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Dynamic Strain Aging, Negative Strain-Rate Sensitivity and Related
Instabilities

A. Benallal, T. Borvik, A. Clausen, O. Hopperstad

We give in this paper a possible mechanical interpretation to the development of Lüders front and Portevin-Le-
Chatelier effect based on a band analysis for an elastic- viscoplastic material with negative strain-rate sensitivity.
This negative strain rate sensitivity allows for jumps for the plastic strain rate which in turns permits the existence
of localization bands for the elastic-viscoplastic material. The classical band analysis for an inf inite solid does
not predict the direction of the band. However, we show that this direction is determined in some circumstances if
one considers the boundary conditions.

1 Introduction

Lüders fronts and Portevin-Le-Chatelier (PLC) effect are widely observed phenomena. Both phenomena are usu-
ally associated to dynamic strain aging, i.e. the dynamic interaction between mobile dislocations and solute atoms
(Kubin and Estrin, 1985). Dynamic strain aging occurs for temperatures and strain-rates within a certain range,
but sometimes a critical strain is required for serrated yielding to take place. A widely accepted consequence of
dynamic strain aging is the negative strain rate sensitivity that is observed for many alloys. The propagation of
deformation bands associated with the Portevin-Le-Chatelier effect may occur in a continuous or discontinuous
manner. The initiation of each band is evidenced by a yield point on the stress-time curve which is followed by a
relatively smooth curve during band propagation, see e.g. McCormick et al. (1993). The main result of this paper
is to explain the appearance of such bands for an elastic-viscoplastic material if one includes negative strain-rate
sensitivity and to compute the orientation of these bands by considering the boundary conditions. The study is
completed by a linear perturbation approach to highlight the effects of the negative strain-rate sensitivity on the
behaviour of the material. The critical condition for the growth of perturbations is linked to the condition of the
appearance of the Lüders fronts and PLC effect.

2 Constitutive Equations with Negative Strain-Rate Sensitivity

2.1 Experimental Observations

An experimental program has been carried out on axisymmetric specimens made of the aluminium alloy AA5083.
This alloy shows anisotropic characteristics. However, the longitudinal axis of all specimens is parallel with the
rolling direction. Both quasi-static and dynamic uniaxial tensile tests were performed. The tests are carried out
at room temperature and strain-rates between 10−4 and 103s−1. The tests with strain rates up to approximately
10s−1 were carried out on an Instron tension machine with digital control electronics. A Split-Hopkinson tension
bar (SHTB) was employed for the tests with strain rates larger than 102s−1. The axisymmetric samples were
machined from 10 mm thick rolled plates. Figure 1 shows true stress versus plastic strain curves for four selected
tests with distinctly different strain rates. It is interesting to note that the highest strength is obtained by the
quasistatic strain rate of 0.00041s−1. The two curves associated with the intermediate strain rates are lower,
thereby indicating a negative strain rate effect. At the highest strain rate of 1313s−1, however, the strength shows
an increasing tendency. The curves in Figure 1 are interrupted at the ultimate strain, where necking occurs. This
strain, and accordingly the ductility, increases considerabely as function of strain rate. It is beyond the scope of
this paper to discuss this phenomenon more thoroughly, but the effect is undoubtedly real, as the fracture strains,
which can be checked after each test, also increase with strain rate. The flow stress at a plastic strain of 5 percent,
denoted here σ5, is chosen as the parameter describing the strain rate sensitivity. Figure 2 shows the observed σ5
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Figure 1: Stress-strain curves for Aluminium Alloy AA 5083 at different strain rates.

as function of strain rate. The four circular points refer to the tests presented in Figure 1. The upper abscissa axis in
Figure 2 is consistent with the common way of representing strain rates by using the logarithm function with base
10, while the lower abscissa axis is associated with a dimensionless strain rate. Although some scatter is present,
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Figure 2: Flow stress σ5 as a function of strain rate.

the flow stress seems to have a significant drop when the strain rate increases from 10−4s−1 to 10s−1. Thereafter,
σ5 ascends until 103s−1, which is the maximum attainable strain rate in the SHTB situated at SIMLab. It is
interesting to note that there is a rather good agreement between the σ5 observations at 5s−1, which are obtained
with the Instron machine, and the Split Hopkinson Tension Bar flow stress at 100s−1.

2.2 General Framework

To interpret these phenomena, we consider in this paper an elastic-viscoplastic material the behaviour of which
involves negative strain rate sensitivity. The behavior of the material is determined first by the free energy potential
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Ψ(ε,α) depending on the strain tensor ε and a set of internal variables α assumed to describe various physical
mechanisms. The knowledge of the free energy potential leads to the state laws defining the Cauchy stress tensor
σ and the thermodynamical forces A associated to the internal variables α as

σ = ρ
∂Ψ

∂ε
, and A = −ρ

∂Ψ

∂α
(1)

where ρ is the mass density. The evolution of the internal variables is defined by a reversibility domain C (inside
which no irreversibility occurs), the equation of which in the forces space is f(A,α) < 0 and by a flow potential
F (A,α) such that

α̇ = ṗ
∂F

∂A
with ṗ =

1

µ
< Φ′(f) > (2)

In (2) and for classical viscoplasticity, Φ′(f) is an increasing positive function of f satisfying Φ′(f) > 0, µ a
positive constant, and < x >= Max(x, 0). The ’ denotes the derivative with respect to f . In this paper, to
describe negative strain rate sensitivity, we consider the simple following model

ṗ =
1

µ(ṗ)
< Φ′(f) > (3)

in such a way that the equation
ṗµ(ṗ) = Φ′(f) (4)

has many solutions and describes experimental data shown in figure 2. These experimental results actually suggest
three solutions. In the above formula and in the whole paper, the dot denotes the material time rate. Moreover the
functions Ψ, F , f and Φ are chosen so that the Clausius-Duhem inequality expressing the second law be satisfied.

2.3 An Example

As an accompagning example in this paper we will consider the following simple constitutive relations. One
tensorial internal variable εp (plastic strain) and one scalar internal variable p (accumulated plastic strain) are
introduced to describe inelastic behaviour with isotropic hardening. The free energy, the plastic potential and the
yield function are

Ψ(ε, εp, p) =
1

2
(ε− εp) : E : (ε− εp) + w(p) (5)

f = F = J2(σ)−R− σe (6)

where J2(σ) =
√

3
2s : s. s is the stress deviator, E is elasticity tensor, R the force associated to p and σe the initial

yield stress. The function Φ = K
2 (

f
K
)2 is considered.

3 Band Analysis

3.1 Infinite Space

We perform in this section a band analysis. This is very classical in the context of strain localisation for rate-
independent materials. For classical elastic-viscoplastic materials jumps on the strain rate are ruled out (at least in
the small strain regime). We show below that these jumps may emerge if the elastic-viscplastic material exhibits
negative strain rate sensitivity. An infinite homogeneous body that is homogeneously deformed is considered. We
seek for the conditions under which a bifurcation from this homogeneous state with strain rate ε̇0 to a heteregeneous
one including a band of normal n with strain rate ε̇1 becomes possible, the strain rate outside the band being still
ε̇0. The Maxwell kinematic compatibility relations imply that

ε̇1 − ε̇0 =
1

2
[g ⊗ n+ n ⊗ g] (7)

The rate form of constitutive equations lead outside and inside the band, respectively, to

σ̇0 = E : ε̇0 − ṗ0E :
∂f

∂σ
(8)
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σ̇1 = E : ε̇1 − ṗ1E :
∂f

∂σ
(9)

Continuuing equilibrium across the band gives

σ̇1.n = σ̇0.n (10)

Using (7) , (8) and (9) in (10), one has

(n.E.n).g − (ṗ1 − ṗ0)E :
∂f

∂σ
= 0 (11)

To obtain relation (11), it was assumed that the state of the material is the same outside and inside the band. At this
stage, with classical viscoplasticity and no negative strain rate sensitivity, ṗ1 = ṗ0 and no jumps in the plastic nor
in the total strain rates is possible. In presence of both positive and negative strain rate sensitivity in the material
behaviour, it is possible under some circumstances that for a fixed given state (as the one prevailing outside and
inside the band for instance) that different accumulated plastic strain rates are possible for this state. This indeed
happens for instance at such points in Figure 2 where the ¤ow stress passes trough a maximum or a minimum.
One may choose any of these inside the band that is different from ṗ0. In this case, the searched bifurcation mode
exists and one has from (11),

g = (ṗ1 − ṗ0)[n.E.n]
−1.(n.E :

∂f

∂σ
) (12)

The difference ṗ1 − ṗ0 is obtained through the constitutive equations and particularly from (4) with f depending
on the state ( i.e. stress, hardening parameters, etc....). For a given state, relation (4) has only a f inite number of
solutions in terms of ṗ as seen from experimental data depicted in figure 2. The following conclusions hold

• For a given jump ṗ1 − ṗ0 and for a given orientation n, the amplitude g is unique.

• From (11), the normal n to the band is unspecified.

• At each jump in the plastic strain rate, there is a jump in the total strain rate except in the directions n such
that n.E : ∂f

∂σ = 0.

• The mode described above will exist only when the constitutive relations allow for a multiple solution for
the plastic strain rate. This mode will appear only in the associated regime, see e.g. Figure 2.

3.2 Band Orientation

We have mentioned in the former section that the normal n was arbitray. We will show here that this arbitrariness
is removed when one considers boundary conditions. The simplest way to do so is to reformulate the band analysis
carried out before for a homogeneous and homogeneously deformed half-space. We will come back later to the
practical case of a finite specimen. We denote by m the unit outward normal to this half-space and keep all the
notations similar to the one adopted for the infinite space. We seek now conditions for the same mode to emerge.
All the reasoning followed in the former section is still valid. We just need to include the boundary conditions.
Different types of such conditions may be considered: displacement or velocity conditions, traction conditions and
all the combinations between these two types. Let us analyse here the most common situation of a free surface
where the traction vector should vanish

σ.m = 0 (13)

Two conditions have to be met for the band to meet the boundary. These are easily written respectively outside and
inside the band (using the notations of the infinite space) as

σ̇0.m = 0 (14)

σ̇1.m = 0 (15)

Taking the difference of these two equations, using the constitutive equations and taking into account (7) we have

σ̇1.m − σ̇0.m = [m.E.n].g − (ṗ1 − ṗ0)m.E :
∂f

∂σ
= 0 (16)

Using the expression (12) of g in this last equation one gets in the case where ṗ1 − ṗ0 6= 0

[m.E.n].[n.E.n]−1.(n.E :
∂f

∂σ
)− m.E :

∂f

∂σ
= 0 (17)
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This equation sets now a constraint in the normal to the band at least in the vicinity of the boundary. Indeed one
may imagine two possiblities: the band may have the same orientation all along or may have a given orientation
in the bulk of the material and then kinks at the vicinity of the boundary. We exploit this condition for isotropic
elasticity. We denote by λ and G the Lame coefficients so that

Eijkl = λδijδkl +G(δikδjl + δilδjk) (18)

Bands will be available when equation (17) admits real solutions n.

The critical condition will be analysed in the principal frame (e1, e2, e3) of the flow direction a = ∂f
∂σ where we

set
a = {{a1, 0, 0}, {0, a2, 0}, {0, 0, a3}} (19)

and
n = {n1, n2, n3},m = {m1,m2,m3} (20)

We have then

n.E.a = {λ (a1 + 2 a2) n1 + 2Gn1, λ (a1 + 2 a2) n2 + 2Gn2, λ (a1 + 2 a2) n3 + 2Gn3} (21)

m.E.a = {λ (a1 + 2 a2) m1 + 2Gm1, λ (a1 + 2 a2) m2 + 2Gm2, λ (a1 + 2 a2) m3 + 2Gm3 } (22)

n.E.n =





G+ (G+ λ)n2
1 (G+ λ)n1 n2 (G+ λ) n1 n3

(G+ λ) n1n2 G+ (G+ λ)n2
2 (G+ λ)n2 n3

(G+ λ) n1n3 (G+ λ)n2 n3 G+ (G+ λ) n2
3



 (23)

3.3 Application to the Tension Test

From now on, we will consider tension tests in the e3 direction. In this case, assuming J2 plasticity, we have a = s

where s is the stress deviator and a1 = a2 = −a3

2 . In these conditions, the critical condition (17) takes the form

m1

(

2G+ λ− λn2
2 + 2λn

2
3 + n2

1

(

−2G− λ− 6 (G+ λ)n2
3

))

+n1

(

2m2 n2

(

−G− 3 (G+ λ) n2
3

)

+m3 n3

(

G+ 3 (G+ λ)
(

n2
1 + n2

2 − n2
3

)))

= 0
(24)

m2

(

2G+ λ− λn2
1 + 2λn

2
3 − n2

2

(

2G+ λ+ 6 (G+ λ)n2
3

))

+n2

(

2m1 n1

(

−G− 3 (G+ λ)n2
3

)

+m3 n3

(

G+ 3 (G+ λ)
(

n2
1 + n2

2 − n2
3

)))

= 0
(25)

−
(

m3

(

4G+ 2λ+ λn2
1 + λn2

2

))

+ 2m3

(

2G+ λ+ 3 (G+ λ)
(

n2
1 + n2

2

))

n2
3

+(m1 n1 +m2 n2) n3

(

G+ 3 (G+ λ)
(

n2
1 + n2

2 − n2
3

))

= 0
(26)

In the following we consider two different specimens: a flat one and a cylindrical one, both with axis e3, the
tension axis.

3.3.1 Solutions in the Case of a Cylindrical Specimen

In the case of the round specimen, one can work on the associated cylindrical coordinates so that

e1 = er, e2 = eθ, e3 = ez (27)

We therefore have at any boundary point of the specimen m = er and one has to satisfy

2G+ λ+ 2λn2
3 +

(

−2G− λ− 6 (G+ λ)n2
3

)

n2
r − λn2

θ = 0 (28)
(

−G− 3 (G+ λ)n2
3

)

nr nθ = 0 (29)

n3 nr
(

G+ 3 (G+ λ)
(

−n2
3 + n2

r + n2
θ

))

= 0 (30)
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• Equations (29) and (30) are both satisfied for nr = 0. This implies that n2
θ + n2

3 = 1 and from (28) one
obtains n2

3 = − 2G
3λ , which is impossible. Therefore nr 6= 0.

• Equation (30) has also n3 = 0 as a solution. But the two other equations cannot be satisfied and n3 6= 0.

• Equation (29) is satisfied for nθ = 0. This implies that n2
r + n2

3 = 1. Reporting this in (28) and (30) leads
to two solutions: either n3 = 0 and therefore n = er or

n2
r =

2G+ 3λ

6(G+ λ)
and therefore n2

3 =
4G+ 3λ

6(G+ λ)
(31)

The first possibility is of no interest. The second however supports experimental evidence. Indeed experimental
observations of band orientation in cylindrical specimens (Wijler (1972), van den Brink (1975), McCormick et al.
(1993)) show that the band intersects the surface of the specimen on a plane perpendicular to the tensile axis, and
Wijler (1972) proposed that deformation bands in cylindrical specimens are conically shaped. In this case and
from (31), the angle θ of this cone is such that (otherwise stated, the band is aligned at an angle θ with the tensile
axis)

(tan θ)2 =
2G+ 3λ

4G+ 3λ
=
1 + ν

2− ν
(32)

if one introduces Poisson’s ratio ν. For a metal ν = .30 and the angle θ is about 53 degrees.

3.3.2 Solutions in the Case of a Flat Specimen

In this case, we have to satisfy the critical conditions at all the sides of the specimen. We therefore have to satisfy
condition (17) with m = e1 and m = e2. Using the above results show that a straight band cannot exist for a three
dimensional setting and to comply with the two conditions, the band must kink at the sides of the specimen. In the
case of plane situations, the orientation of the band is again given by (31).

4 Perturbation Analysis

In this section a linear perturbation approach is used to show qualitatively the effects of a negative strain-rate sen-
sitivity. A homogeneously deformed body (assumed again infinite here) with uniform properties is considered.
At a given stage of its deformation path, an infinitely small perturbation is applied to the solid and the perturbed
deformation is analysed. Because the applied perturbation is small, the boundary value-problem (equilibrium and
constitutive equations) governing this deformation is linearized around the homogeneous solution. The perturba-
tion fields satisfy then a linear and homogeneous system of partial differential equations. When the perturbations
have the form δX = X̃eiξ(n.x)+ηt where η is related to the growth of the perturbation), it is shown that the growth
condition takes the form

det[n.H(η).n] = 0 (33)

The general expression of the moduli H(η) can be found in Benallal (2000). For the accompagning model given
in section 2, they take the form

H(η) =
ησeq

ησeq + 3ṗG
E+

3KGṗ

ησeq + 3ṗG
1 ⊗ 1 −

9G2
{

η[R(p)− µ
′

ṗ2]− hṗ
}

σ2
eq(ησeq + 3ṗG)[η(µ+ µ

′

ṗ) + h+ 3G]
s ⊗ s (34)

Growth of perturbations is signaled by positive values of the real part of the eigenvalues η. If one specializes the
analysis to uniaxial conditions the critical condition becomes

h+ η(µ+ µ
′

ṗ) = 0 (35)

from which one can compute the rate of growth of perturbation as

η = −
h

µ+ µ
′

ṗ
= −

h
∂[µ(ṗ)ṗ]

∂ṗ

(36)
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and allows first insight in the role of negative strain-rate sensitivity ( ∂[µ(ṗ)ṗ]
∂ṗ

< 0). Indeed, relation (36) shows that

for positive strain-rate sentivity ( ∂[µ(ṗ)ṗ]
∂ṗ

> 0), instabilities are possible only in presence of softening . In the other
hand, for negative strain-rate sensitivity, the rate of growth may become positive even in the hardening regime.
More importantly, the eigenvalues η may become unbounded (blowing up of perturbations) when the denominator
in (36) vanishes, i.e when

µ+ µ
′

ṗ =
∂[µ(ṗ)ṗ]

∂ṗ
= 0 (37)

This condition also holds under general three-dimensional conditions. Indeed, the limit of the moduli H(η) in (34)
is

lim
|η|→∞

H(η) =
{ E if µ+ µ

′

ṗ 6= 0

E − 9G2[R(ṗ)−µ
′

ṗ2]
(h+3G)σ3

eq

s ⊗ s if µ+ µ
′

ṗ = 0
(38)

5 Conclusions

An interpretation of the appearance of PLC bands has been proposed in the context of elastic-viscoplastic materials
with negative strain-rate sensitivity. It allows the determination of the orientation of the bands and the results for
axisymmetric specimen seem to support existing conjecture. This is also observed in the finite element simulations
of round specimen where conically shaped bands are seen to travel along the gauge length of the specimen.
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