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The Reuss Bound of the Strain Rate Potential of Viscoplastic FCC
Polycrystals

T. Böhlke and A. Bertram

This paper is dedicated to the memory of Jürgen Olschewski, who passed away so early.

The Reuss bound of the strain rate potential of face-centered cubic polycrystals without texture is numerically
determined for all types of stress states. The numerical results indicate a strong dependence of the potential on
the determinant of the stress deviator. This dependence implies that the viscoplastic f low is not proportional to
the stress deviator. A simple analytical expression is found, which reproduces the numerical f indings over a wide
range of strain rate sensitivities.

1 Introduction

The distribution of crystal orientations is an important microstructural feature which affects the overall properties
of polycrystalline metals. If this distribution is inhomogeneous, the material is said to have a crystallographic
texture. Such a texture influences the overall elastic and the viscoplastic behavior as well as the non-mechanical
properties. In the present work, the viscoplastic properties of a nontextured aggregate of face-centered cubic (fcc)
crystals are considered. The advantage of a viscoplastic modeling is that on both the grain scale as well as on
the macro scale the constitutive equations are given by potential relations. Furthermore, the methods of statistical
continuum mechanics allow to bound the macroscopic potentials. In the most simple case, the one-point correlation
function of crystal orientations is taken into account, which contains only the volume fraction information of the
microstructural features. The corresponding bounds are called elementary bounds. If there is a large phase contrast
on the microscale, then the elementary bounds give poor estimates of the macroscopic potentials. The incorporation
of two-point and higher-order correlation functions allows to tighten the bounds. The exploitation of these second-
and higher-order bounds requires a considerable computational effort.

In the present paper only the one-point correlation function of crystal orientations is taken into account. This
function is called crystallite orientation distribution function in texture analysis. It specifies the volume fraction of
crystals having a specific orientation. In the case of an isotropic polycrystal, this distribution function is simply
constant and equal to one. Due to the high nonlinearity of the constitutive potential relations at room temperature,
it is a nontrivial task to estimate the effective potentials, even in the isotropic case. The considerations here are
further restricted to the isotropic Reuss bound. This bound is based on the assumption that the stress field is
homogeneous over the aggregate. For the special case of a linear-viscous behavior the Reuss bound predicts a
Mises type flow behavior whereas for the special case of a rate-independent behavior a Tresca type flow potential
is obtained.

The main result of this paper is the numerical determination of the Reuss bound of viscoplastically isotropic
polycrystals for all types of stress states. The bound is numerically determined by means of an adaptive integration
scheme. The numerical results indicate a strong dependence of the Reuss potential on the determinant of the
stress deviator. This dependence implies that the viscoplastic flow is not proportional to the stress deviator. A
simple analytical expression is found, which reproduces the numerical findings over a wide range of strain rate
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sensitivities. It contains the Mises type flow behavior as a special case.

Notation. Throughout the text a direct tensor notation is preferred. The scalar product, the dyadic product, and
the Frobenius norm are denoted by A · B = tr(ATB), A ⊗ B, and ‖A‖ = (A · A)1/2, respectively. Irreducible,
i.e., completely symmetric and traceless tensors are designated by a prime, e.g., A′ and C ′. The symmetric and
the skew part of a 2nd-order tensor A are denoted by sym(A) and skw(A), respectively. Volume and orientational
averages are indicated by 〈·〉.

2 The Strain Rate and Stress Potentials on the Microscale

Flow Rule and Lattice Spin. Elastic distortions are assumed to be negligible. Viscoplastic deformations are
considered to result from inelastic deformations in slip systems and, hence, are volume preserving. The slip rate
is assumed to be driven by the resolved shear stress in the corresponding slip system. Therefore, it depends only
on the deviatoric part of the stress tensor. The constitutive relation between the mass density and the hydrostatic
pressure is not considered here, since only the isotropic viscoplastic behavior of an fcc polycrystal is of interest.

Distortions of viscoplastic single crystals can be modeled by the following set of equations

0 = D′ − Q sym(K̃(QTτ ′Q, τC
α ))QT,

Q̇Q−1 = W − Q skw(K̃(QTτ ′Q, τC
α ))QT

(1)

(see, e.g., Hutchinson, 1976). D and W are the symmetric and the skew part of the velocity gradient L = ∂v/∂x.
τ denotes Kirchhoff stress tensor, which is related to the Cauchy stress tensor σ by τ = Jσ, where J = �0/� is
the determinant of the deformation gradient. The internal variables τC

α are the critical resolved shear stresses in the
different slip systems. In the present work, fcc single crystals are considered. For this specific class of materials, it
is a reasonable assumption that the slip systems harden in an isotropic manner, i.e. τC

α = τC (Kocks and Mecking,
2003).

The orientation of a crystallite is described by a proper orthogonal tensor Q = gi ⊗ ei where ei and gi represent
a orthonormal basis fixed to the sample and to the (orthonormal) lattice vectors of the crystal, respectively. For a
given strain rate tensor D′, eqn. (1)1 is an implicit equation for the stress deviator τ ′. For given τ ′, W and Q,
respectively, eqn. (1)2 determines the spin Q̇Q−1 of the crystal lattice.

The function K̃ is assumed to be given by

K̃(QTτ ′Q, τC) =
N∑
α

γ̇α(τα, τC)M̃α, γ̇α(τα, τC) = γ̇0sign (τα)
∣∣∣ τα

τC

∣∣∣n τα = (QTτ ′Q) · M̃α (2)

(Hutchinson, 1976). τα is the resolved shear stress in a slip system α. The material parameter n quantifies the
strain rate sensitivity of the material. It is generally temperature dependent and can be estimated by strain rate
jump experiments. At room temperature n is usually in the range 50−250. In the limit n → ∞ a rate-independent
behavior is obtained. The Schmid or slip system tensors M̃α = d̃α ⊗ ñα are rank-one tensors, which are defined
in terms of the slip system directions d̃α and the slip plane normals ñα. In the case of an fcc single crystal at room
temperature, the octahedral slip systems 〈11̄0〉{111} have to be taken into account (N = 12).

Strain Rate Potential. The specification of the flow rule in eqn. (2) implies the existence of a potential Ψτ for D′

D′ = Hτ (τ ′,Q, τC) =
∂Ψτ (QTτ ′Q, τC)

∂τ ′ , (3)

where

Ψτ (QTτ ′Q, τC) =
1

n + 1

∑
α

γ̇0τ
C

∣∣∣∣∣
(QTτ ′Q) · M̃α

τC

∣∣∣∣∣
n+1

. (4)
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The potential Ψτ is a convex function of the stress deviator τ ′. Hence, there exists a one-to-one relation between
τ ′ and D′. The functions Hτ and Ψτ are homogeneous of degree n and n + 1, respectively

Hτ (λτ ′,Q, τC) = λnHτ (τ ′,Q, τC) ∀λ > 0, (5)

Ψτ (λQTτ ′Q, τC) = λn+1Ψτ (QTτ ′Q, τC) ∀λ > 0. (6)

Stress Potential. The convexity of Ψτ implies the existence of a potential ΨD for τ ′ such that

τ ′ = HD(D′,Q, τC) =
∂ΨD(QTD′Q, τC)

∂D′ . (7)

Ψτ and ΨD are dual potentials and ΨD can be determined by a Legendre-Fenchel transformation

ΨD(QTD′Q, τC) = sup
τ ′

(τ ′ · D′ − Ψτ (QTτ ′Q, τC)). (8)

The functions HD and ΨD are homogeneous of degree 1/n and (n + 1)/n, respectively

HD(λD′,Q, τC) = λ
1
n HD(D′,Q, τC) ∀λ > 0, (9)

ΨD(λQTD′Q, τC) = λ
n+1

n ΨD(QTD′Q, τC) ∀λ > 0. (10)

3 The Strain Rate and Stress Potentials on the Macroscale

Strain Rate Potential. In the following, a representative volume element (rve) in a statistically homogeneous
fcc polycrystal is considered. An rve is a volume which is small enough to be macroscopically considered as a
material point. Furthermore, an rve is large enough to contain a statistically representative volume fraction of the
microstructure. The boundary of the rve and its outer normal vector are denoted by ∂v and n, respectively. Both the
velocity vector as well as the traction vector are assumed to be continuous on grain boundaries. Furthermore, the
assumption of a homogeneous hardening state in the rve is adopted. In this section we shortly summarize the basic
statements that are important in the context of the elementary bounds (see, e.g., Willis, 1989; Ponte Castañeda,
1991, 1992; Nemat-Nasser and Hori, 1999; Ponte Castañeda and Suquet, 1998; Torquato, 2002)

Let Bτ be the class of trial stress fields τ̌ defined by the set

Bτ = {τ̌ : τ̌ (x)n = τ̄n ∀x ∈ ∂v; div (τ̌/J) = 0; τ̌ = τ̌T} (11)

and let
Fτ (τ̌ ′, τ̄ ′) = 〈Ψτ (QTτ̌ ′Q, τC)〉 (12)

be the trial functional. Among all trial fields τ̌ ′, the field τ ′ that makes the associated strain rate field compatible
is the one that uniquely minimizes the trial functional Fτ

Fτ (τ ′, τ̄ ′) ≤ Fτ (τ̌ ′, τ̄ ′), (13)

δFτ (τ ′, τ̄ ′) = 0, δ2Fτ (τ ′, τ̄ ′) = 〈δτ ′ · ∂2Ψτ

∂τ ′2 [δτ ′]〉 ≥ 0 (14)

(Hutchinson, 1976). Furthermore, it can be shown that the average of Ψτ corresponding to the real field τ ′

Ψ̄τ (τ̄ ′) = inf
τ̌ ′∈Bτ

〈Ψτ (QTτ̌ ′Q, τC)〉 (15)
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represents a potential for the average strain rate

D̄
′ =

∂Ψ̄τ (τ̄ ′)
∂τ̄ ′ . (16)

Stress Potential. Let BD be the class of trial strain rate fields Ď
′

with associated velocity field v̌ defined by the
set

BD = {Ď′
: v̌(x) = D̄

′
x ∀x ∈ ∂v , Ď

′
= (grad (v̌(x)) + grad (v̌(x))T)/2} (17)

and let
FD(Ď

′
, D̄

′) = 〈ΨD(QTĎ
′
Q, τC)〉 (18)

be the trial functional. Among all trial fields Ď
′
, the field D′ that makes the associated stress field divergence-free

and symmetric is the one that uniquely minimizes the trial functional FD

FD(D′, D̄′) ≤ FD(Ď
′
, D̄

′), (19)

δFD(D′, D̄′) = 0, δ2FD(D′, D̄′) = 〈δD′ · ∂2ΨD

∂D′2 [δD′]〉 ≥ 0. (20)

(Hutchinson, 1976). Furthermore, it can be shown that the average of ΨD corresponding to the real field D′

Ψ̄D(D̄′) = inf
ˇD

′∈BD

〈ΨD(QTĎ
′
Q, τC)〉 (21)

represents a potential for the average stress

τ̄ ′ =
∂Ψ̄D(D̄′)

∂D̄
′ . (22)

The potentials Ψ̄D(D̄′) and Ψ̄τ (τ̄ ′) are not dual to each other in general, because the corresponding boundary
conditions are different (Willis, 1989; Ponte Castañeda, 1991, 1992)

Ψ̄D(D̄′) ≥ sup
τ̄ ′

(
τ̄ ′ · D̄′ − Ψ̄τ (τ̄ ′)

)
. (23)

Elementary Bounds. In the context of a viscoplastic material behavior it is possible to derive upper and lower
bounds for the overall strain rate potential and the overall stress potential. The most simple estimates, the so called
elementary bounds, are based on the one-point statistics of the microstructure. The one-point correlation functions
represent only the volume fraction information of the microstructure. The advantage of the elementary bounds
is that they can be computed quite easily since no boundary-value problem has to be solved. These bounds are
only accurate for small phase contrasts on the microscale. The larger the phase contrast on the microscale is, the
larger is the distance between the bounds. The incorporation of higher-order correlation functions allows to tighten
the bounds. For the incorporation of higher-order bounds see for example Beran (1968), Nemat-Nasser and Hori
(1999), Ponte Castañeda and Suquet (1998), Torquato (2002).

The Reuss Bound. It immediately follows from eqn. (15) that the assumption of a homogeneous stress field
(Sachs, 1928; Reuss, 1929) gives a bound for the strain rate potential

Ψ̄τ (τ̄ ′) ≤ Ψ̄R(τ̄ ′) = 〈Ψτ (QTτ̄ ′Q, τC)〉. (24)

The dual potential is obtained by a Legendre-Fenchel transformation

Ψ̄R∗(D̄′) = sup
τ̄ ′

(
τ̄ ′ · D̄′ − Ψ̄R(τ̄ ′)

)
. (25)
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The Reuss bound predicts the following rate of deformation

D̄
′R =

∂Ψ̄R(τ̄ ′)
∂τ̄ ′ . (26)

The Voigt Bound. It immediately follows from eqn. (21) that the assumption of a homogeneous strain rate field
(Voigt, 1889; Taylor, 1938; Bishop and Hill, 1951; Hutchinson, 1976) gives a bound for the stress potential

Ψ̄D(D̄′) ≤ Ψ̄V (D̄′) = 〈ΨD(QTD̄
′
Q, τC)〉. (27)

The dual potential is obtained by a Legendre-Fenchel transformation

Ψ̄V ∗(τ̄ ′) = sup
¯D

′

(
τ̄ ′ · D̄′ − Ψ̄V (D̄′)

)
. (28)

The Voigt bound predicts the following stress tensor

τ̄ ′V =
∂Ψ̄V (D̄′)

∂D̄
′ . (29)

The following relations hold for sufficiently large representative volume elements

Ψ̄V ∗(τ̄ ′) ≤ Ψ̄τ (τ̄ ′) ≤ Ψ̄R(τ̄ ′), (30)

Ψ̄R∗(D̄′) ≤ Ψ̄D(D̄′) ≤ Ψ̄V (D̄′). (31)

The Voigt estimate Ψ̄V ∗ represents a lower bound whereas the Reuss estimate Ψ̄R is an upper bound for the strain
rate potential Ψ̄τ .

4 Numerical Approximation of the Isotropic Reuss Bound

Homogenization Based on Orientation Averages. The distribution of crystal orientations Q can be quantitatively
described by the crystallite orientation distribution function f(Q) (Bunge, 1965; Roe, 1965). The function f(Q)
specifies the volume fraction dv/v of crystals having the orientation Q, i.e.

dv

v
(Q) = f(Q) dQ. (32)

dQ is the volume element in SO(3) which ensures an invariant integration over SO(3) (Gel’fand et al., 1963), i.e.

∫
SO(3)

f(Q) dQ =
∫

SO(3)

f(QQ0) dQ ∀Q0 ∈ SO(3). (33)

If SO(3) is parameterized by Euler angles, the volume element dQ is given by

dQ =
sin(Φ)
8π2

dϕ1 dΦ dϕ2. (34)

The function f(Q) is nonnegative and normalized such that

f(Q) ≥ 0 ∀Q ∈ SO(3),
∫

SO(3)

f(Q) dQ = 1. (35)

The orientation distribution function f(Q) reflects both the symmetry of the crystallites forming the aggregate
and the sample symmetry, which results from the processing history (Zheng and Fu, 2001). The crystal symmetry
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implies the following symmetry relation for f(Q)

f(Q) = f(QHC) ∀HC ∈ SC ⊆ SO(3 ). (36)

SC denotes the symmetry group of the crystallite. The sample symmetry implies the following symmetry relation
for f(Q)

f(Q) = f(HSQ) ∀HS ∈ SS ⊆ SO(3 ). (37)

SS denotes the symmetry group of the sample.

Let ψ(Q(x)) be a mechanical quantity of a crystallite which depends on the position vector only by its dependence
on the orientation Q. Volume averages of such a quantity can be transformed by equation (32) into averages over
SO(3)

ψ̄ =
1
v

∫
v

ψ(Q(x)) dv =
∫

SO(3)

f(Q)ψ(Q) dQ. (38)

Parameterization of the Stress Deviator. The stress deviator τ̄ ′ can generally be decomposed into

τ̄ ′ = ‖τ̄ ′‖QτN ′
τQT

τ , (39)

where ‖τ̄ ′‖ is the magnitude of τ̄ ′. Qτ is an orthogonal tensor that maps an arbitrary orthonormal reference bases
ei onto the eigenvectors of τ̄ ′. The eigenvectors of the symmetric tensor N ′

τ are ei and the eigenvalues nα of
N ′

τ are equal to those of τ̄ ′ divided by ‖τ̄ ′‖. The restrictions tr(N ′
τ ) = 0 and ‖N ′

τ‖ = 1 hold. As a result, the
eigenvalues nα are constrained by n1 + n2 + n3 = 0 and n2

1 + n2
2 + n2

3 = 1, respectively. These constraints are
identically fulfilled by the following parameterization of N ′

τ

N ′
τ (ξ) =

3∑
α=1

nαeα ⊗ eα, n1,3 = −
√

6
6

ξ ±
√

2
2

√
1 − ξ2, n2 =

√
6

3
ξ, (40)

ξ ∈ [−1/2, +1/2]. The principal invariants of τ̄ ′ are

I = 0, II = −1
2
‖τ̄ ′‖2, III =

√
6

6
‖τ̄ ′‖3ξ

(
4
3
ξ2 − 1

)
. (41)

The principal invariants of N ′
τ are

I ∗ = 0, II ∗ = −1
2
, III ∗ =

√
6

6
ξ

(
4
3
ξ2 − 1

)
∈ [−

√
6

18
, +

√
6

18
]. (42)

In the case of an isotropic body, the ξ-values −1/2, 0, and +1/2 belong to the stress states corresponding to
uniaxial elongation, plane strain compression, and simple compression, respectively.

The Isotropic Reuss Bound. In this section the Reuss bound for the strain rate potential of an isotropic fcc poly-
crystal is numerically determined. In the case of the Reuss bound, the stress field is assumed to be homogeneous
over the polycrystal, i.e. τ̄ ′ = τ ′. According to (24) the Reuss bound is given by

Ψ̄R(τ̄ ′) = 〈Ψτ (QTτ̄ ′Q, τC)〉 =
∫
SO(3)

f(Q)Ψτ (QTτ̄ ′Q, τC) dQ. (43)

The isotropy of the polycrystal is equivalent to f(Q) = 1 and the last equation can be simplified to

Ψ̄RI(τ̄ ′) =
∫
SO(3)

Ψτ (QTτ̄ ′Q, τC) dQ. (44)
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Figure 1: Γ∗(III ∗,m) determined by a numerical inte-
gration of eqn. (46) vs III ∗ for different values of m
(2, 12, 24, . . . , 202)
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Figure 2: Γ(0,m) determined by a numeri-
cal integration of eqn. (46) vs m (points) and
Γ(0,m) ≈ 10a−b(m−2) vs m with a = −1.35,
b = 0.164 (solid line)

After introducing the strain rate potential of fcc single crystals (see (4)), the Reuss bound is given by

Ψ̄RI(τ̄ ′) =
γ̇0τ

CN

m

(‖τ̄ ′‖
τC

)m

Γ(III ∗,m), m = n + 1, (45)

where

Γ(III ∗,m) =
∫
SO(3)

∣∣∣ N ′
τ (ξ(III ∗)) · QM̃QT

∣∣∣m dQ. (46)

N denotes the number of slip systems. Due to the isotropy of the aggregate only one arbitrary Schmid tensorM̃ of
the twelve tensors M̃α has to be considered in the integral. The homogeneity properties of the potential function
Ψτ imply that Ψ̄RI is homogeneous of degree m in ‖τ̄ ′‖. It is important to note that the integral in (46) only
depends on the principal invariant III∗ ∈ [−√

6/18, +
√

6/18] of N ′
τ and on the material parameter m ∈ [2,∞].

Without loss of generality, the integral (46) can be written in form of

Γ(III ∗,m) = Γ(0,m)Γ∗(III ∗,m). (47)

It can be seen that the isotropic Reuss bound is described by the two functions Γ(0,m) and Γ∗(III ∗,m), respec-
tively.

In Fig. 1 the numerical approximation of the function Γ∗(III ∗,m) is plotted for different values of m in the in-
terval [−√

6/18, +
√

6/18]. The numerical integration over SO(3) has been performed by means of an adaptive
integration scheme (Berntsen and Espelid, 1991a,b). It can be seen that only for m = 2 the Reuss bound is inde-
pendent of III ∗. For larger values of m, a strong dependence of the effective potential on the determinant of N′

τ

is observed. In Fig. 2 discrete values of Γ(0,m) are plotted for different values of m. Note that for the numerical
determination of the functions Γ(0,m) and Γ∗(III ∗,m), a normalization must be performed in order to capture
the order of magnitude of the two functions.

In Fig. 3 the function arccosh(1 − ln(Γ∗(III ∗,m))) is shown. The plot of the transformed function, which shows
an almost linear dependence on III∗ for all values of m, motivates the following ansatz

Γ∗(III ∗,m) ≈ exp(1 − cosh(β(m) | III ∗ |)), (48)

which is used in order to find the optimal β(m) for fixed m. This is done by means of a least-squares fit based on
the Levenberg-Marquardt method. As a result one obtains a set of discrete values of β over m shown in Fig. 4.
The discrete values can be approximated by the following ansatz

β(m) ≈ c
√

m − 2, c = 2.294, (49)

where the numerical value of a has also been obtained by the aforementioned optimization scheme. The numerical
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Figure 3: arccosh(1 − ln(Γ∗(III ∗,m))) determined by
numerical integration of eqn. (46) vs III∗ for different
values of m 2, 12, 24, . . . , 202
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Figure 4: β(m) determined by a least-squares fit
of the numerical data (see, Fig. 1) (points) and
β(m) ≈ 2.294

√
m − 2 (solid line)

Figure 5: Γ∗(III ∗,m) vs III ∗ for different values of
m (2, 22, 42, . . . , 202): determined by numerical in-
tegration of eqn. (46) (triangles) and approximated
by Γ∗(III ∗,m) ≈ exp(1 − cosh(β(m) | III ∗ |)) (solid
lines)

Figure 6: Γ∗(III ∗,m) vs III ∗ for different values of
m (2, 52, 102, . . . , 502): determined by numerical in-
tegration of eqn. (46) (triangles) and approximated
by Γ∗(III ∗,m) ≈ exp(1 − cosh(β(m) | III ∗ |)) (solid
lines)

constants in the following ansatz for Γ(0,m)

Γ(0,m) ≈ 10a−b(m−2), a = −1.35, b = 0.164 (50)

have also been determined using a least-squares minimization.

In Fig. 5 and Fig. 6 the ansatz (48)-(49) is compared with the values obtained by a numerical integration of eqns.
(46). The prediction of eqn. (50) is shown by the solid line in Fig. 2. It can be concluded that the equations
(48)-(50) give a reasonable approximation of the numerical data.

Finally, one obtains the following approximation of the isotropic Reuss bound

Ψ̄RI(τ̄ ′) ≈ γ̇0τ
CN

m

(‖τ̄ ′‖
τC

)m

Γ(0,m) exp (1 − cosh (β(m) | III ∗ |)) , (51)

Γ(0,m) ≈ 10a−b(m−2), (52)

β(m) ≈ c
√

m − 2. (53)
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Eqn. (51)1 can be equivalently formulated in terms of the stress deviator τ̄ ′

Ψ̄RI(τ̄ ′) ≈ γ̇0τ
CN Γ(0,m)

m

(‖τ̄ ′‖
τC

)m

exp
(

1 − cosh
(

β(m)
|det(τ̄ ′) |
‖τ̄ ′‖3

))
(54)

The approximation (54) of the isotropic Reuss bound gives a Mises type flow behavior for m = 2 because of
β(m = 2) = 0. Such a Mises type behavior is characterized by the fact that the traceless part of the rate of
deformation is proportional to the Kirchhoff stress deviator. For all values of m larger than 2 the third principal
invariant of the stress deviator influences the direction of the plastic flow. This can be easily seen, if the following
relations are taken into account

∂‖τ̄ ′‖
∂τ̄ ′ =

τ̄ ′

‖τ̄ ′‖ ,
∂det(τ̄ ′)

∂τ̄ ′ = (τ̄ ′2)′. (55)

As a result, the rate of deformation has the following form

D̄
′RI =

∂Ψ̄RI(‖τ̄ ′‖, det(τ̄ ′))
∂τ̄ ′ =

∂Ψ̄RI(‖τ̄ ′‖, det(τ̄ ′))
∂‖τ̄ ′‖

τ̄ ′

‖τ̄ ′‖ +
∂Ψ̄RI(‖τ̄ ′‖, det(τ̄ ′))

∂det(τ̄ ′)
(τ̄ ′2)′ (56)

where the scalar derivatives can be estimated by the approximations (48), (49), and (50).

For m → ∞ the isotropic Reuss bound approaches the Tresca yield surface since the stress state is homogeneous
and each orientation of a slip system occurs with the same probability. In Fig. 7 the lines of equal dissipation as
predicted by eqn. (54) are shown in the Haigh-Westergaard stress space for different values of m. Also the Tresca
yield criterion is plotted, which can be formulated in terms of the principal invariants of τ̄ ′ as follows

−4II 3 − 27III 2 − 9k2II 2 − 6k4II − k6 = 0 (57)

(Reuss, 1933). As mentioned before, a Mises type ’yield surface’ is obtained for m = 2. For larger values of m

the yield surface is close to the one predicted by the Bishop-Hill polycrystal model (see, e.g., Gambin, 2001). This
yield surface is rounded nearby the corners of the Tresca criterion and otherwise parallel to the Tresca criterion. For
values of m between 100 and 150 the ansatz (48)-(50) fails to be convex. This property is due to the approximations
applied.

Application of the Approximation in Elastoplasticity. After a slight modification of eqn. (54), the approximation
of Ψ̄RI(τ̄ ′) can be used in the context of elastoplasticity. The stress dependent part of the yield condition for
elastic-plastic materials is usually required to be positive homogeneous function of degree one in the stress tensor.
The following ansatz for the yield function of an isotropic polycrystal meets this requirement

Ψ̄(τ̄ ′) = ‖τ̄ ′‖ exp
1
m

(
1 − cosh

(
β(m)

|det(τ̄ ′) |
‖τ̄ ′‖3

))
−

√
2
3
κ(m,β(m))σF (58)

If κ(m,β(m)) in (58) is chosen such that σF represents the critical tensile stress for all m and β, one obtains

κ(m,β(m)) = exp
1
m (−2 sinh(

√
6β(m)/36)2). (59)

In elastoplasticity m should be interpreted as a shape parameter that quantifies the closeness to the Mises type
behavior. Experimental findings indicate that the initial yield loci of isotropic polycrystals are between the criteria
by Tresca and by Mises. The ansatz (58) allows to model such a type of yield loci.
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Figure 7: Approximation of Ψ̄RI(τ̄ ′) for different values of m (2, 10, 50, 100, 150)

5 Summary and Outlook

It has been shown that the isotropic Reuss bound of the strain rate potential shows a significant dependence on
the determinant of the stress deviator. This dependence implies that the viscoplastic flow is not proportional to the
stress deviator. A simple analytical expression allows to reproduce the numerical findings over a wide range of
strain rate sensitivities. It contains the Mises type flow behavior as a special case. Such an analytical expression for
the strain rate potential can be used in order to specify the flow direction of viscoplastically isotropic polycrystals.
It can also be used to specify the flow condition of elastoplastic materials. Further work should concern the
isotropic Voigt bound and the influence of inhomogeneities of the crystallite orientation distribution on the flow
direction. Here simple models are needed which allow for a specification of the flow direction as a function of the
texture coefficients.
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Address: Thomas Böhlke, Albrecht Bertram, Otto-von-Guericke-Universität Magdeburg, Institut für Mechanik,
PSF 4120, D-39016 Magdeburg.
email: boehlke@mb.uni-magdeburg.de

194


