary 
Conditions 
 
 S. Bukovnik, G. Offner, A. Diemath, L. Smolik 
 
 
Small changes of surface temperature, clearance and bearing profile can significantly change stiffness and 
damping characteristics of slider bearings. This may influence dynamics and in case of turbochargers the rotor 
radial deflection. Noise, Vibration, Harshness (NVH) or durability issues like rotor colliding with housing may 
be implied as a consequence. 
This paper presents a new methodology for dynamic turbocharger investigation. It considers multi-body 
dynamics (MBD) of flexible rotor and housing structures coupled with elasto-hydrodynamics (EHD) of the inner 
and outer oil film. The energy equation for calculation of oil film temperature is considered in EHD using 
thermal boundary condition obtained from 3D computational fluid dynamics (CFD) simulation. Typical targets 
for CFD simulation within the turbocharger development process are flow and thermal investigation as well as 
specifically providing accurate thermal boundary condition for thermo-mechanical fatigue analysis. For this 
purpose CFD analysis considers a fully coupled fluid-structure interaction. However, the same CFD model can 
be used to provide the required boundary conditions for dynamic analysis as well. The bearing profiles under 
thermal load are derived from Finite Element (FEM) analysis based on same thermal boundary conditions. 
The authors demonstrate the application of the methodology for a typical turbocharger design study applied for 
heavy-duty engines with full floating bushings that have radial bore connections between inner and outer oil 
films. The rotor operating speed reaches up to 110 krpm. Dynamic simulation results with nominal clearance 
and temperature are compared with the results obtained when CFD and FEM predicted boundary conditions 
are used. Based on results for the oil film pressure and flow through each oil film as well as flow between inner 
and outer oil film a valid conclusion about the rotor dynamic behaviour, bearing mechanical and thermal loads 
can be made. The presented methodology proves to be a next level approach in prediction of turbocharger 
simulation in the development process. 
 
 
1 Introduction 
 
In recent years the number of turbo charged combustion engines has dramatically increased. Turbocharger 
manufacturers are required to provide the optimized designs of turbochargers for a variety of combustion 
engines, which means a large effort for design optimization and testing is necessary. Simulation tools can be used 
to speed up the design and optimization process and reduce its cost and time. There are existing simulation 
approaches which can be used for the detailed dynamic analysis of the turbocharger behaviour. Such refined 
simulation approaches consider effects of rotor flexibility, unbalance distribution, gyroscopic effects, interaction 
of the oil films and structure and even coupling of inner and outer oil film for the full floating bushings design. 
However, to obtain accurate results a detailed information about the oil property in the bearings, especially the 
oil viscosity is needed. Oil viscosity is typically assumed as constant which is based on the assumed temperature. 
Alternatively measured oil temperature can be used for determination of oil viscosity. When temperature is 
measured this is typically done at the location where oil enters the turbocharger housing and not in the oil film. 
As turbochargers can operate at very high temperatures, the heat that spreads from the turbine side through the 
structure to the oil film might influence the temperature of the oil. In addition, due to the rotation of the rotor and 
floating bushing, heat is generated in the oil film due to viscos friction. This heat is dissipated to the surrounding 
structure but it also heats up the oil film. AVL EXCITETM offers the possibility to consider the energy equation 
of the oil film in combination with its elasto-hydrodynamics. With this approach it is possible to consider the 
correct temperature distribution within the oil film and by this a correct oil viscosity over time. 
Boundary condition for the oil film energy equation is structure temperature. This temperature is not uniform. It 
is strongly influenced by the heat coming from the turbine side and by cooling effects of the cold air at the 
compressor side. A typical temperature distribution in the turbocharger housing is shown in Figure 1. 
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                       Figure 1. Typical temperature distribution in turbocharger housing 
 
The consideration of the structure temperature distribution, is also done based on results of preliminary CFD 
calculation. Interacting surfaces of the turbocharger housing and floating bushing as well as floating bushing and 
the rotor are typically assumed as perfect cylinders in dynamic simulation. Under high temperature load, 
especially at the turbine side, thermal deformation of the structure is not uniform due to the unsymmetrical 
geometry of the turbocharger housing as well as the unsymmetrical temperature distribution in the housing 
structure. The deviation of the shape from the perfect cylinder at bearing surfaces can be several microns which 
is already a relevant percentage of the clearance and which therefore must not be neglected in order to be able to 
predict accurate oil film pressure distributions. This deviation can be considered in the dynamic simulation model 
as deviations of the cylindrical shape in radial direction, which can be defined as a surface map. Such maps can 
be obtained as a result of thermal structure analysis performed using FEM. The thermal boundary conditions for 
the FEM calculations are structure temperatures which again are obtained from CFD calculation. 
 
 
2 Turbocharger used for this Investigation 
 
The turbocharger used to demonstrate the methodology in this paper is the existing design applied for heavy-duty 
engines with full floating bushings that have 6 radial bore connections that connect outer and inner oil films. The 
rotor is axially supported with axial bearings close to the compressor wheel. Axial motion of the floating 
bushings is supported by the two circlips per floating bushing that are mounted in the housing. 
The housing of the turbocharger is made of steel. The compressor wheel is made of aluminium and the rotor shaft 
and the turbine wheel are made of steel as well. The total rotor mass is about 1 kg of which the compressor wheel 
is about 0.19 kg and the turbine wheel is 0.56 kg. Unbalance is applied at both wheels, at wheel nose and wheel 
back separately. The level of unbalance is 0.6 to 0.8 gmm at the wheel nose and 0.9 to 1.3 gmm at the wheel 
back. The rotor operating speed reaches up to 110 krpm. The oil used in this turbocharger is SAE 10W-40. It is 
supplied in both outer oil films via a bore in the housing. The oil supply pressure is 3 bar, while the assumed 
temperature of the supplied oil is 90 degC. 
 
 
3 CFD Simulation Model 
 
This section briefly describes the fluid dynamics and conjugate heat transfer as part of the general multi-physics 
approach, which is implemented in the commercial CFD code AVL FIRETM, Basara et al. (2009) and AVL List 
(2017). In this multi-material approach, temperatures and local heat transfer coefficients on domain interfaces are 
exchanged after each iteration step considering implicitly coupled fluid and structure domains. Hence, the 
temperature distribution within the structural part of the turbocharger is also obtained from the steady CFD 
simulation. The steady CFD simulation for the highest exhaust gas temperature and exhaust gas flow is selected 
in order to obtain the highest possible structure temperature and by this the worst conditions for the oil films. The 
methodology is based on the fully conservative finite-volume method adopted for unstructured meshes which can 
contain computational cells of any shape. All dependent variables, such as momentum, pressure, density, 
turbulence kinetic energy, dissipation rate, and total enthalpy / temperature are calculated at the cell center. For 
fluid parts, such as gas flow in the turbine and compressor domains, the Reynolds-Averaged Navier-Stokes 



 411

(RANS) equations are used for numerical simulations. The rotational motion of the compressor and the turbine is 
modelled via the method of moving reference frame (MRF), Luo et al. (1994). The simulation mesh, which is 
used for the multi-material simulation, counts in total 7.17 million polyhedral cells. The entire mesh consists of 
15 domains, whereas 13 domains are solid materials of various material properties, as shown in Figure 2, and the 
remaining two domains contain the calculated gas flow for exhaust gas residual (EGR) from the turbine side and 
air from the compressor side. 

 
Figure 2. Structural parts of multi-material simulation model. 

 
Figure 3 left displays the temperature field for the entire structural part gathered for the exemplary operating 
point at 80.7 krpm rotor speed. The corresponding temperature in an axial cross section of the flow field and 
structural part in the turbine section is shown in the right picture of Figure 3. 

 
Figure 3. Temperature distribution in entire structure (left) and in a fluid/structure turbine cross section (right). 
 
CFD simulations are typically done for a flow and thermal investigation as well as for providing accurate thermal 
boundary condition for thermo-mechanical fatigue analysis. In the investigation shown in this paper the condition 
with the hottest structure observed during CFD analysis is used as a boundary condition for the dynamics 
investigation. Structure deformed shape under the thermal load obtained from CFD is computed using FEM as 
shown in Figure 4. The FEM results in the figure are enlarged by a factor of 300. 
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Figure 4. Turbocharger housing (left) and zoomed into the area of bearings (right) under thermal deformation. 
 
 
4 Dynamic Simulation Model 
 
Figure 5 shows a schematic representation of the turbocharger simulation model, which is used in this paper. The 
major components, which need to be considered, are housing and rotor that are considered as flexible bodies, 
which itself is supported by two bearings. Each bearing consists of an inner and an outer oil film and a floating 
bushing that is also a flexible body. Inner and outer oil films are connected via six drillings in the bushing, 
respectively. The according mathematical sub-models will be briefly introduced in the following sections. For 
more details of the sub-models as well as their coupling, refer to Offner (2013). During simulation, the coupled 
sub-models are solved in time domain using numerical time integration. 
 

 
Figure 5. Schematic representation of the AVL EXCITE TM simulation model of the investigated turbocharger 
 
 
Structural Components 
 
Each structural component is represented by a body, which is modelled according to the floating frame of 
reference formulation (FFoR), see Offner (2011) for details. The formulation allows to distinguish global motion 
and local elastic deformation. Accordingly, the equations of motion for a structured flexible body, Parikyan et al. 
(2001), read  
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This differential algebraic equation system describes the global motion and local vibrational behaviour of a 
flexible body and is solved with respect to the vector of unknowns, which reads  
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and which considers the global position and orientation coordinates ( 3ℜ∈Bx and 4ℜ∈Bθ ), the velocity 

vectors 3ℜ∈ω  and 3ℜ∈Bx&  as well as the generalized displacement vector q  and its first time derivative. q  
represents the elastic deformations of the total body, considering a space discretization with N  nodes  
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with the translatorial displacement components 1,iu , 2,iu  and 3,iu  and the rotational displacement components 

1,iϕ , 2,iϕ  and 3,iϕ . 
The matrices M , D  and K  are the time invariant mass, damping and stiffness matrix, which can be generated 
in a pre-processing step using commercial FEM software. The right-hand side of the ordinary differential 
equation sums up acting body forces. It contains inertia, external and joint forces. The inertia forces gyrosf  and 

rbAccf  result from the global motion of the body and denote the rigid body acceleration forces and the 
gyroscopic forces, respectively. External forces like axial or radial forces at the compressor or turbine wheel are 
considered in the vector af . Those forces are given functions over time and can, for instance, be obtained by 
preceding measurement or pre-calculation. Forces, which occur due to contact to other component surfaces as for 
instance those in radial slider bearings, are considered in *f . 

Bθ  are quaternions representing the orientation of the body coordinate system with respect to the inertial 

coordinate system. The quaternion normalization condition 1=⋅ B
T
B θθ  must hold. The matrix ( )BθS  is used to 

transform the time derivative of the Euler parameters into the vector of the body’s global angular velocities ω . 
For distinguishing gross and local motions, a reference condition is given by the last equation ( ) 0qr = , which 
considers  
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icA  is a skew symmetric matrix operator, which is applied to the position vector ic  of node i , reading  
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im  and iI  denote mass and tensor of inertia of any node i . Equation (5) is motivated by the assumption that 
local deformation have to remain as small as possible which assures the validity of the linearization used for 
linear elasticity theory. 
Equation (1) is used in case of rotor but also in case of both floating bushings. As the housing body performs no 
global motion, equation (1) reduces to the dynamic ordinary differential equation in this case. For further details 
on the differential algebraic equation but also its solution algorithms refer to Drab et al. (2009). 
 
 
Oil Film in Radial Slider Bearings 
 
The hydrodynamic contacts are represented by an averaged Reynolds equation, which, formulated with respect to 
the outer sliding body coordinate system, reads  
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h = h  ( x , z , t  ) represents the nominal clearance gap height between the two sliding surfaces. h  is measured in 
y  coordinates and considers the deformed shape of the structure under the thermal load, see Figure 4. x , y  

and z  are the circumferential, the radial and the axial direction of the bearing. θ  is the fill ratio, so the 
percentage of h , which is filled with oil. The surfaces slide with a velocity of iu  and ou  in x  direction. i  and 
o  denote the surface of the inner and outer sliding body, respectively. These are the journal and the bushing 
surface in case of the inner oil film and the bushing and the housing in case of the outer oil film. η  is the 
dynamic viscosity of the lubricant, which may depend on the lubricant’s temperature T . The oil film 
temperature distribution of the lubricant is calculated by an averaged formulation of the energy equation. Bearing 
shell and journal structure temperatures are based on the three-dimensional heat conduction equation. Pre-
calculated temperature boundary conditions (Figure 3) are considered at the surface of the inner and at the outer 
sliding body. See Lorenz (2015) for further details. 
Equation (7) considers flow factors xϕ , zϕ  and sϕ  obtained according to Patir and Cheng (1978), assuming 
Gaussian distributed surface heights. σ  is a composite roughness value, which can be computed from the 

standard deviation of the clearance height of the two sliding surfaces iσ  and oσ  via 22
oi σσσ += . The 

local oil film thickness Th  considers random roughness amplitudes with respect to the mean shape of the 

surfaces, respectively, where oiT hh δδ ++=  and Th~  is the local mean value of Th  assuming Gaussian 
distribution. 
Equation (7) is solved with respect to the hydrodynamic pressure p  in lubricated areas and with respect to the 
oil vapour fraction θ  in cavitation areas. Bushing drillings and therefore couplings between inner and outer oil 
film are considered in terms of boundary conditions. The pressure in the boundary condition is obtained 
employing oil supply line model in each drilling, Offner et al. (2013). In each drilling the oil is assumed to be 
incompressible with isothermal viscosity. The flow in each drilling is described by a steady state 1D Euler 
equation, i.e. Bernoulli equation. Fictitious force effects, which result from the motion of the bushing, and 
cavitation effects in the line are also considered. 
In order to consider physical metal to metal contact, a local asperity pressure is computed in dry and mixed 
lubricated contact areas. The model developed by Greenwood and Tripp (1970-1971), is applied for that 
purpose. 
 
 
5 Dynamic Results 
 
Simulations are performed for constant speeds from 10 krpm up to 110 krpm every 10 krpm. Alternatively, rotor 
run-up for the same speed range is possible as a single calculation. Constant rotor speeds approach is selected 
due to available processors so that all speeds could run in parallel and the results are available in the shorter time. 
During the transient simulation viscos friction in oil films acts on rotor and floating bushings and influence their 
rotational speed. The speed of the floating bushings changes depending on the balance of the friction forces from 
the inner and the outer oil film. An initial speed of the rotor and floating bushings needs to be defined in terms of 
initial conditions. As these structural initial conditions typically are inaccurate, a number of rotor rotations are 
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required until the rotational speed of the floating bushings becomes stable. Therefore, the calculations are 
performed for up to 360 rotor rotations to ensure stable floating bushing speeds. 
In the case of a turbocharger rotor that rotates at high speeds the dominant forces are implied by unbalances of 
the rotor wheels. 
For each speed case two dynamic calculations are performed, the first one considers a perfect cylindrical shape of 
the bore, with nominal hot clearance and considering constant oil viscosity based on the assumed oil film 
temperature. This case is in further text referenced as nominal case. The second case considers a deformed 
housing shape (FEM) under thermal load and with CFD pre-calculated surface temperatures of the housing, rotor 
and floating bushings. In the second case viscosity is changing depending on the oil film temperature that is 
determined by solving energy equation for the oil film. An example of floating bushing temperatures that are 
used as boundary conditions are shown in the Figure 7. 
 

 
Figure 7. Floating bushing temperature used as boundary conditions for energy equation of the outer oil film 
 
 
Oil Temperature 
 
Oil film temperatures over speed are depicted in Figure 8. An assumed constant temperature of 90 degC for each 
oil film is shown in the same diagram with calculated temperatures, maximum and minimum that appear in the oil 
film for the dynamic simulation using CFD pre-calculated temperature distribution. During the simulation with 
consideration of energy equation in the oil film, the hydrodynamic friction in the oil film heats up the oil. 
Depending on the temperature difference of the oil film and the surrounding structure the heat is transferred from 
the oil to the structure or vice versa. It can be seen that oil film temperatures differ significantly from the 
assumptions made in the nominal case. In the outer oil film at the compressor side the assumption is relatively 
good as the obtained temperatures are ranging between 85 and 95 degC. At the outer film at turbine side 
temperatures are in a range of 105 to 115 degC. This is mainly due to the hotter housing structure that heats up 
the oil in the film. For the inner oil film the temperatures are much higher than assumed especially at the higher 
speed due to the oil heat up from the viscous friction. The results demonstrate that it is not possible to assume an 
accurate constant temperature that could be applied for the complete speed range of the turbocharger. 
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Figure 8. Oil film temperatures over speed: assumed constant temperature versus calculated minimum 
and maximum temperature using CFD and FEM pre-calculated boundary conditions 

 
Oil Viscosity 
 
Oil viscosity changes during the rotor operation depending mainly on temperature. The dependence on pressure 
and shear rate is assumed to be negligible in the present study. Results for maximum and minimum oil viscosity 
in each oil film over speed are shown in the Figure 9. It can be seen that at the compressor side outer film 
viscosity is relatively similar to the assumed value. For the inner film at the compressor side it is similar only for 
the lower speeds range. At the turbine side the assumed viscosity is significantly higher than the real one obtained 
in the simulation, which follows the previous conclusion that assumed temperature is too low at the turbine side. 
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Figure 9. Dynamic viscosity in oil films over speed: constant viscosity (assumed) versus calculated 
minimum and maximum viscosity using CFD and FEM pre-calculates boundary conditions 

 
Speeds of the Floating Bushings 
 
Floating bushing rotational speeds are a further result of the dynamic simulation. Floating bushings rotate under 
the influence of viscous friction in oil film. Pressure, fill ratio and temperature and by this also viscosity in the oil 
films dynamically changes. This implies changing friction load on the floating bushing which leads to 
dynamically changing floating bushing speeds. Nevertheless, the mean speed of the floating bushing stabilizes 
after a few seconds. The mean floating bushing speeds over the rotor speeds are shown for both simulation cases 
in Figure 10. Solid line curves show the results for the nominal case with assumed temperature while the dashed 
line curves show the results for the CFD and FEM pre-calculated boundary conditions. The speed of the floating 
bushings are very similar in the lower rotor speed range and differ significantly in the higher speed range for the 
case with CFD and FEM pre-calculated boundary conditions. This is mainly influenced by lower viscosity in the 
inner oil films. Another influence is the lower clearance at outer oil films due to the higher temperature at the 
turbine side. The material of the floating bushing has higher thermal expansion compared to the housing. This 
means the floating bushing expands more and by this reduces the outer oil film clearance. 
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Figure 10. Rotational speed of floating bushings at compressor and turbine for nominal case with 
assumed temperature versus case with CFD and FEM pre- calculated temperature 

 
Displacement at the Compressor Nut 
 
Typical results, which also can be measured, are displacements of the rotor nut. The result for the maximum and 
minimum displacement in vertical direction Z with respect to the housing coordinate system and the frequency 
content of this displacement is shown in Figure 11 for nominal simulation and in Figure 12 for the simulation that 
uses CFD and FEM pre-calculated boundary conditions. In both cases significant vibrations are of lower sub-
harmonic while the first order vibrations are only slightly visible. There is a strong difference between the cases 
with nominal and pre-calculated boundary conditions. The amplitude of motion is significantly smaller in case of 
using CFD and FEM pre-calculated boundary conditions. This is influenced mainly by lower clearance at the 
outer bearing especially at the turbine side. At higher temperature, floating bushings will have higher expansion 
due to the material with higher expansion coefficient compared to the housing material which will result in 
smaller clearance at outer oil films. 
 

 
Figure 11. Maximum and minimum nut displacement in vertical direction Z for the nominal case over 
speed (left) and over speed (rpm) and frequency (right) 
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Figure 12. Maximum and minimum nut displacement in vertical direction Z for simulation with CFD 
and FEM pre-calculated boundary conditions over speed (left) and over speed (rpm) and frequency 
(right) 

 
Similar observations can be made when looking at the orbital paths of the nut, Figure 13. Orbital paths for the 
nominal case and results for the case with CFD and FEM pre-calculated boundary conditions are depicted in the 
upper and the lower part of the figure, respectively. In case of CFD and FEM pre-calculated boundary conditions 
much smaller orbital paths at the nut can be observed which is influenced by smaller outer oil film clearance. 
 

 
Figure 13. Orbital path at compressor nut for speed cases 10, 70 and 110 krpm: constant (top) versus 
variable (bottom) temperature boundary conditions 
 

Force in the Bearings 
 
The frequency content of the bearing forces is shown in Figure 14. The upper part of the figure depicts results for 
the nominal case and the lower part presents results for the case with CFD and FEM pre-calculated boundary 
conditions. It can be seen that the frequency content is similar for both cases. The large vibration amplitudes, 
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which can be observed for the compressor nut in the low frequency sub-harmonic, are also present in the bearing 
forces. But unlike the nut vibration, where sub-harmonic is dominant, in the bearing forces, also the first order 
shows large amplitudes especially at higher speeds. The bearing forces are in general smaller in amplitude, up to 
100 N at outer oil film, for the case with CFD and FEM pre-calculated boundary conditions. 
 

 

 
 

Figure 14. Bearing forces over speed and frequency for nominal case with assumed temperature (upper 
diagrams) versus case with CFD and FEM pre-calculated temperature (lower diagrams) 
 
 
6 Conclusion 
 
The paper shows a methodology in which it is possible to use accurately calculated oil film temperatures and 
according pre-calculated temperature boundary conditions for the dynamics simulation of a turbocharger. This 
proves to be mandatory in order to be able to compute reliable dynamic results in the complete speed range. 
The paper also shows the capabilities of modern simulation tools for turbocharger applications. The same method 
could be applied for semi-floating bushing turbocharger design. 
For full floating bushing designs, where several hundred rotor rotations are necessary to obtain steady floating 
bushing speeds, the drawback of the approach is long calculation time per speed, which is in the range of 2 to 24 
hours per speed. Alternative to the constant rotor speeds a run-up simulation using the same simulation approach 
can also be an option. Such a single simulation would cover the complete rotor speed range, but would last even 
longer. For performing investigation shown in this paper enough processor power was available to perform 
constant rotor speed calculations in parallel and obtain shorter simulation time then when running a single run-up 
calculation. 
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Vibration Signal Analysis for the Lifetime-Prediction and Failure
Detection of Future Turbofan Components

N. Mokhtari, M. Grzeszkowski, C. Gühmann

Planetary gearbox and hydrodynamic journal bearings (HJB) are going to be integrated in future turbofan engines.
This paper presents the results of applied methods to detect failures of these components. At first, failure detection
requirements are derived by using system engineering techniques. In consideration of the identified failures theo-
retical assumptions are discussed and subsequently verified. Vibration and acoustic emission (AE) sensors seem
promising to detect failures in an early stage. To prove the theoretical considerations experiments are carried out
on test benches.

Tooth flank damage of a planet gear in a planetary gearbox design is investigated. High demands are placed on
the signal processing due to design-related amplitude modulation effects. Vibrations are measured using accel-
eration and AE sensors, which are mounted on the ring gear. The investigated failure type leads to excitation
of non-stationary AE signals. It is proposed that the AE signals have a cyclostationary characteristic. Using
cyclostationary-based processing techniques the signal’s hidden periodicities can be revealed. A separated analy-
sis of each planet and evaluation of the envelope spectrum finally allows the detection of this failure type.

Instead of roller bearings, HJB can be integrated in planet gears. The most essential damaging mechanism for
HJB is wear as a result of mixed or boundary friction. These friction states are caused by conditions like Start/Stop
Cycles, insufficient oil supply, overload or oil contamination. The accumulated intensity and duration of friction
can be a measure of the remaining useful lifetime (RUL). To estimate the RUL friction has to be differentiated
regarding the intensity. AE technology is a promising method to detect friction in HJB. Therefore, AE signals of
the mentioned conditions are acquired. Due to rotating planet gears there is no possibility to place AE sensors
directly on the surface of HJB.

Finally suitable features for both components are extracted from the processed signals. Their separation efficiency
with respect to the failure types is evaluated.

1 Introduction

1.1 Planetary Gearbox

Planetary gearboxes are frequently used in applications where high power densities are in great demand, such as
wind power plants and helicopter drivetrains. Furthermore, future technologies of geared turbofans in civil aviation
will also use a planetary gearbox in the drivetrain to reduce the fans speed and to increase the turbines speed. This
leads to an increase of turbine efficiency and a reduction of noise, because the fan and the low-pressure turbine
operate in their optimum working point. With the use of a gearbox further maintenance actions are required to
ensure a reliable detection of gearbox faults due to wear and gear defects at an early stage. Therefore customers
are interested in planning a condition-based maintenance in addition to time scheduled maintenance.

The main fault types in planetary gearboxes are tooth cracks in the dedendum (Reimche et al., 2007; Mohammed
and Rantatalo, 2016), tooth break (Yoon et al., 2014) and carrier cracks (Ompusunggu et al., 2014; Blunt and
Keller, 2006). To prevent the gearbox from a total failure, cracks and intense wear have to be detected in an early
stage. A majority of the faults can be detected by acquiring the gear vibrations or the acoustic emission (AE) of the
gearbox components. The disadvantages of these kind of signals are the complex signal structure and modulation
effects due to the planet rotations, which lead to high requirements on the diagnostic methods (McFadden and
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Smith, 1985). The sensor signatures which are related to a fault case can then only be detected and explored with
the use of extensive signal processing methods.

During the gear meshing the time-variant tooth stiffness leads to excitation of acoustic waves in the sun gear,
planet gears and the ring gear (Vicuna, 2009). This phenomenon represents the main excitation source for the
gearbox vibrations, which can be measured with accelerometers located on the gearbox housing or the ring gear.
Furthermore the planets cause an elongation of the ring gear in radial direction. This effect, on the other hand, can
be measured using sensors which are sensitive to strain like strain gauges or fiber-optic sensors (Hoffmann et al.,
2007).

This contribution presents a method for the diagnosis of planet gear cracks. Due to the rotation of the planet gears,
signal processing methods are presented, which estimate the planets position for an efficient feature extraction
process. The developed fault detection methods form a possible basis for the development of further techniques
for the failure detection in planet bearings.

1.2 Hydrodynamic Journal Bearing

As described roller bearings are used in planetary gearboxes to reduce friction between pins and planets and to
allow only the desired direction of movement. Instead of roller bearings, hydrodynamic journal bearings (HJB)
can be integrated in planets. For this type of bearing a continuous oil supply is needed. Because of the eccentric
position of the pin in the journal bearing and simultaneously relative movement of these components, the oil
pressure is in equilibrium with the outer bearing load, so that a supporting oil film is formed. This supporting oil
film separates the pins surface and journal bearings surface, so that only fluid friction can occur (Deters, 2014).
This condition prevents mixed friction and solid friction, which are not desired. Mixed friction and solid friction
cause wear, which is the most essential damaging mechanism for HJB (Albers and Dickerhof, 2010; Albers et al.,
2012).

HJBs have many advantages over roller bearings. On the one hand, HJBs are non-sensitive against impact load,
high oscillations and vibrations, and on the other hand, they have a simple structure, a very low noise level and
are more suitable for high speeds compared to roller bearings. HJBs also have disadvantages. At low speed
levels, machine shut down, lack of lubrication, overload or contamination, mixed or solid friction is generated
between the journal bearing and pin (Kelm, 2009). Friction, which evokes wear, reduces the lifetime of HJB’s and
causes fatal failures. To prevent negative impact on product reliability, which causes high maintenance costs and
downtime, the HJB’s condition has to be known. One possibility to record friction is to use AE Technology. This
method promises many advantages in terms of sensitivity to friction and failures compared to normal vibration
measurements (Raharjo, 2013; Al-Ghamd and Mba, 2006). With suitable evaluation methods of the acquired AE
signal and calculation tools the intensity and duration of mixed friction can be determined. This information can
then be used to develop a remaining useful lifetime model.

2 Planetary Gearbox

2.1 Test Bench

The test bench (see Figure 1), which is being used for the planetary gearbox condition diagnosis measurements
consists of a drive motor with a nominal torque of 320 Ncm at 3000 rpm. The maximum speed is limited to
3000 rpm. The torque is simulated by a magnetic powder brake with a maxmimum of 1 kW brake power. The
driven gearbox consists of one planetary gear unit with a sun gear (50 teeth), three planets (35 teeth) and a fixed ring
gear (120 teeth). These are spur-toothed gears with an 20 pressure angle. The planetary gear has a transmission
ratio of 3.4 and a module of 1.5.

During tests, the vibration signals from a piezoelectric acceleration sensor mounted on the ring gear were acquired.
Additionally, an AE sensor from PZT material (lead zirconate titanate) was mounted on the ring gear front side to
measure high frequency AE signals resulting from tooth meshing. Centrifugal forces, which act on the ring gear
when a planet gear passes the sensor, lead to low-frequency radial strain of the ring gear which is also acquired
with the AE sensor. The sensor signals from a tachometer and a torquemeter installed on the output shaft were also
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Figure 1: Planetary gearbox subscale test rig: (a) Motor-powered test bench, (b) Applied sensors at the planetary
gearbox

acquired. The mentioned signals were sampled with a sampling frequency of 50 kHz to an extent of about 140
revolutions of the carrier.

2.2 Experimental Procedure

The proposed test campaign tests were carried out at different conditions of failure, driving speed and applied
torque. The defined gearbox tests are listed in Table 1. To simulate a faulty gearbox a tooth crack with different
crack depths at one definied planet gear were artificially inserted. The damage was inserted at the tooth root area
at an angle of 30 related to the normal of tooth crest. A damaged tooth with the deepest crack is shown in Figure 2.
As shown in Table 1, 45 test-runs were performed for every gearbox, whereas two gearboxes initially in a good
condition were used in this test campaign.

Figure 2: Artificially cracked planet tooth

Table 1: Overview of the PG experiments
Parameter Range
Sun speed 300 rpm, 512 rpm, 670 rpm

Torque 0 Ncm, 250 Ncm, 500 Ncm
Condition Gearbox in good condition, 0.4 mm crack, 0.8 mm crack, 1.2 mm crack, 2.4 mm crack
Fault type Artifical planet gear crack
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2.3 Signal Processing Methods

To extract features for gear state estimations, two different kinds of features are investigated: Global features, which
are calculated over the total carrier revolution and local features, derived from time windowed vibration signals,
corresponding to specific gear teeth being in contact. The applied signal processing techniques are summarized in
Figure 3.

Firstly, the vibration sensor signals and AE sensor signals were resampled using the speed sensor signal for every
test-run with specific speed, torque and crack depth. The resampling process is used to reduce a smearing of
the spectral lines in the FFT spectrum, which arise from speed fluctuations of the motor. Resampling is also
required for the following order analysis, where speed-independent feature-carrying sidebands are gathered for the
feature extraction process. Here especially the meshing order sidebands are recovered and extracted for further
calculations, because of the impact a cracked planet tooth has on the amplitude modulation process (Shan et al.,
1999).

Figure 3: Signal processing

2.3.1 Planet-Separation

In previous investigations (McFadden and Smith, 1985) it could be observed that the level of the measured vibra-
tions reaches a peak value when the planet is closest to the acceleration sensor. As a result of this observations
McFadden (McFadden, 1991) developed a method to average the vibration signals of the individual planet gears
and the sun gear through windowing the time period, where a planet passes the acceleration sensor. The idea of
this method is integrated in this work, to enhance the sensitivity of features to planet cracks.

To use this differential planet diagnosis method through windowing the time signals, the teeth on the planet gear
should be meshing with the same teeth on the ring gear near the sensor for every considered window. This state
of the appropriate kinematic values is reached periodically every Nc carrier revolutions forming a period length of
Tp = Nc ·Tc, where Tc is the period of one carrier revolution. Therefore, a synchronization of the vibration signals
between the test-runs was realized. The sensor signals were synchronized through correlation analysis between the
vibration signals of two different test-runs with same speed and torque but different gear failure conditions. This
calculation is possible, because of the unequal planet load sharing due to manufacturing and assembling errors.
Afterwards the signals are averaged over one state period Tp, to separate the vibration signature of the individual
fixed-axis gears from the total vibration of the gearbox.

After the synchronization process the center point of the window functions, where one planet is closest to the
sensor, has to be defined. For this purpose the displacement sensor signal from the PZT probe (see Figure 1b) is
evaluated. The displacement sensor acquires the radial strain on the ring gear when the planets pass the displace-
ment sensor. Investigations showed, that this sensor is more sensitive to radial strain through planet passing, than
the acceleration sensors mounted on the ring gear’s circumferential side.

With the processed displacement signal the equally spaced center points of the window function w(t) can be
gathered and multiplied with the vibration sensor signal x(t) (see Figure 4). The resulting sensor signals xw(t, n)
correspond to the vibrations at specific meshing points between teeth on the planet gears and teeth on the ring
gear (Elia et al., 2013):

xw(t, n) = x(t) · w
(
t− n · Tc

Np

)
. (1)
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Figure 4: Windowed vibration signal

The value Np represents the number of planets. The window width Tw has to be chosen appropriately to include
all planet tooths of interest on one hand, and on the other to ensure an isolated planet tooth crack detection. It
could be claimed that with rising state period Tp a smaller window size can be used. Afterwards local features can
be extracted from the windowed sensor signals.

2.4 Results and Interpretation

An evaluation of the extracted global features root mean square (RMS), crest factor, peak value, standard deviation,
skewness, kurtosis and the zero-order figure of merit parameter (FM0) (Vecer et al., 2005) showed, that there are no
exploitable global features which correlate with the depth of the planet tooth crack. Only the feature FM0 showed
negligible increased values with increasing crack depth at 670 rpm sun gear speed and a load of 500 Ncm.

The local features were calculated within every windowed time signal for the 3 planet gears. To find the correlations
between specific feature values and the gearbox fault conditions the covariance matrices of the planet-specific
features were calculated for a given motor speed and load. In Figure 5 two features (peak value and FM0-value)
are shown for measurements at 300 rpm sun gear speed which seems to correlate with an increasing tooth crack
depth.

To understand the relations between the feature values and the crack propagation further investigations have to
be done in future work to finally estimate the gearbox condition. Because the time windowed extraction of local
features seems to be a promising method, the condition of every single tooth pair should be monitored speed-
and torque-independent by means of AE signal analysis. Therefore tooth meshing patterns generated from AE
measurements will be analyzed using methods of classification. The methods should enable a discrimination
between different time-windowed tooth meshing pairs utilizing manufacturing and assembling errors. This would
allow the assignment of time-windowed features from same tooth meshing pairs of different measurements.
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Figure 5: Feature values for measurements at 300 rpm sun gear speed
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3 Hydrodynamic Journal Bearing

3.1 AE Technology

AEs are elastic waves that are generated by suddenly released elastic energy e.g. due to material deformation or
damage. In addition, friction also generates AE, which is then transferred within the material or on the surface and
can be detected by a sensor. From the molecular lattice theory point of view, AEs are generated as follows (Huang
et al., 2007): If two surfaces rub against each other the molecule moves from a stable lower state to an unstable
upper state. The energy generated during this process accumulates until a maximum is reached. After reaching
this state, the molecule slips to the adjacent lower state to reach a new stable state. In this dislocation and slip
process the molecule releases energy. One part of the strain energy propagates from the internal to the surface
in form of elastic stress waves. The frequency ranges between infrasonic and ultrasonic range (typically between
30kHz - 2MHz). An AE sensor consists of a PZT, which works at its resonance frequency range to reach maximum
sensitivity.

3.2 Subscale Journal Bearing Test Rig

Figure 6 shows the journal bearing test rig at which all tests were carried out. A Mattke servomotor drives the
shaft. Two supporting roller bearings are located at the left and right side of the journal bearing. Two nylon strips
are applied between the shaft and the supporting bearings to mostly reduce interfering signals. A Festo pneumatic
cylinder provides the load for the journal bearing. The journal bearing consists of a bearing bush, which is made of
the actual bearing material and a bearing back to prevent dilatation. The bearing back is made of two parts, which
can be fixed with screws, to replace the journal bearing easily. A gear pump transports oil through a drilling, which
is located on the lower part of the bearing back.

FN

Servo motor

Shaft

Pneumatic cylinder

Bearing back

Oil inlet
Nylon 6.6

Support bearing

Bearing back

Bearing bush

Drilling for cylinder

Figure 6: Journal bearing test rig

A PAC (physical acoustics cooperation) Wideband AE sensor with a frequency range of 100-900 kHz is mounted
on the upper part of the bearing back next to the drilling for the cylinder. A 2/4/6 preamplifier is used to amplify
and filter the AE signals. The oil temperature influences the oil viscosity, which again influences the AE signal.
For this reason, the oil temperature needs to be held as constant as possible. A Pt100 sensor measures the oil
temperature. A pressure transducer is used to measure the oil inlet pressure. The sensor signals are sampled at
200 kHz. Table 2 shows the test conditions at the test rig.
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Table 2: Overview of the test conditions at the HJB test rig
Bearing bush diameter 50 mm

Bearing bush width 40 mm
Maximum speed 3000 rpm
Maximum load 3 kN

Oil inlet temperature Constant at 27 ◦C
Oil inlet pressure Constant at 2 bar

Oil Hydraulic oil ISO VG 10
Bearing bush material Red bronze

Shaft material ST52-3

3.3 Test Description: Static hydrodynamic Friction and mixed Friction Conditions

This section describes the driven tests and their advantages for the detection of friction. At constant load and
decreasing speed the gap between HJB and shaft also decreases, which ultimately results in mixed friction at lower
deviation of the narrowest gap h0. As already described this condition should be avoided during operation because
it affects the lifetime of the HJB negatively and can cause failures if it is repeated. Mixed friction is caused
deliberately by decreasing the speed at constant load and oil viscosity with purpose of detecting mixed friction
conditions in normal operation in the future.

With suitable evaluation methods, the border between fluid friction and mixed friction should be identified. For
this purpose the Stribeck curve is used, which shows the relationship between speed, load and viscosity with the
coefficient of friction. The sensor data in fluid friction condition could be used as a reference data for the safe
condition of the HJB.

3.4 Results and Interpretation

Figure 7 shows the AE RMS plotted against the speed at a constant load of 1750 N. The speed was decreased
from 350 rpm up to 60 rpm with 10 rpm steps. The trend shows a high AE RMS value at low speeds, which
decreases with increasing speed until a minimum is reached. From this minimum the AE RMS increases again. To
understand this trend the knowledge about the Stribeck curve is needed.
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Figure 7: HJB hydrodynamic and mixed friction test; AE RMS at a load of 1750 N

The Stribeck curve indicates the relationship between the viscosity, speed and load with the coefficient of friction.
At low viscosity or low speed or at high load the coefficient of friction increases. If the viscosity or speed increases
or the load decreases then the gap between the shaft and HJB increases and the oil film becomes thicker. If the speed
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continues increasing then the coefficient of friction increases again due to the shear stress of the fluid (Mirhadizadeh
et al., 2010). The shear stress results in friction between the fluid and the shaft. This type of friction is not
responsible for the wear, which is generated during friction between solid surfaces. Figure 8 (a) shows the Stribeck
curve and its friction areas.
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Figure 8: (a) Stribeck curve, (b) HJB hydrodynamic and mixed friction test; AE RMS at a load of 2250 N

With the knowledge about the Stribeck curve, the acquired AE RMS signal can be interpreted. Because the load
and the viscosity were held constant, there is only a speed dependency. In the area with low speed and high AE
RMS value solid friction occurs. The solid friction area is hardly dependent on the speed. Because of that it
seems, that this area could not be recorded (motor stops at high loads). The sensor signals begin at the mixed
friction area. At a speed of about 145 rpm the minimum value of AE RMS is reached. The border between fluid
friction and mixed friction has not been reached yet because the real minimum oil gap is a subtraction between the
theoretical oil film gap and the sum of the shafts and journals roughness. Mixed friction area ends at a speed value
of ca. 175 rpm. With higher speed fluid friction begins and the AE RMS signal increases again. In this area there
is no asperity contact between shaft and bearing, therefore mixed friction can not occur. Rather the shear stress of
the fluid becomes important. The shear stress of the fluid generates friction between the fluid and the shaft and is
responsible for the increasing of the AE RMS value. This kind of friction has theoretically no lifetime-reducing
effect on the HJB. Concluding it is assumed that a higher shaft speed leads to a higher shear stress and consequently
a larger AE RMS value.

The result of a second test with a constant load of 2250 N is shwon in figure 8 (b). It shows a qualitatively similar
trend. However, the AE RMS signals minimum is moved a little bit to the right side as expected. The minimum
is reached at a speed value of ca. 155 rpm. The reason is that the journal bearing stays longer in mixed friction
condition due to the higher load. The duration of mixed friction condition is longer at higher loads. Mixed friction
area ends at a speed value of ca. 200 rpm.

4 Conclusion

The presented differential planet processing method, which was used within this work to detect a planet gear tooth
crack on a planetary gearbox, shows that the fault detection can be improved, through windowing the time period,
where a planet passes the acceleration sensor. The results demonstrate that an accurate planet position estimation
can be realized by measuring the ring gear elongation with a PZT probe. In further works the planet separation
processing method should be used for the development of a planetary gearbox condition monitoring system.

The tests performed at the HJB test bench show that it is possible to find mixed friction events with AE technology
and suitable analysis tools. Furthermore it is possible to differentiate between mild and strong friction. This result
can be used for further investigations especially for the calculation of the remaining useful lifetime of a HJB.
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Vibro-acoustical Behavior of a Turbocharger Housing Excited by Oil-film
Induced Rotor Oscillations

A. Boyaci, W. Seemann

This paper deals with the interaction of the turbocharger housing and the rotor to reveal the acoustic phenomena
which are excited by the oil whirl/whip instabilities. Therefore, a flexible multibody model is built up for the rotor
subsystem which is supported in floating ring bearings. The flexibility of the housing subsystem is taken into ac-
count by considering it as a modally reduced structure within the multibody simulation model. Primarily, the two
subsystems are simulated sequentially. The first step gives the oil film forces during a typical run-up simulation
of the rotor subsystem if the bearing shell deformation is neglected. In a second step, the obtained oil film forces
are applied at the decoupled housing structure to analyze the vibro-acoustics of the turbocharger in detail. The
vibro-acoustical behavior is judged by the occurring housing amplitudes which are predominantly influenced by
the mounting concept of the turbocharger on the engine. It is found out that the subsynchronous excitation due
to the oil films can be magnified through the housing structure in a quite wide speed range which is the main
excitation mechanism affecting the acoustics of turbochargers. Finally, the run-up simulation is performed for the
coupled subsystems of rotor and housing where the oil film forces are also dependent on the local deformation of
the bearing housing.

1 Introduction

High-speed rotors in turbochargers are well-known to show synchronous oscillations due to unbalance as well as
various types of subsynchronous oscillations which are induced by several whirl/whip instabilities of the oil films.
The rotor oscillations are transmitted through the nonlinear oil film forces to the turbocharger housing whose
acoustic emission significantly affects the driver comfort especially in passenger-car applications.

Floating ring bearings are usually chosen to support the turbocharger rotors where the inner and the outer oil films
causes different types of subsynchronous oscillations (Orcutt and Ng, 1968; Tanaka and Hori, 1972) which are
basically in the conical and cylindrical forward rotor mode, respectively. With regard to the oil film generating the
subsynchronous frequency and the rotor mode shape, Schweizer (2009, 2010) suggested a categorization of the
occurring types of subsynchronous oscillations (Sub 1: conical mode, inner oil film; Sub 2: cylindrical mode, inner
oil film; Sub 3: conical mode, outer oil film) which is also adopted in this study, see also (Boyaci and Schweizer,
2015). Furthermore, typical bifurcation sequences are shown by performing transient run-up simulations of the
rotor bearing systems. Recently, run-up simulations are carried out by applying more sophisticated bearing models
(Chasalevris, 2016) where, for instance, the bearing geometry with feeding holes and grooves is taken into account
(Nowald et al., 2015; Woschke et al., 2015). The influence of design parameters on the subsynchronous oscillations
is systematically investigated in (Koutsovasilis et al., 2015). The methods of numerical continuation can be applied
to investigate the stability behavior of floating ring bearings in detail (Boyaci et al., 2009, 2011, 2015; Boyaci,
2016) and to detect the types of bifurcations at the critical speeds. The additional consideration of the thrust bearing
leads to the damping of the subsynchronous oscillations where the conical rotor modes are involved (Chatzisavvas
et al., 2016). Transient simulations are also validated with experimental measurements in (Kirk et al., 2007; Köhl
et al., 2014; San Andrés et al., 2007).

The failure of floating ring bearings probably causes a rotor damage which is known as Total Instability (Schweizer,
2009) represented by the critical limit cycle (Boyaci et al., 2011). In this case, the flexibility of the bearing housing
can become essential on the occurrence of the subsynchronous oscillations and is therefore simply modeled as
linear spring-damper element in (Schweizer, 2009). Moreover, oil-film-induced acoustic problems of turbochargers
are reported in many publications, e.g. (Nguyen-Schäfer, 2013), but not explicitly analyzed by modeling both the
rotor and the housing structure. In order to improve the vibro-acoustical behavior, the physical understanding
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of the interaction between rotor and housing, especially the mechanism of transmitting the oil film forces, is an
important part of the research in subsynchronous oscillations of turbochargers.

Within this paper, the next section outlines the flexible multibody model of the investigated turbocharger ro-
tor/housing system. The modal analysis of the housing structure gives hints which modes can become significant
for the vibro-acoustical behavior. In Section 3, the constant-tone phenomenon is first explained by a sequential
simulation of the decoupled subsystems rotor and housing where a typical bifurcation sequence of subsynchronous
oscillations is considered. Then, the effect of the bearing shell deformation is examined on the subsynchronous
oscillations for the coupled subsystems. Finally, the decoupled and the coupled approach are compared with each
other. Section 4 shortly summarizes the paper.

2 Mechanical Model

2.1 Flexible Multibody Model of Turbocharger Rotor/Housing System

The interaction of the turbocharger rotor and housing is investigated by a flexible multibody model. The tur-
bocharger rotor/housing system can be disassembled into two subsystems whose interfaces are the two radial
bearings. As depicted in Figure 1 (a), the multibody model of the turbocharger rotor consists of a flexible shaft

(a) (b)

Figure 1: Mechancial model of subsystems: (a) Turbocharger rotor. (b) Housing structure.

at which two rigid disks are placed representing the compressor and the turbine wheel. The flexible shaft is in-
corporated as a modally reduced structure by applying component mode synthesis which is described in (Craig
and Bampton, 1968; Shabana, 2005). The rotor is supported by two full-floating ring bearings where the rings are
assumed to be rigid bodies with two translational and one rotational degree of freedom. The nonlinear oil film
forces are given by analytical expressions, see e.g. (Boyaci et al., 2015; Childs, 1993), which can be derived by the
short bearing theory of DuBois and Ocvirk (1953). Unbalance is modeled by two point masses which are attached
on the compressor and turbine wheel. The complete housing structure is also discretized by finite elements and
modally reduced by component mode synthesis. The system is under the influence of earth’s gravitational field g.
Axial and torsional motions of the multibody system are neglected in this study.

Analogously as for instance in (Chatzisavvas et al., 2016; Koutsovasilis et al., 2015; Schweizer, 2009, 2010), the
flexible multibody model of the turbocharger rotor/housing can be stated as a system of nonlinear Differential-
Algebraic Equations (DAEs) which is here written in the stabilized index-2 formulation (Ascher and Petzold,
1998)

M(q) u̇ = f(q,u, t)−GT (q, t)λ , q̇ = u−GT (q, t)µ ,

0 = g(q, t) , 0 = GT (q, t)u+
∂g

∂t
(q, t) ,

and which is computed by using solvers based on the backward differentiation formula (Gear et al., 1985). The
vectors q and u collect the generalized coordinates and velocities, respectively, which also include the modal
coordinates of the flexible bodies. The symmetric positive definite mass matrix is given by M(q). The vector
f(q,u, t) represents all applied and gyroscopic forces. The algebraic constraint equations are considered in g(q, t)
from which the Jacobian G(q, t) = ∂g

∂q is obtained. Then, −GT (q, t)λ describes the constraint forces where λ
is the vector of Lagrange multipliers. To avoid the drift-off effect when solving the DAE, the correction term
−GT (q, t)µ is added to the equations by introducing auxiliary Lagrange multipliers µ.
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2.2 Modal Analysis of Turbocharger Housing Subsystem

Before the transient simulations are presented, the modal behavior of the turbocharger housing (mH ≈ 5 kg) is
discussed to support the result interpretation of the subsequent simulations. As shown in Figure 1, the housing
structure is built up of two assembled sections which are the compressor-side section and the turbine-side section
including the bearing housing. Furthermore, to model the mounting of the turbocharger on the engine block, it is
assumed that the housing is rigidly clamped at both the turbine inlet (twin scroll) and outlet while free boundary
conditions are chosen at the compressor side. Then, the modal analysis yields the eigenfrequencies and corre-
sponding mode shapes of the housing (cf. Figure 2). Note that the modal behavior of the housing is strongly
dependent on the chosen boundary conditions.

Figure 2 outlines four modes of the clamped housing structure which are excited by the oil film forces in the
next section. The axial and torsional modes as well as the the higher modes of the turbocharger housing are not
explicitly considered here since they can hardly be observed directly in the transient simulations. Primarily, it

Figure 2: Modal analysis of housing structure which is rigidly clamped at the turbine inlet and outlet.

can be distinguished between two types of bending modes by considering the phase difference of the compressor
and turbine section. In-phase oscillations of both sections characterize the first in-phase bending modes – Mode-
in I and Mode-in II – about the principal axes of the housing. The two further bending modes – Mode-out I and
Mode-out II – describe out-of-phase oscillations of both sections where the nodal point is located close to the
turbine-sided bearing. However, for all types of modes, the amplitudes at the turbine section are much lower since
the fixed clamping is applied on this side.

3 Run-up Simulation

In this section, a small-sized (passenger-car) turbocharger is considered to investigate the rotor-housing interaction.
The multibody simulation model comprises two different subsystems which are, on the one hand, the nonlinear
rotor subsystem (rotor mass mR ≈ 0.2 kg, rotor length `R ≈ 130 mm) supported in full-floating ring bearings
and, on the other hand, the linear housing subsystem (housing mass mH ≈ 5 kg). The coupling between the two
subsystems is modeled in two different ways. The first approach is to simulate both subsystems sequentially and
thus separately. For this purpose, a run-up simulation of the rotor subsystem is primarily performed to obtain
the nonlinear oil film forces where the bearing shell as part of the housing structure is assumed to be rigid. In a
further transient simulation, the nonlinear oil film forces are applied as external excitations on the bearing shells to
compute the housing oscillations. With regard to the decoupled subsystems, the rotor subsystem only affects the
housing oscillations but not vice versa. Therefore, in the second approach, both subsystems are fully coupled and
a transient run-up simulation is performed for the complete system. Consequently, the elastic deformation of the
bearing shells is also considered on the rotor oscillations so that both subsystems mutually interact with each other.
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3.1 Decoupled Subsystems

3.1.1 Rotor Bearing Subsystem

Figure 3 shows the run-up simulation of the decoupled rotor subsystem where the rotor speed is prescribed by
an increasing linear time function from rest up to 3500 Hz. As already depicted in Fig 1 (a), the nonlinear os-
cillations are evaluated by studying the vertical displacement of the compressor-sided measurement point and the
relative bearing eccentricities (compressor-sided inner/outer and turbine-sided inner/outer oil films). Additionally,
the waterfall diagram in two aspects illustrates the synchronous and subsynchronous frequencies as well as the
amplitudes of the compressor-sided displacement. Here, the run-up simulation reveals the following characteristic
bifurcation sequence (cf. Figure 3) which comprises the three types of subsynchronous oscillations Sub 1→ Sub 2
→ Sub 2/3 (MM):
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Figure 3: Run-up simulation of decoupled rotor bearing subsystem: (a) Vertical displacement of measurement
point at compressor side (blue), rotational frequency f (red). (b) Compressor-sided inner/outer and turbine-sided
inner/outer bearing eccentricities. (c)-(d) Waterfall diagrams (3D- and top-view) of plot (a).

– By increasing the rotational frequency from rest, the rotor bearing system needs a certain settling time before
the Sub 1 oscillations are fully observed at f ≈ 105 Hz (t ≈ 0.3 s). They show the typical high inner bearing
eccentricities of both bearings as well as the subsynchronous frequency which is associated with the conical
forward rotor mode.

– Upon passing through the Sub 1 oscillations, they become unstable at f ≈ 490 Hz (t ≈ 1.4 s) and directly
bifurcate to the Sub 2 oscillations which are characterized by a cylindrical forward rotor mode. In addition
to the high inner bearing eccentricities, the subsynchronous frequency points to the inner oil films as source
of the whirl/whip instability.
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– In contrast to Sub 1, the Sub 2 oscillations remain apparent in the whole operation speed range up to 3500 Hz.
However at f ≈ 1890 Hz (t ≈ 5.4 s), a further bifurcation leads to a Sub 3 component with a relatively much
lower subsynchronous frequency which corresponds to a whirl/whip instability due to the outer oil films. In
the case of Sub 3, the rotor mode shape is a conical forward one. By increasing the rotor speed from
f ≈ 1890 Hz (t ≈ 5.4 s), the resulting rotor oscillations describe mixed-mode solutions of Sub 2 and Sub 3
which are denoted by Sub 2/3 (MM). The Sub 3 amplitudes grow with higher rotor speeds while the Sub 2
amplitudes remain nearly constant. Due to the higher Sub 3 amplitudes, the Sub 3 component prevails over
Sub 2 during the occurrence of the mixed-mode oscillations.

To recapitulate briefly, this run-up simulation represents a classical bifurcation scenario of a small-sized tur-
bocharger rotor bearing system. Since all three types of subsynchronous oscillations occur, it is convenient to
use this reference simulation for demonstrating the vibro-acoustical behavior of the turbocharger housing.

3.1.2 Turbocharger Housing Subsystem

As noted above, the flexibility of both bearing shells is not taken into account to calculate the rotor oscillations
as well as the nonlinear oil film forces. Therefore, the previously computed oil film forces lead to the excitation
of the decoupled linear housing subsystem by the synchronous and the various subsynchronous frequencies in the
spatial x- and y-direction, respectively. Then, the response amplitudes are significantly dependent on the modal
properties of the housing structure. Figure 4 depicts the simulation results which represent the normalized housing
displacements in x- and y-direction of both bearing shells, cf. Figure 1 (b). Hereafter, the housing displacements
are always normalized with respect to the outer bearing clearance Co. The response frequencies and amplitudes
can be representatively taken from the waterfall diagram of the housing displacement in x-direction.
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Figure 4: Transient simulation of decoupled housing subsystem: (a) Normalized housing displacement at
compressor-sided bearing. (b) Normalized housing displacement at turbine-sided bearing. (c) Waterfall diagram
of displacement in x-direction from plot (a). (d) Waterfall diagram of displacement in x-direction from plot (b).
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If the synchronous frequency due to unbalance and the subsynchronous frequencies due to the oil films equal one
of the eigenfrequencies, resonances of the housing structure can be observed in the operation speed range where
four resonance peaks are clearly pronounced:

– The synchronous component of the oil film forces excites the first housing mode Mode-in I at t ≈ 1.1 s (f ≈
385 Hz) where the compressor- and turbine-sided housing part apparently undergo in-phase oscillations.

– The second resonance peak again corresponds to Mode-in I at t ≈ 1.8 s (f ≈ 630 Hz). However, the
excitation comes from the Sub 2 component of the oil film forces. Due to the higher amplitudes of the Sub 2
oscillations for the decoupled rotor subsystem (cf. Figure 3), the housing amplitudes are accordingly larger
than in the case of the first resonance peak.

– The synchronous excitation leads to the resonance of Mode-out I at t ≈ 2.6 s (f ≈ 910 Hz) which describes
out-of-phase oscillations of the compressor- and turbine-sided housing part.

– The Sub 2 excitation also gives a resonance of Mode-out I at t ≈ 6.2 s (f ≈ 2170 Hz) which reveals higher
amplitudes than for the synchronous excitation. However, the amplitudes are still lower than for the Sub 2
excitation of the in-phase mode (Mode-in I). Since the Sub 2 frequency nearly remains constant in that speed
range the resonance is slower-passed through. Thus, the resonance region becomes much broader so that a
magnification of the Sub 2 is obtained for a wider speed range. The Sub 2 excitation with an almost constant
frequency is also widely known as the constant-tone phenomenon (Nguyen-Schäfer, 2013).

Furthermore, it has to be remarked that the elastic deformation of the bearing shells is up to maximal 10% of the
outer clearance Co when the Sub 2 excitation reaches the first housing eigenfrequency feig = 371 Hz of Mode-
in I. For Mode-out I at an eigenfrequency of feig = 917 Hz, the shell deformation attains values up to 5% of Co

while it does not exceed approximately 1% in speed ranges away from resonances. Therefore, the influence of the
shell deformation is small on the rotor oscillations as shown in the next subsection. A further observation is that
Mode-in II at an eigenfrequency of feig = 526 Hz is not obviously excited where a clear resonance peak occurs.
A frequency response analysis reveals that the node of Mode-in II is located very close to the bearing locations
and thus the point of application of both excitation forces. For this reason, Mode-in II plays only a negligible role
in the resulting housing oscillations. Moreover, it seems that the subsynchronous frequencies of Sub 3 are too low
to excite an eigenfrequency of the housing structure which means that the Sub 2 excitation is only magnified and
finally may cause acoustic problems. Note that the synchronous excitation can become critical as well for higher
unbalances.

For the sake of completeness, Figure 5 outlines the housing displacements in each of the three spatial directions x,
y, z at the compressor- and turbine-sided measurement point. As before, the four resonance peaks are visible. The
corresponding waterfall diagrams are omitted to illustrate in Figure 5 which bring no additional knowledge. The
amplitudes of the compressor-sided measurement point are generally higher since the housing is rigidly supported
on the turbine side.
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Figure 5: Normalized housing displacements for transient simulation of housing subsystem: (a) Compressor-sided
measurement point. (b) Turbine-sided measurement point.
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Thus, the vibro-acoustical behavior is significantly dependent on both the oil-film-induced excitation and the modal
behavior of the turbocharger housing. Furthermore, the stability and bifurcation behavior of the rotor bearing
system is difficult to judge if experimental measurements are only performed at points on the housing.

3.2 Coupled Subsystems

3.2.1 Rotor Bearing Subsystem

According to the previous investigations, the run-up simulation is carried out here for the coupled subsystems of
rotor and housing. Figure 6 illustrates the results of the rotor subsystem which are compared to the decoupled case
from Figure 3:
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Figure 6: Run-up simulation of complete system (rotor subsystem): (a) Vertical displacement of measurement
point at compressor side (blue), rotational frequency f (red). (b) Compressor-sided inner/outer and turbine-sided
inner/outer bearing eccentricities. (c)-(d) Waterfall diagrams (3D- and top-view) of plot (a).

– The amplitudes of the rotor oscillations as well as the bearing eccentricities remain basically unaffected in
the operation speed range.

– The subsynchronous frequencies are slightly diminished due to the additional flexibility through the bearing
shells.

– Hence, the critical speeds are marginally reduced at which the types of subsynchronous oscillations occur
and abruptly change, respectively.
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– The main resonances of the housing structure, which are excited by Sub 2, can be traced back especially to
the inner bearing eccentricity of the compressor-sided bearing and the subsynchronous frequencies. They
both suddenly alter in the region of the resonance peaks and recover again very quickly after passing through.

As before supposed, the dynamical behavior of the rotor bearing system can be computed with a very good ap-
proximation by assuming rigid bearing shells. Note that the effect of shell deformation may become important on
rotor oscillations in speed ranges where resonances of the housing structure occur. However, it is also conceivable
that, with regard to Total Instability (Schweizer, 2009), high eccentricities associated with extremely high oil film
forces can yield a bearing shell deformation which influences the rotor oscillations.

3.2.2 Turbocharger Housing Subsystem

Figure 7 shows the housing displacements and their oscillation frequencies at the bearing locations of the coupled
housing subsystem. Compared to Figure 4, the following differences can be recognized:

– The oscillation amplitudes of the housing displacements are generally slightly lower than for the decoupled
subsystems. This amplitude decrease is more pronounced for Mode-out I (feig = 917 Hz).

– Due to the lower subsynchronous frequencies, the Sub 2 excitation leads to housing resonances which are
shifted to higher rotor speeds. The resonance peak of the Mode-in I appears at t ≈ 1.85 s (f ≈ 648 Hz)
while the one of Mode-out I at t ≈ 6.5 s (f ≈ 2275 Hz).
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Figure 7: Run-up simulation of complete system (housing subsystem): (a) Normalized housing displacement at
compressor-sided bearing. (b) Normalized housing displacement at turbine-sided bearing. (c) Waterfall diagram
of displacement in x-direction from plot (a). (d) Waterfall diagram of displacement in x-direction from plot (b).
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– At the resonance peaks excited by Sub 2, the response frequencies abruptly changes as already noticed for
the rotor oscillations, see Figure 6.

In general, the results of the complete system show qualitatively the same behavior as for the decoupled approach
and only slightly differ quantitatively. Therefore, the sequential simulation of both subsystems builds a very good
approximation and can be applied to evaluate the vibro-acoustical behavior of the turbocharger housing.

For comparison purposes, the displacements are plotted on both measurement points at the housing in Figure 8.
Here, the housing amplitudes are also insignificantly decreased in comparison with the decoupled approach.
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Figure 8: Normalized housing displacements for run-up simulation of complete system: (a) Compressor-sided
measurement point. (b) Turbine-sided measurement point.

4 Conclusion

In this paper, the housing structure is additionally considered in the run-up simulation of a turbocharger rotor to
investigate the dynamical and the vibro-acoustical behavior. The synchronous and subsynchronous oscillations
of the rotor bearing system are transmitted through the oil film forces to excite the eigenfrequencies of the hous-
ing subsystem. In the considered passenger-car turbocharger, the Sub 2 excitation is critical due to its higher
amplitudes. Furthermore, the response amplitudes of the housing subsystem are magnified by a resonance of an
out-of-phase bending mode whose eigenfrequency lies in the speed range of the Sub 2 excitation. Since the Sub 2
frequency slightly increases with higher rotor speeds this resonance leads to a magnification in a relatively wide
speed range which is well-known as constant-tone phenomenon. The excitation frequencies of Sub 1 and Sub 3
are too low to excite housing resonances. The synchronous excitation due to unbalance is passed through very
quickly. Therefore, the turbocharger design demands to avoid magnification with regard to acoustic problems by
shifting the housing’s eigenfrequencies out of the Sub 2 excitation frequency range.

Besides the findings described above, two more conclusions can be drawn concerning a simulation of the decoupled
subsystems rotor and housing. First, the influence of bearing shell deformation is negligible in the run-up simula-
tion of turbocharger rotors if an instability phenomenon like Total Instability does not occur where extremely high
oil film forces are reached. Second, a sequential computation of the two subsystems rotor and housing provides
appropriate results. In future studies, a more sophisticated acoustic simulation of the turbocharger housing can
follow a run-up simulation of the rotor subsystem assuming rigid bearing shells.
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Run-up Simulation of Automatic Balanced Rotors Considering
Velocity-dependent Drag Coefficients

L. Spannan, C. Daniel, E. Woschke

The paper at hand presents the modelling approach of a laboratory centrifuge with a vertically mounted rotor
and an automatic balancing device, which counterbalances the unbalance in one plane. This device consists of
an annulus containing the outer ring of a ball-bearing as well as steel balls and is filled with a newtonian fluid.
The fluid, accelerated by the annulus’ walls, flows around the balls and positions them in the annulus. In order to
develop a design method for the balancing device the velocity dependency of the drag coefficient is considered and
the influence of fluid density and viscosity on the balancing efficiency is examined. An experimental comparison
shows that the flow in the concave bearing race can be represented by the flow around a ball in contact with a flat
surface. It can be shown that, depending on the run-up acceleration, a selective choice of the fluid properties has
a positive influence on the vibrations near the critical speed and the response time of the counterbalancing effect
at supercritical speeds.

1 Introduction

Unbalances in high-speed rotors can lead to excessive vibrations. At the same time, balancing of unbalances due
to production or assembly can be uneconomical or process dependent variations in imbalance may be present. In
these cases automatic balancing systems can be implemented, which use movable fluids or solids in order to coun-
terbalance the rotor unbalance. Applications of such systems can be found in CD-ROM drives, washing machines
and angle grinders.

It is common knowledge that dynamic systems show a phase shift between excitation and deflection while passing
resonances. Assuming low damping, the rotor deflects in the direction of the unbalance when operated subcritically
and deflects opposing the unbalance when operated supercritically. In contrast, the balancing masses in automatic
balancers are driven speed independently by the centrifugal forces Fcf to the position most distant to the center of
rotation OR, meaning in the direction of deflection e of the center of geometry OG. Therefore, automatic balancers
are increasing the unbalance excitation at subcritical speeds and act counterbalancing at supercritical speeds, see
fig. 1. In order to get a good description of the transient positioning of the counterbalancing masses the modelling
of the driving forces is essential. The aim of this paper is to contribute to this model with regard to the description of
flow resistance. Without loss of generality the following explanations and descriptions refer to automatic balancers
with one ball only.

e
stable stationary
position

unbalance

raceway

FN

Fcf
Fpos

OR OG

(a) subcritical speed

e

Fcf

FN

Fpos

OG OR

Rb

(b) supercritical speed

Figure 1: Functionality of automatic ball balancers. Demonstration of driving forces on the counterbalancing mass
in a rotating reference frame.
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2 State of Research

One of the first publications on ball balancers is the patent from Thearle (1936). Since then, multiple studies
were conducted and a growing interest in this topic can be observed, especially in the last 15 years. In order to
achieve an efficient balancing device multiple system parameters need to be specified. The findings from preceding
publications are summarised in this section.

2.1 Friction

The contact between the balls and the raceway is inducing friction, which is directed oppositely to the ball movement
along the raceway. Figure 1 shows that the driving force

Fpos = |F⃗pos| = |F⃗cf + F⃗N |, (1)

with F⃗N describing the normal force on the ball, is decreasing with increasing approach to the stable stationary
position. Therefore, an area near the stable stationary position exists where the friction is sufficient to hold the ball
in place aside the ideal position. Hence the optimal counterbalancing cannot be achieved.

This negative influence of friction was identified analytically by Huang et al. (2002). Ishida et al. (2012) used
different friction modelling approaches in their numerical models. They differentiated between Coulomb friction,
which is proportional to the normal force, static rolling friction and rolling friction on the basis of hysteresis losses
and concluded that the static rolling friction is influencing the balancing effectiveness dominantly. With respect
to the design of automatic balancing devices a minimisation of the ball and raceway surface roughness is to be
aspired. As described by Ishida et al. (2012), the influence of friction can be reduced by an increased number of
balls, preferably in separate raceways, because the balls are not getting to rest at the same time. In addition, the
static rolling friction decreases with increasing ball diameter.

2.2 Raceway Eccentricity

Due to an eccentricity � of the raceway, its geometric centre OG is not coinciding with the center of mass OM of the
balanced rotor, leading to a stable position (Fpos = 0) of the ball aside the ideal balancing position, see fig. 2. This
negative influence was examined by Huang et al. (2002) and Majewski (1988) amongst others. From this follows
that irregularities of the circular race form, see fig. 3, have negative influence on the balancing capabilities, too.

e

�

Fcf

FN

Fpos

OG

OROM
ideal position

stable position

Figure 2: Influence of raceway eccentricity on the
positioning at supercritical speeds.

OG

Figure 3: Exaggerated representation of an arbitrary
form irregularity.

2.3 Non-synchronous Motions

Ryzhik et al. (2003) showed that in an operation range above the critical speed !i the balancing balls are not
circulating with the rotor frequency but with the critical frequency. This causes the balls to not come to rest and
therefore the rotor unbalance cannot be counterbalanced. Only after reaching a border rotating speedΩbo,i the balls
get accelerated to the rotor speed resulting in the balancing effect to be performed. In order to avoid the operation
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of automatic balancing devices below the critical speed and in the speed range of non-synchronous motions, the
operating range has to be restricted, see fig. 4. A possible solution to avoid non-synchronous motions by using
multiple balls and partitioning the annulus is described by Ishida et al. (2012). The partitioning walls are enforcing
the rotor speed to the balls, avoiding non-synchronous motions. As a drawback, the maximum counterbalancing
force is reduced.
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Figure 4: Exemplary magnifying function of an unbalanced rotor with operation ranges of automatic balancing
devices.

2.4 Viscosity and Density of the Fluid

In contrast to the surface roughness and the raceway eccentricity, where small values are preferred, the choice of an
optimal fluid in the automatic balancing system leads to a conflict of aims (Ryzhik et al. (2003)), which has to be
resolved. With increasing density �fl and viscosity � the lag between the rotor and ball velocity is decreased due
to the flow resistance. On one hand the lag is desired at subcritical speeds so that the balls are not positioned near
the rotor imbalance causing an increase in rotor vibration. On the other hand a fast reduction of lag and positioning
of the balls to their ideal position is desired once the critical speed is exceeded. The objective of the choice of fluid
is to keep the vibrations in the run-up phase moderate and to gain a quick balancing effect at supercritical speeds.
The modelling of the viscous coupling between the rotor (the annulus), the fluid and the balls has a great impact on
the quality of the simulation results.

Many previous stationary (Ryzhik et al. (2003); Green et al. (2006); Ishida et al. (2012); Kim and Na (2013); Chen
and Zhang (2016)) and transient (Sperling et al. (2002)) models make use of a linear correlation between themoment
of fluid dragMD and the difference in rotating speed between the rotor and the ball

MD = � ⋅
(

'̇R − '̇b
)

. (2)

The parameter � inherits several system properties and depends on the fluid, the annulus geometry and the ball
diameter and is difficult to determine without experimental data. Huang et al. (2002) make use of a physically
motivated approach on the basis of the fluid drag force FD, leading to a nonlinear correlation between the moment
and the rotating speed difference based on geometric and physical quantities

MD = FD ⋅ Rb =
1
2
�fl ⋅ Ā ⋅ CD ⋅ v

2
rel ⋅ Rb ⋅ sign(vrel) (3)

= 1
2
�fl ⋅ Ā ⋅ R

3
b

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
constant

⋅CD ⋅
(

'̇R − '̇b
)2
⋅ sign('̇R − '̇b) . (4)

Rb, Ā, CD, vrel describe the radius of the ball center track, the ball cross-sectional area, the drag coefficient and the
flow velocity, respectively. Huang et al. make the assumption of a constant drag coefficient CD, which is called into
question by the authors. Furthermore, it should be noted that the velocity of the fluid '̇fl is not equal to the rotor
speed '̇R in transient models. The spin-up of fluids in rotating annuli cannot be calculated analytically (Benton and
Clark (1974)). Hence the fluid is modelled as a rigid body and its acceleration is described by a linear correlation
in the style of equation (2)

Mfl = �fl
(

'̇R − '̇fl
)

, (5)
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where the parameter �fl is fitted to the experimental data. Additionally, the radial increase of the flow velocity, see
fig. 5, is neglected for small ball diameters d << Rb, leading to a flow velocity of vrel = Rb('̇fl − '̇b).

'̇ fl
> '̇

b

vrel

Figure 5: Flow velocity profile at sta-
tionary state.
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'b
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Fpos
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FN

FD
FA '̇R > '̇fl > '̇b

'̈fl > '̈b

Figure 6: Coordinates and forces describing the dynamics of
the balancing ball neglecting raceway eccentricity.

Another aspect of transient modelling is the added virtual mass, whose inertia is antagonising the acceleration of a
rigid body in a fluid. The appropriate virtual mass coefficient for balls in contact with a flat surface was identified
experimentally by Jan and Chen (1997) to be CA = 2. Derived from their conclusions, the impact of the added
mass effect is decreasing with an increasing ratio in the densities �b∕�fl. The moment of virtual mass equals

MA = FA ⋅ Rb = �fl ⋅
�d3

6
⋅ CA ⋅

(

'̈fl − '̈b
)

⋅ Rb . (6)

The recited publications neglect the dependency of the drag coefficientCD from the flow velocity vrel. This relation
is usually expressed with the use of the dimensionless Reynolds number

Re =
vrel ⋅ d
�

=

(

'̇fl − '̇b
)

⋅ Rb ⋅ d
�

. (7)

In order to describe the following experimental results a modified Reynolds number based on the rotor speed '̇R
is introduced

Re∗ =

(

'̇R − '̇b
)

⋅ Rb ⋅ d
�

. (8)

The paper at hand presents a transient modelling approach of an automatic balancing device, which considers the
velocity dependent drag coefficient.

3 Experimental Analysis

The test rig, which is modelled in this study and whose run-up is simulated, is depictured in fig. 7. A discoidal
rotor is joint on an axis, which is mounted vertically in the stator of an electric motor. The stator itself is mounted
by three elastomer bushings, which affect the systems damping and flexibility significantly. The system has an
eigenfrequency at !1 = 50 rad s−1 which is related to a translatoric eigenmode orthogonal to the axis of rotation.
And a second eigenfrequency at !2 = 125 rad s−1, which is related to a tilting eigenmode orthogonal to the axis
of rotation. The conducted experiments use a maximum operation frequency of Ω = 70 rad s−1, at which a self-
balancing effect of the system is expected. In order to reduce the friction force on the ball an outer ring of a ball
bearing is used as a race track, see fig. 8. The discoidal rotor is balanced statically in order to set defined unbalance
masses into the threads located circumferentially afterwards.

In order to neglect the interaction between multiple balls only one ball with the mass mb = 7.6 g is used whose
center is moving on a circular track with a radius of Rb. The mass mu of the added imbalance is matched, so that
the ball can counterbalance this mass exactly. This results in

mu ⋅ ru = (�b − �fl) ⋅
�d3

6
⋅ Rb = 512 gmm , (9)

with �b being the ball density.
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Figure 7: Test rig with the automatic balancing prototype.

d

Rb

Figure 8: Cross section of the rotor.

With the use of a video camera, which is mounted above the test rig, the position of the rotor and the ball is recorded
at 25 frames per second. The corresponding angular velocities, which are shown at the top of fig. 9 can be derived
from the footage. It can be seen that the angular velocity of the ball is lagging behind the rotors angular velocity
until it reaches the predefined nominal speed. Using equation (8) and the speed difference the Reynolds number
can be derived, which is plotted at the bottom of fig. 9.
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Figure 9: Time dependent quantities of a rotor run-up. Relation C∗D = f(Re∗) corresponding to fig. 10. Fluid
properties: � = 0.65mm2s−1, �fl = 760 kgm−3.

Despite the flow velocity being relatively high during the run-up of the rotor, it is reduced in the synchronous phase
in which the balls are positioned relative to the imbalance. The dependency of the drag coefficient CD from the
Reynolds number for a free flow around a sphere is well documented in the literature. One empirical approximation
from Morrison (2013) is plotted in fig. 10 as a reference. The ball in automatic balancing devices of the described
type is in steady contact with the race, which is often designed as a cylindrical surface. Assuming a sufficient
large Rb, the flow characteristic can be described by a sphere in contact with a flat surface. Jan and Chen (1997)
conducted experimentally that the drag coefficient is increased when considering the wall contact. To achieve this,
they examined the terminal velocity of spheres moving down a tilted surface in fluids of different viscosities. The
drag coefficient as a function of the Reynolds number is plotted in fig. 10.

Considering this relationship, the drag coefficientC∗D for the experimental data in fig. 9 can be derived. A significant
increase in the drag coefficient can be identified at the start of the positioning phase (t = 13.8 s). Deviations due
to the concave contour of the race are assumed to be negligible. This is supported by studies of Chhabra et al.
(2000) on the drag of spheres in tubes, in which it is concluded that the influence of concavity is not significant for
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Figure 10: Drag coefficients of flows around spheres.

Reynolds numbers below 4000 and diameter ratios between sphere and tube below 0.5.

Even without knowledge of the exact flow velocity of the fluid the presented data suggest that the drag coefficient
underlies high variance during the run-up process of automatic balancing devices. Therefore a significant influence
on the balancing characteristic is expected. This influence is examined in the next section with the help of simulation
models, which compare the consideration of velocity dependent drag coefficients to the commonly used models.

4 Influence on the Run-up Simulation

The rotor under consideration is modelled in a multi-body simulation program using force elements to represent the
interaction between the bodies. The eigenfrequencies are mostly influenced by the bushings, which are modelled by
using frequency dependent spring and damper elements. The run-up process is defined by the rotor speed sequence
shown in fig. 9. Using a viscosity coefficient of �fl = 720 × 10−6 Nms rad−1 for equation (5) a good agreement
with the experimental record of the ball’s velocity is reached in the acceleration phase (t < 10 s). With an increasing
viscosity coefficient the lag between the rotor speed and the ball speed is decreasing.

Based on this model with velocity dependent drag coefficients three additional run-ups with constant drag coef-
ficients CD are conducted. Firstly, a value of CD = 0.74 is used, which is reached for Reynolds numbers above
104 as shown in fig. 10. Secondly, a value of CD = 3.7 is used, which corresponds to the mean value in fig. 9 for
t > 13.8 s. Thirdly, a value of CD = 2.0 in between the prior values is chosen. Fig. 11 shows the effect of the
different drag coefficient modelling approaches in the simulation on the ball velocity.

The most obvious disagreement of the simulation results is located in the time interval in which the rotor reaches
its nominal speed. In view of the time difference between the rotor reaching its nominal speed and the ball get-
ting synchronous with the rotor1 the relative and absolute deviations with respect to the reference simulation with
velocity dependent drag coefficients are shown in table 1.

This leads to the conclusion that the modelling approach of the drag coefficients has an influence on the dynamics
inside the automatic balancing device and should not be neglected, if an optimal choice of the fluid properties is
the objective.

Table 1: Time difference in reaching the synchronous motion of the ball with different modelling approaches.

CD
constant corresponding

0.74 2.00 3.70 fig. 10

Δt [s] 4.66 3.10 2.22 3.78

rel. deviation +23% -18% -40% —

1The final point in time at which the relative deviation from the nominal speed is above 1% is used to characterise synchronous motion.
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Figure 11: Influence of the drag coefficient model on the ball velocity simulation results.

5 Summary

In the design of automatic balancing devices the choice of fluids shows potential for optimisation. The density
and viscosity are influencing the positioning of the counterbalancing mass directly and therefore affecting the rotor
vibrations. In particular the reduction of the system-dependent vibration increase at subcritical speeds is to be
aimed at.

The modelling of the driving forces on the ball becomes important in simulating the transient process. Previous
studies on the influence of friction and virtual mass are implemented in the simulation model. Up to now, the
dependence of the drag coefficient from the flow velocity is neglected. The experimental data in section 3 show the
variation of the flow conditions during the run-up and provide the motivation to consider the velocity dependency.

Some discrepancy between the simulation and the experimental data of the ball velocity remains in the positioning
phase of the ball. It is assumed that the modelled Coulomb friction is not sufficient and the simulation therefore
shows oscillatory behaviour of the ball speed. Variation of the friction coefficient � in reasonable ranges showed
little effect, thus a model including rolling friction should be implemented in further research. The effect of neglect-
ing the velocity dependency of drag coefficients is discussed on the basis of simulations in section 4. Despite this
restriction the comparison of the different modelling approaches shows a significant influence on the ball velocities
and therefore on the transient position of the counterbalancing mass.

The presented study neglects the difference between a flat surface and the curved ball bearing raceway on hand.
In addition to that, irregularities in form and position of the mounted raceway are not taken into account leading
to remaining differences in the stationary ball positions in comparison to the experimental results. These model
enhancements are implemented in future studies. Furthermore, the viscous representation of the fluid acceleration
is currently determined by a parametric study in order to reach a good agreement with the experimental data. An
alternative based on a priori known quantities, i.e. by solving the Navier-Stokes equations numerically, is to be
implemented instead.

6 Future Prospects

For future studies a test rig is planned to validate the curve CD = f(Re) as presented by Jan and Chen (1997) for the
annulus geometry at hand. Moreover a more accurate model and identification of the friction coefficients is aspired
in order to improve the transient simulation. Due to the fact that the acceleration of the fluid is represented by the
fitted parameter �fl, numerical solutions will be pursued to get a model on the basis of the annulus geometry, the
fluid properties and the rotor acceleration only. The objective is a simulative a priori design of the optimal fluid
properties for the automatic balancing device at hand and a subsequent experimental validation.
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Simulation and Experimental Validation of a Misaligned Rotor in
Journal Bearings using Different Levels of Detail

A. Krinner, W. Tsunoda, C. Wagner, T. Berninger, T. Thümmel, D. Rixen

In this contribution, a given test rig of a rotor system with journal bearing is validated by using simulation models
with different levels of detail. A special focus is placed on the misalignment between rotor and bearing axis. It is
shown, how to consider misalignment in the numeric calculation of the bearing forces as well as in the modeling
of the rotor system. With a model of the LAVAL rotor, the misalignment in the test rig is identified by measuring
and simulating relative equilibrium positions of the rotor in the bearing at different rotational speeds. A measured
rotor orbit due to unbalance is used to compare simulation results of different complex rotor models and discuss
their accuracy and efficiency.

1 Introduction

The dynamic behavior of a rotor system with journal bearings, which operates at steady-state conditions like a
constant rotational speed, strongly depends on its equilibrium position. At low rotational speeds, the equilibrium
between gravity force, stiffness force and fluid force is found at a larger eccentricity than for higher rotational
speeds, meaning that the rotor moves to the bearing center with increasing rotational speed. This fact is illustrated
in Fig. 1(a) for the case of a vanishing stiffness force. Fig. 1(a) shows the equilibrium eccentricity e between shaft
and bearing center in dependency of the rotational speed Ω, when vertical gravity force and the fluid force are the
only acting forces in the bearing with clearance h0. The well-known GUEMBEL curve arises, see for instance [4, 11,
3]. In an idealized rotor bearing system, the rotor axis is assumed to be perfectly aligned with the bearing axis. In
this case, the equilibrium position can be calculated by the equality of gravity, stiffness and fluid force. However, in
reality, the rotor axis can be misaligned in the bearing housing, resulting in a different equilibrium position, since an
additional misalignment force has to be considered in the static force equilibrium. As a consequence, misalignment
affects the dynamic behavior of the rotor system and hence, it also needs to be considered in simulation models.
To illustrate this fact, Fig. 1(b) sketches the equilibrium eccentricity in dependency of the rotational speed Ω for
the case, in which the rotor stiffness and additionally, a misalignment a between rotor shaft and bearing axis are
considered. It occurs a different curve of equilibrium positions compared to the curve of Fig. 1(a).

Ω = 0

center

Ω > 0h0

By

Bx

e

shaft center

Ω→∞bearing

(a) GUEMBEL curve

Ω = 0

center

Ω > 0h0

By

Bx

e

shaft center

Ω→∞bearing

a

(b) Curve, when considering stiffness force and misalginment

Figure 1: Equilibrium eccentricity e in dependency of rotational speed Ω.

Several contributions to a misaligned rotor system can be found in literature: The interaction between misalignment
and wear is investigated by an analytical model in [9] and an experimental study on this interaction is given in [2].
In [12], a theoretical study on a misaligned shaft due to an external preload force is outlined. Angularly misaligned
bearings are numerically investigated in [1]. In [7], a design of a test rig with a rotor supported by four journal
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bearings suitable for the prediction of misalignment is proposed. In [10], simulation models and results for a
flexible rotor system with angular and parallel misalignment are presented.

In this contribution, a rotor test rig with journal bearings is investigated with respect to parallel misalignment of
rotor and bearing axis. First, a simple rotor model is applied in order to analyze the misalignment and in a next
step, the dynamic behavior of the test rig due to unbalance can be investigated by further rotor models.

The paper is structured as follows: In Section 2, the hydrodynamic equations for the calculation of the fluid forces
are outlined. Then, the rotor test rig with two journal bearings is described in Section 3. In Section 4, four
different rotor models (LAVAL / elastic rotor with nonlinear / linearized fluid forces) are presented for the numeric
simulation of the test rig. In Section 5, two experiments are validated by the different simulation models. While
the first experiment serves to determine the misalignment, the second experiment is used for the evaluation of the
different rotor models. At the end, a conclusion is given in Section 6.

2 Hydrodynamic Equations

In this section, the hydrodynamic equations for the calculation of the fluid forces in a hydrodynamic lubricated
cylindrical joint are given. For a more detailed description, it is referred to [8].

The pressure is computed by a finite element discretization of the REYNOLDS equation, which is introduced first.
A steady-state cavitation condition, also known as REYNOLDS condition, is imposed on the REYNOLDS equation
in order to avoid negative pressures in the fluid film. It is further shown how to adapt the kinematics of the
REYNOLDS equation to a cylindrical joint. Last, the calculation of the fluid forces is given.

REYNOLDS Equation

Fig. 2 shows a lubricated contact, which is characterized by a thin fluid film between the interface of two bodies.
When the fluid inertia effects are neglected, the pressure distribution in the thin fluid film can be calculated by the
REYNOLDS equation. It gives following partial differential equation for the pressure in the fluid film h(y, z) =
h2 − h1 between the two bodies in the two-dimensional fluid domain Ωf ⊂ R2 with descriptive coordinates (y, z)
(see for instance [6]):

− ∂

∂y

(
h3ρ

12η

∂p

∂y

)
− ∂

∂z

(
h3ρ

12η

∂p

∂z

)
︸ ︷︷ ︸

qpoiseuille

= − ∂

∂y

(
ρh
v1 + v2

2

)
︸ ︷︷ ︸

−qcouette

−ρ∂h
∂t︸ ︷︷ ︸

−qsqueeze

−h∂ρ
∂t︸ ︷︷ ︸

−qexpansion

(1)

where ui and vi are the absolute velocities of the interface of body i (i ∈ {1, 2}) in the local normal and tangential
direction, respectively. For simplicity, the velocity wi in z-direction is not considered here. It is also assumed
that the fluid viscosity η and the fluid density ρ do neither depend on pressure nor on temperature. In Eq. (1),
the POISEUILLE flow qpoiseuille is driven by the pressure gradient, the COUETTE flow qcouette occurs due to the
movement of surfaces in the tangential plane, the squeeze flow qsqueeze occurs due to squeezing motion and the
local expansion flow qexpansion occurs due to the change of density. The squeeze flow depends on the local normal
velocities ui, the tangential velocities vi and derivatives of the heights hi with respect to y, by the following
equation (see [6]):

∂h

∂t
= u2 − v2

∂h2

∂y
− u1 + v1

∂h1

∂y
. (2)

A numerical discretization by the finite element method is applied to the REYNOLDS equation (1). For the dis-
cretized pressure P, the following discretized equation can be obtained:

A(q)P = b(q, q̇)−NQexp., (3)

where the kinematics of the two bodies are now described by the generalized coordinates q and velocities q̇.
The square matrix A results from the numerical discretization of the POISEUILLE flow, the vector b from the
discretization of the terms −qcouette and −qsqueeze and the square matrix N is the finite element mass matrix.
The discretized expansion term Qexp. is still unknown, but a cavitation condition in the next subsection gives an
additional relation between pressure and expansion term. It is noted, that for the numerical discretization of the
REYNOLDS equation, the standard GALERKIN method with quadrilateral finite elements (each with eight nodes)
is applied and for all later simulation examples, a structured rectangular mesh with 16 elements in circumferential
and 3 elements in z-direction respectively, is used.
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Figure 2: Notations in the fluid domain.

Cavitation Condition

Here, a stationary cavitation condition, also known as REYNOLDS condition, is imposed on the REYNOLDS equa-
tion (1) in order to eliminate the expansion term and further to avoid unphysical negative pressures in the fluid
film. The REYNOLDS cavitation condition states that in the pressurized zone (p > 0) the change of density ∂ρ

∂t is
zero (meaning qexp. = 0), whereas in the cavitation zone (p = 0) the density starts to decrease, meaning ∂ρ

∂t < 0,
leading to a positive expansion term qexp. > 0. This cavitation condition can be formulated mathematically by a
Linear Complementarity Problem (LCP) by finding the pressure p such that:

0 ≤ −qexp. =

(
−∇

(
h3ρ

12η
∇p
)

+ qcouette + qsquezze

)
⊥ p ≥ 0 on Ωf , (4)

p = p̂ on Γp, (5)

h3ρ

12η
∇pn = q̂ on Γq, (6)

where the symbol ⊥ denotes orthogonality for each point (y, z) on Ωf (i. e. qexp.(y, z) · p(y, z) = 0). Dirichlet
and Neumann boundary conditions are considered additionally in the REYNOLDS equation at the boundaries Γp
and Γq respectively. With the discretized equation (3) follows:

0 ≤ P ⊥ −Qexp. ≥ 0 ⇔ 0 ≤ P ⊥ N−1[A(q)P− b(q, q̇)] ≥ 0, (7)

where the symbol⊥ stands now for component-wise orthogonality. This resulting LCP for the pressure P can only
be solved by different methods, e. g. a block pivot-based Murty algorithm of Goenka [5] or a projection formulation
as proposed in [8].

Joint Kinematics

For a cylindrical revolute joint, the local kinematic entities can be derived according to Fig. 3. The procedure is
explained for a two-dimensional problem, but it can without difficulty be extended to the three-dimensional case.
In the cylindrical bearing, the local coordinates (y = Rϕ, z ) are used for the description of the fluid domain.
The joint kinematics is described in the frame (Bx,By ), which is fixed to the bearing shell. For the REYNOLDS
equation, local entities are needed, i. e. the velocities and heights have to be transformed into the local frame
(Fx, F y ). For the eccentricity between the two center points C1 and C2 follows:

Be =

(
ex
ey

)
→ Fe =

(
er
et

)
=

(
ex cos(ϕ) + ey sin(ϕ)
−ex sin(ϕ) + ey cos(ϕ)

)
. (8)

According to Fig. 3, following local heights h1 and h2 can be derived for the two points P1 and P2, respectively:

h1(y, z) = er(y, z) +
√
R2

1 − e2
t (y, z), (9)

h2(y, z) = R2. (10)
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Figure 3: Kinematics in cylindrical joint.

For the local velocities, the translation velocities as well as the angular velocity vectors of the center point of shaft
C1 and bearing C2 respectively are needed in the local (Fx, F y ) coordinate system. With them, following local
velocities can be stated for a fixed bearing housing, according to Fig. 3:

u1 = Ω et + ėx cos(ϕ) + ėy sin(ϕ), u2 = 0 (11)

v1 = Ω
√
R2

1 − e2
t (y, z)− ėx sin(ϕ) + ėy cos(ϕ), v2 = 0 (12)

Having the kinematic entities as a function of the descriptive coordinates (y, z), the derivatives of the local heights
and velocities with respect to y can be derived for the REYNOLDS equation.

Force Calculation

When the pressure P is known in the bearing by Eq. (7), the fluid forces on the two bodies can be computed. Here,
it is shown only for pressure forces in normal direction, shear forces in tangential direction are not considered for
simplicity. For the resulting force Ff,i on body i follows:

Ff,i =

∫
Ωf

pni dΩ ≈W(q)iP, i ∈ {1, 2}, (13)

where W(q)i is the discrete direction matrix, which is state-dependent due to the normal directions ni.

3 Rotor Test Rig with two Journal Bearings

At the Institute of Applied Mechanics, a rotor test rig exists for the investigation of the interaction of the rotor
dynamics with fluid forces coming from a journal bearing or a seal. In Fig. 4, the experimental setup is shown. It
consists of an elastic rotor, which is supported by stiff roller bearings at the two ends. In the middle of the rotor, a
rigid disk rotates in a pressurized journal bearing component system. This system consists of two identical journal
bearings with external pressure support in the center of the two bearings, see Fig. 4. An oil distribution ring ensures
an uniform oil flow through the bearings.

When pressurizing the journal bearing system at zero rotational speed, the rotor is lifted in an equilibrium position.
In the following, this equilibrium position at zero rotational velocity is denoted by the misalignment parameter a.
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Further, it is assumed for simplicity that the lifting force due to the external pressure support remains constant in
both its value and directions.

The main properties of the rotor test rig and the journal bearings are listed in Table 1. The bending stiffness of the
dry rotor was identified by an operational modal analysis by determining the first bending eigenfrequency.

pext

bearing housing

oil

journal

rotor

bearings

Figure 4: Rotor test rig with journal bearings.

Table 1: Properties of the test rig.

parameter value parameter value parameter value

rotor mass m 5.0 kg radius bearing R2 50 mm dyn. viscosity η 0.021 kg m/m2

bending stiffness rotor c 295 kN/m clearance bearing 170µm fluid density ρ 880 kg/m3

length rotor 0.60 m length bearing 20 mm external pressure pext 2.5 bar
1. eigenfrequency (dry) 38.6 Hz diameter shaft 15 mm

4 Rotor Modeling

In this section, different rotor models are presented for the validation of the experimental results. As the rotor axis
in the test rig is not aligned concentrically to the bearing axis, misalignment is considered for all models. Further,
it will be assumed that the gravity force is always compensated due to the external pressure support.

Four different complex rotor models are introduced. The first one is a LAVAL rotor with misalignment and fluid
forces. This model will be used for the experimental validation of equilibrium positions of the rotor bearing system
at different rotational speeds.

The further models are a LAVAL rotor with linearized fluid forces, a complete elastic rotor model with nonlinear
and linearized fluid forces, respectively. These models will be used for comparisons with the first rotor model in
order to discuss their model differences with respect to experimental measurements.

Model A1: LAVAL Rotor with Misalignment and Fluid Forces

The first model is a LAVAL rotor as depicted in Fig. 5. The rotor is characterized by the mass m and the stiffness c
and its deflection r is described in the inertia frame, which is located in the center of the undeformed shaft. The
misalignment is considered by the vector a as relative alignment between bearing axis and rotor axis at zero
rotational speed. Then, following dynamic equations can be stated:

m r̈ + c r = 2Ff (r, ṙ,Ω,a) + Fp + Fg + Fext, (14)

where Ff is the nonlinear fluid force of one journal bearing according to (13) depending on the rotational speed Ω
and the misalignment a, Fp is the preload force coming from the external pressure support and Fg is the gravity
force. In addition, external forces Fext can act on the rotor. Note that the misalignment a enters in the fluid
equations by the kinematic relation Be = r− a in Eq. (8).

As mentioned in Section 3, the preload force is assumed to be constant. For that reason and when no further forces
are acting, the force Fp has to compensate the gravity force all the time, in order to fulfill the definition of the
misalignment a at zero rotational speed; it gives Fp = −Fg .
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Figure 5: LAVAL rotor with misalignment, preload force and fluid forces.

For the model validation, the static equilibrium points at given rotational speeds Ω are considered. For the static
deflection r̄, following nonlinear equation has to be solved:

c r̄ = 2Ff (r̄,Ω,a). (15)

Model A2: LAVAL Rotor with Misalignment and linearized Fluid Forces

For this rotor model, the LAVAL rotor is still used and the fluid forces are linearized around the equilibrium
position r̄, which is determined by the solution of Eq. (15) for a given rotational speed and a known misalignment,
leading to:

Ff (r, ṙ,Ω,a) ≈ Ff (r̄,Ω,a)−Kf (r̄,Ω,a) (r− r̄)−Df (r̄,Ω,a) ṙ, (16)

with the linearized matrices Kf and Df for the fluid stiffness and damping, respectively. They are assumed to
have the following form:

Kf = −∂Ff
∂r

∣∣∣
r=r̄

=

[
Kxx kxy
kyx Kyy

]
, Df = −∂Ff

∂ṙ

∣∣∣
r=r̄

=

[
Dxx dxy
dyx Dyy

]
, (17)

where K is the direct stiffness, k the coupling stiffness, D the direct damping and d the coupling damping co-
efficient. Inserting Eq. (16) in Eq. (14) and using Eq. (15) gives the dynamic equations of the LAVAL rotor with
misalignment and linearized fluid forces:

m r̈ + c (r− r̄) + 2Kf (r̄,Ω,a) (r− r̄) + 2Df (r̄,Ω,a) ṙ = Fext. (18)

Model B1: Elastic Rotor with Misalignment and Fluid Forces

In a more detailed simulation model, the elastic deformation of the rotor is described by a set of mode shapes
(Ritz ansatz). These mode shapes come from a finite element discretization of the rotor by using Bernoulli beam
elements. For a better distinction from the LAVAL rotor, the elastic deformation is now described by the vector q
representing the modal coordinates. The dynamic behavior of the rotor is then characterized by the mass matrix M
and the stiffness matrix C, leading for the rotor bearing system to:

Mq̈ + C (q− q̄) = Ff,1(q, q̇,Ω,a) + Ff,2(q, q̇,Ω,a) + Fext, (19)

with the fluid forces Ff,1 and Ff,2 of the two bearings, external forces Fext and similar to the rotor models A1
and A2, a equilibrium position q̄. Damping or gyroscopic effects of the rotor are not considered.

Model B2: Elastic Rotor with Misalignment and linearized Fluid Forces

Similar to model A2, the fluid forces are linearized like in Eq. (16). Considering this in Eq. (19), following linear
differential equation for the elastic rotor is obtained:

Mq̈ + C (q− q̄) + [Kf,1 + Kf,2] (q− q̄) + [Df,1 + Df,2] q̇ = Fext, (20)

which describes the motion of the rotor around the equilibrium position q̄.
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5 Experimental Validation

In this section, an experimental validation of the rotor system of Section 3 is given by applying adequate simulation
models of Section 4 depending on the specific accuracy requirements. A first experiment (static rotor equilibrium
positions) is performed in order to determine the parallel misalignment between rotor and bearing axis. After
having analyzed the misalignment, measurement data of a second experiment (rotor orbit at unbalance) is validated
by simulation results of the four different simulation models of Section 4.

Experiment 1: Static Rotor Equilibrium Positions

The first experiment serves to determine the misalignment a between rotor and bearing axis, which can not be
identified by an absolute measurement.

On the test rig, the relative equilibrium positions of the rotor in the bearing can be measured for different rotational
speeds Ω. Since the absolute position of the rotor can not be measured, the equilibrium positions are measured
with respect to a reference position. The latter is chosen as the equilibrium position at high rotational speed, since
it is known from theory that the rotor will be centered in the bearing housing for high rotational speeds [3].

The LAVAL-rotor model A1 with Eq. (15) for the equilibrium position r̄ is used for the experimental validation.
With this model, an optimal misalignment parameter a can be determined in such a way that the relative curve of
equilibrium positions of the experiment is well approximated by the equilibrium positions calculated by Eq. (15).

In Fig. 6, the curve of equilibrium positions of the experiment and of the simulation can be seen. The misalignment
parameter is chosen as a = [−0.15mm, 0.07mm]. The measurement and the simulation start at Ω1 = 3 rps and
move with increasing rotational speed to the reference position identical with the bearing center at Ω2 = 100 rps.

−0.15 −0.1 −0.05 0

0

0.05

0.1

0.15

a

Ω1 = 3 rps

Ω2 = 100 rps

r̄x[mm]

r̄ y
[m
m

]

measurement
simulation

Figure 6: Measured and simulated curve of equilibrium positions with misalignment parame-
ter a = [−0.15mm, 0.07mm].

When the equilibrium positions r̄ for different rotational speeds are known, the stiffness and damping coefficients
of (17) can be calculated in a next step. Here, they are computed by a finite difference scheme and following mean
coefficient can be determined:

K = (Kxx +Kyy)/2, k = (kxy + kyx)/2, D = (Dxx +Dyy)/2, d = (dxy + dyx)/2.

The calculated as well as the measured mean coefficients are shown in Fig. 7. In the experiment, the coefficients
are determined by exciting the rotor at different frequencies and measuring the rotor displacements and bearing
reaction forces in the frequency domain. A fitting of the measured data by a reduced rotor bearing model gives
the mean coefficient. The detailed measurement concept is described in [14]. Note that as far, only the mean
values can be determined by this measuring method and hence, can be analyzed. The dependency of the measured
coefficients on the rotational speed shows good agreement with the simulation results for the direct stiffness, direct
damping and coupling stiffness coefficients (K, D and k). However, for the coupling damping coefficient d, a
discrepancy is observed. The reason could be an angular misalignment of the rotor shaft in the experiment.
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Figure 7: Calculated and measured stiffness and damping coefficients for different rotational speeds.

Experiment 2: Rotor Orbit at Unbalance

After having determined the parallel misalignment, a second experiment is performed in order to discuss the
accuracy and efficiency of the four presented simulation models. Therefore, an unbalance is added at the middle
of the rotor and the orbit of the rotor is measured at a constant rotational speed Ω = 21 rps. The measured and
simulated orbits are depicted in Fig. 8.

In Fig. 8(a), the measured and the simulated orbits are shown at their equilibrium positions. It has to be mentioned
that the misalignment a determined by the first experiment is added to the measured orbit in order to get the
absolute position of the orbit. The reason for that is that, as already mentioned, the absolute reference point of the
measurement is unknown. For the simulation, rotor model A1 is used.

In Fig. 8(b), the form of the measured orbit is compared with the orbits obtained by the four simulation models.
It can be seen that all four simulation models give nearly the same rotor orbit, meaning the model accuracy is
sufficient for all simulation models. The elliptical form of the simulated orbits are characteristic for a rotor, which
has an eccentric equilibrium position in the journal bearing. However, the form of the measured orbit has a
tendency to a quadratic form. The reason could be that next to the unbalance an excitation with the third harmonic
is present, which could cause a quadratic form, see for instance [13]. A physical source for a third harmonic
excitation is usually caused by the three-jaw chuck during manufacturing of the rotor shaft.

When looking at the simulation time of the models in Table 2, it can be seen that the fastest model is model A2 –
the LAVAL rotor model with linearized fluid forces. It is followed by the elastic rotor model B2, where the fluid
forces are also linearized. A relatively long simulation time is needed for the full elastic rotor model B1 with
nonlinear fluid forces. All the four simulation models are integrated with the ode15s solver of MATLAB, which
uses a variable step size. The absolute and relative tolerance are set to 1e − 6. For the elastic description of the
rotor shafts of models B1 and B2, twelve RITZ modes are used.

Table 2: Simulation time for the different rotor models.
model sim. time rel. time

A1 11.7 s 100 %
A2 0.124 s 1.06 %
B1 1343 s 11478 %
B2 4.46 s 38.1 %
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Figure 8: Rotor orbits due to unbalance at Ω = 21 rps.

6 Conclusion

In this contribution, a rotor test rig with two journal bearings is validated by adequate simulation models. It
becomes evident that the misalignment of rotor and bearing axis has to be considered in the simulation models.

When using simulation models with nonlinear fluid forces (models A1 and B1), the misalignment has to be known
for the dynamic simulation in order to ensure that the rotor moves in the simulation to the right equilibrium position.
When using simulation models with linearized fluid forces (models A2 and B2), an important step for the dynamic
analysis is the determination of the equilibrium position, which again requires the misalignment parameter. When
the equilibrium position is known, the fluid forces can be linearized around this equilibrium position.

With respect to the accuracy of the simulation models, the LAVAL rotor model is accurate enough for the experi-
mental validation presented in this contribution. The use of an elastic rotor is not necessary for the here described
experiments, it only requires a larger modeling effort than the simple LAVAL rotor model.

The simulation costs can be saved significantly when the fluid forces are linearized, as the evaluation of the finite
element solution of the nonlinear fluid forces are the most time-consuming part. However, the linearization has to
be performed in a preprocessing step, as well as the calculation of the equilibrium position.

Outlook

For the model of the fluid forces, the classical REYNOLDS equation is applied, where effects of the fluid inertia
are neglected. This assumption has to be analyzed further and comparisons with the bulk flow equations, usually
applied for seals, should be made. Further, the effect of the preload force has to be investigated in more detail.

In this contribution, only mean stiffness and damping coefficients are determined in the experiment. Their prac-
tical relevance is only given for a vanishing eccentricity of the shaft. Usually, the exact coefficients have to be
determined for a precise dynamic analysis, see the work of GLIENICKE [4] or SOMEYA [11].

The model based determination of the parallel misalignment as described in the first experiment could be further
used for rotor diagnostics, similar to concepts described in [13].
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