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The paper presents a numerical approach to active vibration and noise control of smart lightweight structures. 
The structure is provided with thin piezoelectric wafers as actuators and sensors to control vibrations of the 
structure. Fully coupled electromechanical field equations were taken into account where model based control-
lers are applied for design purposes. The objective of vibration control of elastic structures is to reduce interior 
noise levels. Hence, the mechanical field is also coupled with the acoustic field, and consequently a fully coupled 
electro-mechanical-acoustical problem needs to be solved. The numerical solution is based on the finite element 
method, introducing a velocity potential for the acoustic fluid to receive overall symmetric system matrices of the 
semi-discrete form of the equation of motion. It is shown that the vibro-acoustic coupling can be neglected for 
controller design purposes, and consequently the modal truncation technique considering only the uncoupled 
structural modes, can be adapted to vibro-acoustic systems. The behaviour of a smart plate structure coupled 
with an acoustic cavity is studied as a reference example. 
 
 
1   Introduction 
 
Over the past few years smart structural concepts have met with growing interest in many engineering branches 
and several new approaches and technologies have been developed (Tzou&Guran, 1998; Gabbert, 2002). Smart 
structures, or structronic systems, are characterized by a synergistic integration of active materials into a passive 
structure connected by a control system to facilitate automatic adjustment to changing environmental conditions. 
Piezoelectric materials are widely used as distributed sensors and actuators in smart structures. Commercially 
available piezoelectric wafers are commonly used as active materials for controlling structure vibrations. Such 
thin wafers may be glued on the surface of the base structure, or embedded in a composite material during the 
manufacturing process. 
 
Intensified activities in developing and applying piezoelectric smart structures require effective and reliable 
design tools. The finite element method (FEM) is an excellent basis to develop powerful software tools. Being 
widely spread, it has become a theoretically and practically established method for solving coupled piezoelectric 
field problems. Based on the general purpose finite element software COSAR (COSAR, 1992), a tool has been 
designed and gradually implemented over the past few years (Berger et al., 2000; Gabbert et al., 2000). The 
software package contains an extended library of multi-field finite elements for 1D, 2D and 3D continua as well 
as for shell-type thin-walled structures (Seeger et al. 2002; Gabbert et al., 2002b). The COSAR FEM software is 
linked with controller design tools, such as MatLab/Simulink, through a general data interface, designing the 
controller on the basis of finite element models (Gabbert et al. 2001; Gabbert et al., 2002a). 
 
Sound radiation is another major problem in designing engineering structures. Whenever an elastic structure gets 
into contact with a surrounding fluid, structural vibrations and the acoustic pressure field will influence each 
other. This vibro-acoustic coupling results in additional pressure loads on the structure-fluid interface caused by 
fluid pressure, as well as unwanted noise radiation caused by structural vibrations. Strong vibro-acoustic cou-
pling effects occur in thin-walled lightweight structures of large surface. Active noise control by applying piezo-
electric patch actuators to the structure is an alternative way to reduce noise radiation of elastic structures (see  
Balachandran et al., 1996; Ro&Baz, 1999; Kim et al., 1999; Gopinathan et al., 2000, and others). 
 
Only recently, we extended our software tool COSAR by including new brick-type finite elements for discretiz-
ing acoustic volumes (Lefèvre, 2002). The velocity potential of the fluid was considered as an additional nodal 
degree of freedom in order to receive symmetric system matrices. Also, the vibro-acoustic coupling effect was 
taken into account. Now, it is possible to solve the fully coupled electro-mechanical-acoustic field problem on 
the basis of finite element discretization of the electromechanical structure and the fluid. Thermopiezoelectric 
effects as discussed by Görnandt et al., 2002, are neglected. Further below, the theoretical basis of this finite 
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element approach is presented, followed by a discussion of the controller design for vibro-acoustic problems. As 
large-scale finite element models cannot be used for controller design purposes, an appropriate model reduction 
is required to reduce the number of the degrees of freedom. Here, modal truncation seems to be the best suited 
method for establishing the controller design of structures based on the finite element discretization as flexible 
structures exhibit low-pass characteristics, which allow to neglect high-frequency dynamics (Straßberger, 1997). 
Based on selected eigenmodes the finite element model is reduced and transformed into the state space form. All 
required data of the modal state space model can be transferred to the controller design tool (MatLab/Simulink) 
via a general data exchange interface to design a suitable model-based controller. To study the controlled behav-
iour of the structure, the controller matrices can be retransferred to the original finite element model. As shown 
in the paper, adequate results can be received for controller design purposes by taking into account only the 
eigenmodes of the uncoupled structure. This procedure has been applied to interior acoustic problems with a 
strong fluid-structure interaction. The simulation of a smart rectangular elastic plate structure coupled with an 
acoustic cavity is investigated as a reference example. 
 
 
2   Governing Equations and Finite Element Analysis 
 
This section presents the theoretical background of our finite element software tool for simulating smart struc-
tures coupled with an acoustic fluid. First, the finite element analysis of coupled electromechanical structures 
and acoustic fluids are presented separately, followed by a demonstration how both approaches are coupled to 
receive an overall vibro-acoustic finite element model. The following equations are based on a Cartesian 
(x1,x2,x3)-coordinate system. 
 
2.1   Finite Element Model of Piezoelectric Smart Structures 
 
The coupled electromechanical behaviour of a polarizable piezoelectric material in low voltage applications can 
be modelled with sufficient accuracy by means of linearized constitutive equations. Furthermore, small dis-
placements are considered. The complete derivation of the finite element model is discussed in detail in Gabbert 
et al.(2000).  Hence, only a brief summary of the equations is presented here.  
 
In a three-dimensional continuum the finite element equations are based on the mechanical equilibrium 
 

 upD ��ρ=+T
u ,                (1) 

 
the electric equilibrium (4th Maxwell equation)  
 

 0=DDT
ϕ                 (2) 

 
and the linear coupled electromechanical constitutive equations 
 

 eEC −= ,                (3) 
 

 �eD += T ,                (4) 
 

with the stress vector [ ]312312332211 σσσσσσ=T , the body force vector [ ]321 pppT =p , the 

displacement vector [ ]321 uuuT =u , the mass density ρ, the vector of electrical displacements 

[ ]321 DDDT =D  and the elasticity matrix C[6×6], the piezoelectric matrix e [6×3], the dielectric matrix 

[3×3], the strain vector [ ]312312332211 222 εεεεεε=T  and the electric field vector 

[ ]321 EEET =E . Du and Dϕ  describe the following differential matrix operators 
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Together with stress boundary conditions and the charge boundary conditions, the mechanical and the electric 
balance equations can be written in a weak form as 
 

( ) ( )dVdV
V

TT
u

V

T ∫∫ +−+= DDupDu ϕδϕρδχ �� ( ) ( )∫ ∫ =−+−+
q QO O

T dOQQdO 0δϕδ qqu               (7) 

 
where δu is a virtual displacement, δϕ  is a virtual electric potential, q  is a given traction vector on the surface 

Oq and Q  is a given charge on the surface OQ . In equation (7) the strain-displacement relation  
 

 uDu=                  (8) 
 
and the relation between the electric field and the electric potential 
 

 ϕϕDE −= ,                (9) 

 

are introduced. The displacements u1, u2, u3 and the electric potential ϕ  are approximated elementwise by shape 
functions, containing the element nodal parameters as unknown parameters. Including the shape functions of a 

finite element in the matrices Gu and Gϕ  and incorporating the unknown nodal parameters in the vectors ( )ew  

and  ( )e , the approximation of the displacement vector u and the electric potential ϕ can be written as 
 

( ) ( ) ( )e
u xxxxxx wGu 321321 ,,,, = ,            (10) 

 

( ) ( ) ( )exxxxxx G 321321 ,,,, ϕϕ = .            (11) 

 
Following the standard finite element procedure, the semi-discrete form of the equations of motion of a general 
element (e) can be derived from equation (7) as follows 
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The vector ( )ew  contains the nodal displacements and the vector ( )e  contains the nodal electric potentials; 
( )e
uuM  is the element mass matrix, ( )e

uuK  is the element stiffness matrix, ( )e
ϕϕK  is the element electric matrix, ( )e

uϕK  

is the piezoelectric coupling matrix, ( )e
uf  is the load vector resulting from mechanical loads and ( )e

ϕf  is the load 

vector resulting from electric charges. 
 
2.2   Finite Element Model of the Acoustic Fluid 
 
Acoustic responses in a fluid are usually regarded as small perturbations related to an ambient reference state. 
Hence, the finite element model of the fluid is derived from the linear acoustic wave equation (Fahy, 1994) 
 

 p
c

p ��
2

1=∆ ,              (13) 

 

considering the adiabatic wave propagation in a homogeneous, inviscid fluid. In equation (13) ∆ is the Laplacian 
operator, p is the acoustic pressure and c is the sound speed. Although we are mainly interested in sound pressure 
distribution, the use of pressure p as a nodal variable is rather disadvantageous as in this case the finite element 
formulation of the coupled vibro-acoustic problem results in un-symmetric system matrices (Desmet&Van-
depitte, 1999). Everstine (1997) recommended the introduction of the velocity potential Φ of the fluid as a new 
degree of freedom in order to obtain symmetric matrices. The velocity potential is a scalar field related to the 
velocity v of the fluid particles by 
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 ΦaDv −=               (14) 

 
and to the sound pressure by 
 
 Φρ �

0=p ,              (15) 

 
with the differential matrix operator Da, having the same form as the operator in equation (6), and the fluid den-
sity ρ0 (Kollmann, 2000). Introducing equations (14) and (15) into equation (13) results in the new form of the 
acoustic wave equation  
 

 Φ∆Φ ��
2

1

c
= .              (16) 

 
The next step considers an interior acoustic problem, i.e. the whole fluid volume is enclosed by boundaries in all 
directions with a finite distance from a common reference point. To obtain the weak form of the acoustic wave 
equation, equation (16) is multiplied by any test function τ and integrated over the fluid volume Vi. Using the 
Gaussian integral theorem the wave equation is derived in a weak form as  
 

 ( ) dOdV
c

dV

i i iV V O

T
aa

T
a nDDD∫ ∫ ∫=+ ΦτΦτΦτ ��

2

1
,          (17) 

 
where n is the outward directed normal vector of the surface Oi of the volume Vi. The right hand side of equation 
(17) corresponds to the boundary conditions. Oi can be divided into the surfaces Ov with given normal velocity 

nv  and the surfaces Oz with an imposed impedance function nZ . The impedance function describes the relation-

ship between the acoustic pressure and the normal component of the velocity 
 

 
n

n v

p
Z = .              (18) 

 
Following this procedure, it is possible to model boundary damping effects (Kim et al., 1999) and with the equa-
tions (14) and (15) equation (17) can be written as 
 

 ∫∫∫ ∫ −−=+
zvi i OnO

n

V V

a
T
a dO

Z
dOvdV

c
dV ΦτρτΦτΦτ ��� 0

2

1
DD .          (19) 

 

In a finite element the velocity potential Φ  and the test function τ  are approximated by using the vectors of the 

nodal degrees of freedom  ( )e , ( )e  and the matrix Ga containing the approximate functions as 
 

 ( ) ( ) ( )e
a xxxxxx G 321321 ,,,, =Φ             (20) 

and 

 ( ) ( ) ( )e
a xxxxxx G 321321 ,,,, =τ .            (21) 

 
With the abbreviation  
 
 aaa GDB = ,                (22) 

 
and the equations (20) and (21) the equation (19) can be written as  
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As this equation must to be fulfilled for any parameter ( )e  of the test function from equation (23) we receive  
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )e
a

ee
a

ee
a

ee
a fKCM =++ ��� ,           (24) 
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with the acoustic element “mass” matrix  
 

 ( )

( )
∫=

e
iV

a
T
a

e
a dV

c
GGM

2

1
,              (25) 

 
the acoustic element “damping” matrix 
 

 ( )

( )
∫=

e
zO

a
T
a

n

e
a dO

Z
GGC 0ρ

,             (26) 

 
the acoustic element “stiffness” matrix 
 

 ( )

( )
∫=

e
iV

a
T
a

e
a dVBBK              (27) 

 
and the acoustic element “load” vector 
 

 ( )

( )
∫−=

e
vO

n
T
a

e
a dOvGf .             (28) 

           
2.3   Vibro-Acoustic Coupling 
 
First, it is assumed that the acoustic pressure represents an additional load with respect to the structure. Develop-

ing our finite element model, we must also consider an additional load vector ( )e
ucf  resulting from the acoustic 

pressure. Consequently, equation (12) can be augmented to 
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With equation (15) the vector ( )e
ucf  can be calculated as 

 

 ( )

( ) ( )

( ) ( ) ( )ee
uc

e

O
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T
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T
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e
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e
S

e
S

dOpdO CnGGnGf �� === ∫∫ 0ρ ,                       (30) 

 

where Os is the fluid structure interface and ( )e
ucC  is the coupling matrix with regard to the acoustic pressure. 

Furthermore the velocity of the vibrating structure acts on Os as a new acoustic load of the fluid 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )e
ac

e
a

ee
a

ee
a

ee
a ffKCM +=++ ��� .                        (31) 

 
Considering that the normal velocity of the structure can be expressed by 
 

 ( )e
u

T
nu wGn �� = ,              (32) 

 
we receive an expression similar to equation (28)  
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with ( )e
acC  as the coupling matrix regarding structural vibrations. Comparing equation (30) and equation (33), 

symmetric system matrices are received by multiplying all lines related to fluid degrees of freedom by (-ρ0). 
Therefore and when the element matrices are included in a global matrix and the coupling matrices are inserted 
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in the left hand side, the semi-discrete system of equations of the electro-mechanical-acoustic field problem can 
be written as  
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In equation (34) the Rayleigh damping has been introduced as the structural damping Cuu. Mention should be 
made of the fact that the vector w also represents the nodal displacements of the passive part of the structure. 
 
Based on equation (34) two acoustic brick-type elements with 8 and 20 nodes of the Serendipity element family 
have been developed and implemented in our COSAR software tool. The isoparametric element concept was 
used to properly approximate the element geometry. Furthermore, also the vibro-acoustic coupling procedures as 
presented in equations (29)-(30) were incorporated in the COSAR software tool. Together with initial conditions 
equation (34) can be integrated numerically, e.g. by using the Newmark formulas. 
 
 
3   Control of Smart Structures 
 
Numerical simulations of smart structures under the finite element concept require an overall finite element 
model comprising the passive structure, the active sensor and the actuator elements as well as a suitable model of 
the controller. Today, comprehensive design tools such as MatLab/Simulink are available to support the design-
ing process. A general data exchange interface is required to exchange data and information between the finite 
element model and the controller design tool. Only recently, such data interface was developed to couple our 
finite element COSAR software with MatLab/Simulink (see Gabbert et al., 2001, 2002). 
 
3.1   Controller Design 
 
For controller design purposes the vibro-acoustic coupling effect is neglected in the active structure. Combining 
the displacement and the electric potential degrees of freedom in one vector 
 

 [ ]ww =T ,              (35) 

 
equation (12) can be written as  
 
 ( ) ( )tt ruBfEwKwCwM +=++ ��� ,                  (36) 

 
where C is an additional damping matrix and ur (t) is the vector of the controller influence of the structure. The 

matrices E and B describe the positions of the external forces and the controller parameters in the finite element 
model, respectively. To use the modal truncation technique the linear eigenvalue problem 
 

 ( ) 0wMK =− kk
ˆ2ω ,             (37) 

 

needs to be solved. The result is the modal matrix [ ]mwwwQ ˆ...ˆˆ
21= , where m is the number of eigen-

modes considered. Ortho-normalizing Q with ( )1diag== IMQQT  and ( )2diag k
T ω==KQQ , we also obtain 

( )kk
T ωδ2diag==CQQ , considering proportional damping. Introducing modal coordinates q̂ as  

 
qQw ˆ=                (38) 

 
into equation (36), we obtain the modal truncated system of (m×m) differential equations 
 

 ( ) ( )tt r
TT uBQfEQqqq +=++ ˆˆˆ ��� .                        (39) 
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Equation (39) is transformed into the state space form, which is more convenient for the control theory. Introduc-
ing the state space vector 
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in equation (39) results in  
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In smart structures a variety of signals can be measured, first of all electric potentials by using piezoelectric 
sensors; but also other signals, such as exiting forces or displacements, can be measured in order to characterize 
the state space of the structure. Hence, the measurement matrix is used in a general form as 
 
 ( ) ( ) ( )ttt qrqq fFuDzCy ++= ,             (42) 

 
where Cq, Dq and Fq are mapping matrices describing the relations between the measured quantities of the vec-
tors z, ur and f with respect to the measuring vector y. The matrices Aq, Bq, Eq, Cq, Dq, Fq are transferred to 
MatLab/Simulink where the controller is designed. Designing a time independent LQ controller, the actuator 
signal is generated by the controller matrix R as 
 
 ( ) ( )ttr Rzu −= .                    (43) 

 
3.2 Solution Concept 
 
The semi-discrete form of the coupled vibro-acoustic equation of motion including control are as follows 
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ucC  is the coupling matrix with respect to the vector w� . To solve equation (44), the actuator signal (43) must  

be expressed in terms of w  and w� , respectively. If only a few selected eigenmodes are considered, Q is not a 
square matrix. To get the modal coordinates from equation (38), the pseudo-inverse matrix of Q, 
 

 ( ) TT QQQQ
1−+ = ,             (45) 

 
is required. With equation (45) the state space vector has the following form 
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Mention should be made that the use of Q+ in equation (46) does not provide an exact solution with respect to 
the modal coordinates. However, if the motion of the structure is dominated by the selected eigenmodes, there is 
a very good agreement between the approach in equation (46) and the exact solution as we could establish. Fol-
lowing the integration procedure of the initial finite element model, the actuator signal ur can be included as an 
additional force vector in the right hand side of equation (44). 
 
 
4   Examples 
 
This section contains a numerical demonstration of the fact that a controller designed with a modal reduced sys-
tem as above can be applied with sufficient accuracy to a fully coupled vibro-acoustic system. The finite element 
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model of a clamped rectangular plate structure coupled with an acoustic cavity is used as a test example (Fig. 1). 
Four piezoelectric patches attached to the plate as two collocated actuator/sensor pairs (actuators on the top and 
sensors on the bottom of the plate) are employed. The structure is excited by a harmonic force at a given point. 
All dimensions and material properties of the plate, the acoustic cavity and the actuators/sensors are given in 
Tables 1 - 4. The plate is approximated by 96 passive hexahedron elements containing only mechanical degrees 
of freedom; the cavity is discretized with 384 acoustic hexahedron elements. Each actuator or sensor is approxi-
mated by a coupled piezoelectric hexahedron element containing mechanical as well as electrical degrees of 
freedom. In all these finite elements quadratic shape functions are used. The Newmark formulas are employed 
for numerical time integration of the equations of motion. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Smart Plate Structure Coupled with an Acoustic Cavity. 

 
  

Plate/Cavity System Actuators/Sensors 
l1 600mm Length in x1-direction 100mm 
l2 400mm Length in x2-direction 50mm 
l3 400mm Patch thickness 0.2mm 
h (Plate thickness)  2mm   

 

Table 1. Geometry of the Vibro-acoustic System Including Actuators and Sensors. 
 

Elastic Constants Piezoelectric Constants Dielectric Constants 
c11 107600N/mm² c33 100400N/mm² e15 1.20⋅10-5N/(mV)mm  κ11 1.74⋅10-14N/(mV)² 
c12 63120N/mm² c44 19620N/mm² e31 -9.60⋅10-6N/(mV)mm  κ33 1.87⋅10-14N/(mV)² 
c13 63850N/mm² c66 22200N/mm² e33 1.51⋅10-5N/(mV)mm Density ρ 7.80⋅10-9Ns²/mm4 

 

Table 2. Material Properties of the Piezoelectric Actuators and Sensors. 
 

Young’s modulus E 210000N/mm² 
Poisson’s ratio ν 0.3 
Density ρP 2.63⋅10-9Ns²/mm4 

 

Table 3. Material Properties of the Elastic Plate. 
 

Speed of sound c 340000mm/s 

Fluid density ρ0 1.29⋅10-12Ns²/mm4 
 

Table 4. Material Properties of the Acoustic Fluid. 
 

Number Frequency  
1 47.3Hz 
2 90.9Hz 
3 143.6Hz 
4 163.0Hz 
5 193.4Hz 

 
Table 5. Eigenfrequencies of the Uncoupled Elastic Plate. 
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In all simulations a force excitation with an amplitude of 1N and a frequency containing the first eigenfrequency 
(see Tab. 5) was applied, which is a very important excitation regarding the influence to the acoustic pressure in 
the enclosure. In the simulations the controller was switched on after a period of 1s. A LQ controller for the 
elastic plate was designed on the basis of a reduced model containing the first five structural modes (see Tab. 5). 
To verify the received controller matrix, the response of the plate was simulated without any vibro-acoustic 
coupling. Fig. 2 displays the resulting signal of the sensor. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Sensor Signal of the Uncoupled Plate Resulting from Harmonic Excitation. 

 
As can be seen in Fig. 2, the designed controller reduces structural vibrations to approximately a quarter of its 
maximum amplitude. The second simulation additionally considered the vibro-acoustic coupling. For this simu-
lation the pressure release condition (p=0) was applied to all boundaries of the fluid in addition to coupling with 
an elastic plate, as included in the coupling equations (32) and (33). Fig. 3 displays the sensor signal. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Resulting Sensor Signal with Respect to the Coupled Vibro-acoustic System under the Assumption of 
Boundary Pressure Release Conditions. 

 
A comparison between Fig. 2 and Fig. 3 reveals that sound pressure does not exert a strong influence on the 
elastic plate when pressure release conditions are assumed at the boundaries. For the last simulation we assumed 
that the pressure release condition only acts on the boundary x3=l3. Apart from the plate all other four boundaries 
of the cavity were considered as acoustically hard surfaces (vn=0). Fig. 4 displays the signal received by the 
sensors. Fig. 5 shows the corresponding sound pressure in the centre of the cavity. Fig. 4 and Fig. 5 display a 
strong coupling effect. The coupled fluid serves as an additional damping with respect to the vibrating plate. 
Furthermore, the motion of the plate is no longer only dominated by the first uncoupled eigenmode. The reason 
is the acoustic fluid altering the eigenfrequencies and eigenmodes of the whole system. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Resulting Sensor Signal of the Coupled Vibro-acoustic System Considering Acoustically Hard 
Boundaries. 
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Figure 5. Resulting Sound Pressure in the Cavity Centre when Considering Acoustically Hard Boundaries. 
 
As can be seen in all simulations, the controller reduces the sensor signals to almost the same level. In our opin-
ion the fluid-structure interaction can be neglected for controller design purposes if there is no strong coupling 
between the structure and the fluid. However, we often encounter problems where a strong vibro-acoustic cou-
pling occurs. Basically, the interaction of fluid and structure needs to be considered for controller design when-
ever a large surface area of a thin-walled lightweight structure is covered by a fluid. This is also of great impor-
tance when such models are used for calculating optimal actuator and sensor positions at the structure. In such 
cases the modal truncation should be based on the fully coupled electro-mechanical-acoustical eigenvalue prob-
lem. 
 
 
5   Conclusions 
 
The paper presents the theoretical background of a new finite element-based software tool for solving three-
dimensional electro-mechanical-acoustical field problems, including control algorithms. This tool was incorpo-
rated in our finite element analysis software COSAR, facilitating simulations of the controlled behaviour of 
coupled vibro-acoustic systems with distributed piezoelectric actuators and sensors with regard to the interior 
acoustic radiation problem. A general data exchange interface is used to design controllers by MatLab/Simulink. 
Furthermore, numerical investigations were performed whether the modal truncation technique using the uncou-
pled structural modes for controller design can be adapted to vibro-acoustic systems. If there is no strong cou-
pling between the fluid and the structure this method yields sufficient results. Otherwise, the eigenmodes of the 
completely coupled system need to be considered. 
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