
146

TECHNISCHE MECHANIK, Band 23, Heft 2-4, (2003), 146-159
Manuskripteingang: 18. Juni 2003

On the Connection between Continuum Crystal Plasticity and the
Mechanics of Discrete Dislocations

 B. Fedelich

Dedicated to the memory of my mentor and friend, Jürgen Olschewski

This work aims at linking the levels of the continuum crystal plasticity with that of discrete dislocations. First,
some former results about the kinematics of discrete dislocations are recalled. Then the fields at the continuum
level are constructed by averaging the corresponding fields at the dislocation level. Under the assumptions of
small elastic strains, small lattice curvature at the dislocation level and statistical homogeneity at the scale of
the representative volume element the classical forms of the balance equations for the continuous fields can be
retrieved. In addition, a multiplicative decomposition the deformation gradient in an elastic part and an
irreversible part is achieved. While the elastic strains are assumed to be small, the plastic strains can be
arbitrarily large.

1 Introduction
 
 This work is an attempt to bridge the gap between the description of a crystal that contains a large number of
discrete dislocations and the conventional continuum crystal plasticity theory. Thereby the strains caused by
plastic slip can be arbitrarily large. There already exist numerous treatments of crystals distorted by continuous
distributions of dislocations, starting among others with the historical works of Nye (1953) and Kröner (1958).
What is here meant is quite different: We claim that the field equations (balance + constitutive equations) in a
physical treatment of crystal plasticity should be derived from the field equations of the crystal that undergoes
irreversible lattice rearrangements due to discrete dislocation glide. While these irreversible processes are
concentrated on discrete singular surfaces, the bulk of the crystal behaves elastically.
 There exist several homogenization techniques to link two levels of descriptions. A popular and intuitive one is
the use of spatial averaging at the lower level to define the fields at the higher level. However, the case of
discontinuous deformations and finite strains has received little attention up to now. Due to the necessity to
distinguish between the reference and the deformed state and due to the various possible measures for stress and
strain in finite transformations, there is an inherent arbitrariness concerning the definition of the fields at the
higher level. Moreover, because of geometric non-linearity, the various alternatives are not equivalent in the most
general case. Hill (1972, 1984) and Nemat-Nasser and Hori (1999) proposed a general scheme to extend the
homogenization by spatial averaging to large transformations. As a rule, the choice is guided by the desire to
retrieve the familiar forms of the balance equations at the higher level. A challenging situation for the
homogenization theory is given, when a perfect identification turns out to be impossible for some reason. Then
the theory for the higher level has to be extended, e.g., by enriching the kinematical description. In this line of
thought, Forest (1998) and Van der Sluis (1999) have recently modeled heterogeneous materials by Cosserat
continua at the macroscopic level. When the central hypothesis of statistical homogeneity at the microscopic
scale is not fulfilled, it turns out that the energy balance at the higher level fails to have the usual form, thus
demanding an appropriate treatment.
 While the present work leaves many unanswered questions, we thus believe that this approach has the potentiality
to provide new insights into the mechanics of ductile crystals. The treatment relies on some recent results
obtained by Fedelich (2003b) about the kinematics of dislocation glide in finite elasticity. Note that the
regularization of crystals distorted by discrete dislocations through spatial averaging in the linear frame has been
recently presented by Fedelich (2003a).
 The paper is organized as follows:
 First, some definitions and results from the above mentioned paper (Fedelich, 2003a) are briefly recalled. Then
the field equations and kinematical assumptions at the dislocation level are formulated. The fields at the
continuous level are first purely formally defined. We finally show that under the made assumptions, the usual
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balance equations of continuum crystal plasticity are retrieved. In addition, a multiplicative decomposition of the
deformation gradient in an elastic part and an irreversible part is presented.
 
 
2 Kinematics of Crystal Dislocations

2.1 Classical Deformations

The treatment of discontinuous large deformations requires some care in the language to avoid ambiguities. A
very careful presentation of this matter has been given by Del Piero and Owen (1993). However, the
comprehensive mathematical framework of these authors is quite cumbersome to handle with in practice. Here
we adopt what we believe to be a reasonable compromise between mathematical rigor and a more intuitive
presentation, in compliance with the usual standard of the mechanical engineering literature.
We throughout assume in this work a stress-free and defect-free reference configuration (natural state) of the
considered body � . In this state, the body � is assumed to occupy an open region 0�  of the three-dimensional
Euclidean space � . The subset 0�  is furthermore supposed to be regularly open, i.e., it coincides with the
interior of its closure. In the following we consequently use the notations �  and ‘� to denote respectively the
closure and the boundary of some subset �  of � .

Definition 1

A classical deformation is a mapping from 0�  into �
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Figure 1. Reference and current configuration for a classical deformation.

In the following, it will be essential to distinguish the displacement vector expressed in terms of the positions
0x of material points in the reference state (see Figure 1)

E F E F0 0 0 0 0: ,Z Ju x x xÅÅÅÅ�� (3)
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from its counterpart expressed in terms of the positions x of material points in the deformed state
E F E F E F1 1

0: .J J�Z Z J�u x u x x xÅ ÅÅ ÅÅ ÅÅ Å� �� � (4)

The inverse of the deformation gradient is also the spatial gradient of the inverse mapping 1J
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In the sequel, we shall make consequent use of the subscript 0 to denote quantities relative to the reference
configuration.

2.2  Piecewise Classical Deformations

To describe the distortion states of bodies as those produced by dislocation glide, it becomes necessary to relax
the previous requirements made to classical deformations. The following definition extends the classical
deformation concept to the situation in which the mapping 0ÅÅÅÅ� may be discontinuous or ill defined across several
internal surfaces of the body. It is similar to the definition of the “simple deformations” formulated by Del Piero
and Owen (1993).

Definition 2

A piecewise classical deformation of a body � (see Figure 2) is a mapping 0ÅÅÅÅ�  from 0�  into � for which there
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0 0 0, ,..., ,N
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Figure 2. Example of a time dependent piece-wise classical deformation of a body induced by a sequence of two
shear processes. Partition of the region occupied by the body in the reference and in the distorted state.

We also denote by � the interior of 
1

N
i

iZ

�

�� or, more pictorially, the region occupied by the body in the distorted

state. In the case of time-dependent mappings E F0 tÅÅÅÅ� , we assume that the properties (1-4) of definition 2 are
satisfied at any stage with the same constant partition (see the example of Figure 2).
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A consequence of the previous definitions is that the function 0ÅÅÅÅ� can be at most discontinuous on the internal

portion 0� of the boundaries 0
i

‘�  of the subsets 0
i

� . To clarify what we thereby mean, we consider a material

point 0 0
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Similarly, in the distorted state, the inverse mapping 1J
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In the following, we consequently use the superscript i to denote the extension of any function that is regular in a
region of the partition to its boundary. For example, we write
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To define the possible jump of functions across 0 0
ji

‘ Â‘� �  (or i j
‘ Â‘� � ), an arbitrary choice must be made,

leading to the definition of an upper and a lower side of 0 0
ji

‘ Â‘� �  (or i j
‘ Â‘� � ). The notation i jÃ will be

consequently used to state that 0
i

�  (or i
� ) is taken as the upper side and 0

j
�  (or j

� ) as the lower side. For

example, the jump of 0ÅÅÅÅ� across 0 0
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‘ Â‘� � is defined as and denoted by
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In the same way, the jump of 1J
ÅÅÅÅ� across i j

‘ Â‘� � is defined as
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The part of 0 0
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‘ Â‘� � or i j
‘ Â‘

�

� � where the jump of 0ÅÅÅÅ� or 1J
ÅÅÅÅ�  doesn’t vanish is denoted by 0

ij
⇀ or ij

⇀ ,
respectively. We will refer to it as a singular or jump surface in the reference state or in the distorted state,
respectively.
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Figure 3. Illustration of the coherency condition: In (a) the coherency condition is satisfied while it is violated in
(b).

2.3 Coherency Hypothesis

If 0ÅÅÅÅ� is a piecewise classical deformation of a crystal and if the reference configuration is a natural state:

1. There is a constant lattice vector 0
i jÃb  of the defect-free crystal characterizing each singular surface

ij
⇀ , such that the displacement jump across ij

⇀  is given by
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E F 0 .i j i jÃ Ã

Zu x b� �� (13)

2. The inverse of the deformation gradient 1JF� is continuous across ij
⇀ .

The physical meaning of the coherency hypothesis is that jump surfaces are indiscernible in the distorted state
(see Figure 3). By using the theorem of Stokes, one can easily show that a coherent singular surface cannot end
inside a simply connected region � . To describe a crystal dislocation, which is nothing else than the
curve ij

� bounding a singular surface ij
⇀ , one can relax the coherency hypothesis in a narrow strip ij

�  along
ij

� . This procedure is supported by the fact that the crystal is highly distorted in the dislocation core region. In
the region ij

� , the displacement jump is suitably tapered off toward the boundary line ij
�  (see Figure 4). The

equilibrium of elastic solids containing singular surfaces where an arbitrary displacement jump is prescribed was
first analyzed by Somigliana (1914, 1915), following the pioneering works of Weingarten (1901) and Volterra
(1907). An introduction to the various dislocation models available in continuum elasticity can be also found in
the textbook of Teodosiu (1982). A model of Somigliana-type dislocations following this line is presented in next
section. The reasons motivating this choice and some properties resulting from this definition can be found in
(Fedelich, 2003b).

h

dislocation line �

x

dislocation core strip �

� �-

[[ ( )]]u x

Figure 4. Schematic of a dislocation core model.

2.4 Distortion of a Crystal by Somigliana-type Dislocations

We first recall the definition of the distance between a point 0x and a smooth curve 0� :

E F
0 0

0 0 0 0, : min
Ï

Ç Z J
y

x y x
�

� . (14)

Definition 3

We call distortion of a crystal by Somigliana-type dislocations, in short distortion, any piecewise classical
deformation 0ÅÅÅÅ� with the following properties for each singular surface 0

ij
� :

1. 0
ij�

�  is plane and the internal part 0
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� of its boundary curve, i.e., the part of 0
ij�

� that doesn’t intercept
‘� , is smooth and connected.

2. The mapping 0ÅÅÅÅ� is continuous at 0
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� . In particular, the image of 0
ij

�  is the same when it is mapped from

either above or below, that is  E F E F0 0 0 0
ij j iji ij

Z Z� � �Å ÅÅ ÅÅ ÅÅ Å� � .

3. The dislocation core in the reference configuration is represented by a strip 0 0
ij ij
Í� � of constant width

0h , i.e.,

E Fô õ0 0 00 0 0, ,ij ij ij hZ Ï Ç ¡y y� � ⇔ (15)

and its counterpart in the distorted state is defined as

E F0 0: .ijij i
Z� �ÅÅÅÅ� (16)

4. The displacement jump referred to the distorted state is given by
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E F E F0 0 in ,i j i j ijrÃ Ã�Z à �u x x b �� �� (17)

where 0
i jÃb is a constant lattice vector of the defect-free crystal contained in the plane of 0

ij
� , ( )rà is a

suitably smooth increasing function such that
z 40 0if , '( ) 0if 0,r r h r r hàEMF Z MI àE F Z N — à [ Ï , (18)

and E F0r x is the distance between the curve 0
ij

� and the place initially occupied by the material point on
the upper side i of the jump surface that moves to x , i.e.,

E F E F1;
0 0 , .ij ir J�Z Ç �x x� ÅÅÅÅ� (19)

5. The inverse of the deformation gradient 1JF� is continuous across ij ij
J� � and the stress vector

i jÃ
ınëëëë� is continuous across ij�

� , where ëëëë� is the Cauchy stress tensor and i jÃn the unit normal vector
to ij�

� that points outward from i
� .

To define the distance of a material point to the dislocation curve in the reference configuration, when this
material point is identified by its place in the distorted state, an arbitrary choice must be made between the upper
and the lower mappings 0

i
ÅÅÅÅ� and 0

j
ÅÅÅÅ� . Clearly, the symmetric choice can be made, leading to an equivalent model.

In (Fedelich, 2003b) the displacement jump in the reference configuration corresponding to the relation (17) is
derived
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The definition 3, which can be regarded as a particular model of a dislocation core, is mainly motivated by the
following result: The velocity field is denoted by E Fv x� . Let 0l  be a curvilinear coordinate along the dislocation

line 0
ij

�  in the reference state. If 0
ij

�  glides in its plane with a normal velocity E F00 0
ij ij lå Z å , the jump of the

velocity referred to the distorted state is found to be
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where E F0l x is the curvilinear coordinate of the point of 0
ij

�  nearest to E F1;iJ xÅÅÅÅ . This means that the velocity
jump only depends on the gliding movement of the dislocation. It is in particular independent of the elastic strain
variations. Hence, dissipation can only occur when the dislocation is gliding.

3 Transition between the Dislocation and the Continuous Level

3.1 Field Equations at the Dislocation Level

In the following, the level with discrete dislocations, at which the deformation is discontinuous, will be referred
to as the dislocation level. All fields defined at this level are denoted by a tilde. The higher level, at which the
transformations are described by continuous fields, will be referred to as the continuous level. The strain at the
dislocation level is purely elastic. It is defined at any regular material point 0 0

i
Ïx �  as

E F E F E F E F E F0 0 0 0 0 0 0 0
1

: ,
2

T?Z Z ı J Z�x x F x F x 1 x xÉ É ÅÉ É ÅÉ É ÅÉ É Å� �� � � . (22)

We now make the assumption of small strains 1ÉÉÉÉ� � . Notwithstanding the smallness of the strains at the
dislocation level, the magnitude of the lattice rearrangements due to dislocation glide can be arbitrarily large.
Thus, the resulting strains at the continuous level will be considered as being large.
We denote the mass density in the reference configuration by 0ê� . Due to the small strains approximation, the
mass density in the distorted state ê� is approximately unchanged, i.e., 0ê ê� �� . The internal energy is denoted by
e� and the heat flux by q� . The balance equations at the dislocation level are assumed to hold in their usual form,
that is,
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where we assume no bulk forces and static equilibrium to simplify the presentation. The jump conditions at any
singular surface ij

� are given by

� �
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At this level, the linear elastic law takes the form
: , or :C Së Z É É Z ëKë Z É É Z ëKë Z É É Z ëKë Z É É Z ëK� � � � (25)

The elastic stiffness tensor C and the compliance tensor S  are supposed to be spatially homogeneous, which
means that we consider pure crystals without second phase or precipitates.

3.2  General Methodology for Formally Constructing the Fields at the Continuous Level

The corresponding fields at the continuous level are defined by a weighted spatial averaging procedure over a
representative volume element E F0 0 0,RVE Ïx x � . More details on spatial averaging methods can be found in
the textbook of Nemat-Nasser and Hori (1993). The representative volume element (RVE) is a region of �
translating with its centroid 0x  and having a piece-wise smooth boundary (see Figure 5). Since in this work we
focus on the bulk behavior of the crystal, we assume that 0x is far enough from 0‘�  so that E F0 0RVE Íx � . First,

we introduce a suitably smooth weighting function E F0 0 0J Jy x  with the properties

E F E F

E F

0 0 0 0 0

0 0 0

0 for  in ,

0 otherwise,

J RVE

J

J —

J Z

y x y x

y x
(26)

and

E F
0

0

0 0 0 1J dVJ Zyy x
�

.

Typically, E F0 0 0J Jy x  is nearly constant in the largest part of E F0RVE x and smoothly vanishes toward

E F0RVE‘ x . A limiting case for E F0 0 0J Jy x is the characteristic function E F0 0cJ Jy x of the representative

volume element E F0RVE x , having the value 01/V in E F0RVE x and zero otherwise. Here, 0V denotes the volume

of E F0RVE x .
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Figure 5. Body 0� with translating RVE.

3.3  Definition of the Deformation at the Continuous Level

We start by defining the deformation at the continuous level as

E F E F E F E F E F
0 0

0 0

0 0 0 0 0 0 0 0 0 0:
ii

J dV J dVZ J Z Jy yx y y x y y x
� �

Å Å ÅÅ Å ÅÅ Å ÅÅ Å Å� � . (27)

This averaging procedure has a regularizing effect: If the weighting function E F0 0 0J Jy x is indefinitely
differentiable, the deformation at the continuous level 0ÅÅÅÅ is also indefinitely differentiable (Schwartz, 1961). The
deformation gradient at the continuous level is then
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By applying the theorem of Gauss to each subset 0
i

� we obtain

E F E F E F E F E F
0 0

0 0

0
0 0 0 0 0 0 0 0 0 0 0 0

0i ii i

J dS J dV
‘

‘
Z J ‚ J H J

‘
y yF x y n y x y y x

y
� �

ÅÅÅÅ
ÅÅÅÅ

�
� . (29)

Since E F0 0RVE Íx � , the portions of the boundaries 0
i

‘�  contained in E F0RVE x are all strictly contained in 0� .

This means that each surface element 
0 0

idS Í ‘y � is also common to the boundary 0
j

‘�  of some other element

j i◊ of the partition of 0� . The first term of the right hand side of equation (29) can thus be rearranged in a sum

of surface integrals over the singular surfaces 0
ij

� . We can rewrite it as

E F E F E F E F E F
0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
i ij

i j i j

i i

J dV J dS
Ã

Ã

Z J J ‚ Jy yF x F y y x y n y x
� �

ÅÅÅÅ�� ��� . (30)

In particular, the deformation gradient at the continuous level is not the average of the deformation gradient at the
dislocation level. There is an additional term that arises from irreversible lattice rearrangements. Note, that as can

be seen in equation (20), the jump E F0 0
i jÃ

yÅÅÅÅ� ��� depends in general on elastic strains.

3.4  Hypothesis of Slowly Varying Rotations

We now make the additional assumption of slowly varying rotations or of small lattice curvature at the
dislocation level. First, we recall the polar decomposition of the deformation gradient

E F E F E F0 0 0 0 0 0Z ıF x R x W x� � � , (31)

where 0R� is a field of orthogonal tensors and 0W� of symmetric tensors. The hypothesis of slowly varying
rotations can be mathematically formulated by introducing the wryness tensor (Kadafar and Eringen, 1971),

E F0 0 0 0
1

: :
2

T�Z J ı ‚�R Rd Ï Ôd Ï Ôd Ï Ôd Ï Ô�� � � , (32)

where ÏÏÏÏ is the permutation tensor. It is a measure of the relative orientation of two neighboring triads and
remains invariant under rigid motion. Specifically, if RVEL is a characteristic dimension of the RVE, we suppose
that

0 1RVEL dddd� � . (33)
Physically, the low curvature assumption is related to a low density of geometrically necessary dislocations as
shown by Nye (1953). The hypothesis (33) means that the rotation is approximately homogeneous at the scale of
the RVE.

Within this assumption, the deformation gradient at the continuous level may be approximated by

E F E F E F E F E F E F
0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i ij

i j i j

i i

J dV J dS
Ã

Ã

ı J J ‚ Jy yF x R x W y y x y n y x
� �

ÅÅÅÅ�� � �� �� . (34)

There remains the open question of the injectivity of the continuous deformation 0ÅÅÅÅ , which is difficult to infer
from the previous definitions without additional assumptions. In the following, we will throughout suppose that

0ÅÅÅÅ is injective in 0� and denote its inverse by 1J
ÅÅÅÅ . As a partial justification, we note that the small elastic strain

hypothesis implies that 0W 1� � . Hence, when the slip intensity, which is represented by the second term of the

right hand side of (34), vanishes, then E F0 0det 1� Ã�F x  and 0ÅÅÅÅ is locally one-to-one. From this reasoning

follows that the local injectivity of 0ÅÅÅÅ is at least guaranteed for moderate slip activity.

3.5  A Hypothesis of Statistical Homogeneity

Another hypothesis, which is related to the statistical homogeneity of the fields at the scale of the RVE, will turn
out to be useful in the sequel. To formulate it in the most general way, we now consider an arbitrary piece-wise
regular function, E F0 0g x� , defined in the reference configuration at the dislocation level and its
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counterpart E F E F1
0g g J�Z �x xÅÅÅÅ�� � referred to the deformed configuration. The corresponding field at the continuous

level can be defined as

E F E F E F
0

0 0 0 0 0 0 0 0:g g J dVZ Jx y y x
�

� , (35)

in line with the definition of the continuous deformation (27). Obviously, a similar definition can be formulated
with respect to the current state, that is,

E F E F E F:g g J dVZ Jx y y x
�

� , (36)

with a suitably chosen weighting function J in the deformed configuration. In the following, we consequently
make the hypothesis that for the choice 0J JZ the relation

E F E F0 0 0 0g g. Z� x xÅÅÅÅ (37)

holds for any field E F0 0g x� . To better grasp the meaning of the statement (37), we resort to the extreme case of

J being the characteristic function of the RVE cJ . In this case, by applying the variable change E F0 0
i

Zy yÅÅÅÅ  in

each subset 0
i

�  under the hypothesis of small elastic strains, we have
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(38)

since E F0det 1F� � . The hypothesis (37) is therefore equivalent to

E F
E F

E F
E F0 0 0 0

0 0

1 1

RVE RVE

g dV g dV
V V

� �� �

Z

x x

y y
Å ÅÅ ÅÅ ÅÅ Å�

� � . (39)

The underlying physical assumption is that if the RVE is large enough with respect to the typical distance
between dislocations DL and small enough with respect to the macro structural characteristic dimension SL , i.e.,
if

S RVE DL L L� � , (40)
the fields at the continuous level should not critically depend on the particular choice of the averaging domain
(RVE). Since E Fô õ1

0 RVE J�
� xÅ ÅÅ ÅÅ ÅÅ Å�  and E FRVE x can be regarded as two particular choices of the RVE at the material

point x  (see Figure 6) the relation (39) also follows from this assumption. This hypothesis completes the duality
between descriptions referring to the initial and the current state at the continuous level. Because of the one-to-
one correspondence between these two states, the subscript 0 may be dropped and we write when there is no
ambiguity, e.g., E F E F E F0 0 0g g gZ Zx x x  if E F E F0 0 0Z ÿx x xÅ ÅÅ ÅÅ ÅÅ Å .

E F0 0RVE�� xÅ∓

E F0RVE x

E F0 0RVE � �� xÅ

E F0 0xÅx0
0 0RVE� �� xÅ

0RVE x

0 0RVE � �� xÅ

0 0xÅ

Figure 6. Two alternatives to construct a RVE at E F0 0Zx xÅÅÅÅ in the distorted configuration.
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3.6  Formal Definition of the Remaining Fields at the Continuous Level

First, the velocity at the continuous level is defined as

E F E F E F: J dVZ J yv x v y y x
�

� . (41)

The spatial gradient of the velocity can be evaluated by the same procedure as the deformation gradient (30).
After performing the same transformations we obtain

E F E F E F E F E F
i ij

i j i j

i i

J dV J dSÃ
Ã

‚ Z ‚ J J ‚ Jy yv x v y y x v y n y x
� �

Ô ÔÔ ÔÔ ÔÔ Ô� � �� �� � . (42)

Eventually, the Cauchy stress tensor, the mass density, the heat flux and the internal energy are defined at the
continuous level as follows

E F E F E F

E F E F E F

E F E F E F

E F E F E F

: ,

: ,

: ,

: .

J dV

J dV

J dV

e e J dV

Z J

ê Z ê J

Z J

Z J

y

y

y

y

x y y x

x y y x

q x q y y x

x y y x

�

�

�

�

ë ëë ëë ëë ë�

�

�

�

(43)

3.7  Balance Equations for the Linear and the Angular Momentum at the Continuous Level

First, note that because 0ê Z ê� �  the mass density at the continuous level is E F 0 :
M

ê Z ê Z êx � . The spatial
divergence of the Cauchy stress tensor is obtained by the same procedure as for the deformation gradient (30).
We have

E F E F E F E F E F
i ij

i j i j

i i

J dV J dSÃ
Ã

ı Z ı J J ı Jy yx y y x y n y x
� �

ë Ô ë Ô ëë Ô ë Ô ëë Ô ë Ô ëë Ô ë Ô ë� � �� �� � . (44)

Due to the jump condition (24)1 for the stress vector across a singular surface, the second term of the right hand
side of equation (44) vanishes and the balance equations for the linear and the angular momentum at the
continuous level are readily established by spatially averaging the corresponding equations (23)1 and (23)2

,

.T

ı

Z

0ë Ô Zë Ô Zë Ô Zë Ô Z

ë ëë ëë ëë ë

(45)

Remark:
Hill (1972, 1984), Nemat-Nasser and Hori (1999) chose to define the non-symmetric first Piola-Kirchhoff stress
tensor 0S  at the macroscopic level by averaging its counterpart at the microscopic level 0S�  in the reference
configuration. In this line of thought, 0S is regarded as the prime stress measure and the Cauchy stress is defined
from 0S  by

0 0
0

1
:

det
T

Z ıS F
F

ëëëë (46)

instead of (43)1. The advantage of this choice is that the hypothesis (37) is no longer necessary. However, these
authors only considered regular processes at the microscopic level. To demonstrate the difficulties occasioned by
singular surfaces at the microscopic level with this choice, we tentatively define 0S  by spatially averaging 0S�  in
the reference configuration. In this eventuality the gradient of 0S  is given by

E F E F E F E F E F
0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 00
i ij

i j i j

i i

J dV J dS
Ã

Ã

ı Z ı J J ı Jy yS x S y y x S y n y x
� �

Ô ÔÔ ÔÔ ÔÔ Ô ��� �
�� . (47)

But in general the jump E F0 0 0
i j i jÃ

Ã

ıS y n� �
�� is not zero for the singular surfaces caused by dislocation glide

because the material points E F0 0
i yÅÅÅÅ�  and E F00

j yÅÅÅÅ�  lie apart in the distorted state when 0 0
ij

Ïy � . Due to these
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additional terms in the right hand side of the expression (47), this alternative doesn’t yield the desired form of the
equilibrium equations, i.e., 0 0ı ◊S 0ÔÔÔÔ . Furthermore, the Cauchy stress defined by the formula (46) is not
necessarily symmetric in the most general case.

3.8  Balance Equation for the Energy at the Continuous Level

First, the divergence of the heat flux is given by

E F E F E F E F E F .
i ij

i j i j

i i

J dV J dSÃ
Ã

ı Z ı J J ı Jy yq x q y y x q y n y x
� ⇀

Ô ÔÔ ÔÔ ÔÔ Ô� � �� �� � (48)

We will need the auxiliary quantity E FH x defined as

E F E F E Fô õ E F E F:
JH dV‘

� �Z J ‚ ı ı ı� � ‘��� yx v y v x y y x
y

�

Ô ë JëÔ ë JëÔ ë JëÔ ë Jë↗↗ . (49)

By decomposing the volume integral (49), using the theorem of Gauss and the continuity of the stress vector we
obtain the following alternative expression for E FH x

E F E F E F E F E F E F E F

E F E F E F E F E F E F
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: : .
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�� �� �
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(50)

Following the same argumentation that permitted the derivation of the result (30), the surface integrals in (50)
can be rearranged in surface integrals on the singular surfaces ij

� . Invoking the form (42) of the velocity
gradient, we obtain the following identity

E F E F E F E F E F E F E F

E F E F

:

: .

ij i

i j i j

i i

H J dS J dVÃ
Ã �Z ı ı J J ‚ J�

�H ‚�

y yx v y y n y x v y y y x

x v x
� � �

ë Ô ëë Ô ëë Ô ëë Ô ë

ë Ôë Ôë Ôë Ô

�� � � �� �� �

(51)

By averaging the energy balance equation (23)3 we obtain with this last result

E F �0 .
ij ij

i j i ji j i j

i i

e J dS J dS HÃ ÃÃ Ã
ê Z ‚ H ı ı J ı J ıy yv v n q q n

� �

ë W Ô ë Ô Jë W Ô ë Ô Jë W Ô ë Ô Jë W Ô ë Ô J� �� � (52)

Eventually, taking into account the energy balance at a singular surface (24)2 we get the local form of the balance
energy at the continuous level

E F0 :e Hê Z ‚ J ı Jv që Ô Ôë Ô Ôë Ô Ôë Ô Ô� . (53)
With exception of the last term H, we have recovered the usual form for the balance energy. To better understand
the meaning of the quantity H we again resort to the limiting case for J  of the characteristic function cJ of the
RVE. By performing the limiting procedure cJ JÃ in equation (49) we obtain a surface integral on the
boundary of the RVE

E F E F E F E Fô õ E F E F
E F0

1
c

RVE

H H dS
V

‘

� �Ã Z J ‚ ı ı ı� ��� y
x

x x v y v x y y x nÔ ë JëÔ ë JëÔ ë JëÔ ë Jë�� . (54)

The surface integral E FcH x vanishes for homogeneous or periodic boundary conditions on E FRVE‘ x . As noted
by Fedelich (2003a), such conditions are approximately satisfied if the scale of the macroscopic structure and the
dislocation scale can be separated, as stated by the double requirement (40).
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4     Multiplicative Decomposition of the Deformation Gradient at the Continuous Level

4.1 Formal Decomposition of F

We start by formally defining the two following tensor fields

E F E F E F
0

0

0 0 0 0 0 0:
ii

J dVZ J yE x F y y x
�

� (55)

and

E F E F E F E F E F E F
0

0

1 1
0 0 0 0 0 0 0 0 00:

ij

i j i j
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J dS
Ã

ÃJ J

�
�Z ı Z J ı ‚ J
�
�
��� yP x E x F x 1 E x y n y x

�

ÅÅÅÅ� ��� . (56)

We also define the strain tensor associated to E by

E F
1

:
2

T
Z ı JE E 1ÉÉÉÉ . (57)

4.2  Interpretation of E

Invoking the hypothesis of slowly varying rotations (33) we can approximate the tensor E by

E F E F E F E F
0

0

0 0 0 0 0 0 0 0
ii

J dVı J yE x R x W y y x
�

� �� . (58)

Under the assumption of small strains at the dislocation level 1ÉÉÉÉ� �  we have

E F E F E F E F E F
0 0

0 0

0 0 0 0 0 0 0 0 0 0 0
i ii i

J dV J dV� J J Z J� y yx W y 1 y x y y x
� �

É ÉÉ ÉÉ ÉÉ É� �� . (59)

Finally, taking into account the hypothesis (37), it follows from this last result for pure crystals

E F E F E F E F E F E F E F0 : :
i ii i

J dV J dVZ Z J Z J Zy yx x y y x S y y x S x
� �

É É É ë ëÉ É É ë ëÉ É É ë ëÉ É É ë ë� � , (60)

for E F0Zx xÅÅÅÅ . Hence, the nature of the strains associated to E is purely elastic. These strains can be removed by
macroscopically unloading the material element.

4.3  Interpretation of P

Again, by using the hypothesis of slowly varying rotations (33), the expression (20) of the deformation jump and
the approximation 0W 1� �  we can derive a simplified expression for the tensor P. We have

E F E F E F E F E F
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0

0

0

1 1
0 0 0 0 0 0 0 0 00 0

0 0 0 00 0 .

ij
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J ı à ı ‚ J
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y

y

P x 1 R x R y b n y x

1 b n y x

�

�
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�

(61)

According to this last expression, the tensor P only depends on the irreversible lattice rearrangements due to
dislocation glide. It is independent of the elastic strains. The apparent simplicity of the last form in (61) is
somewhat deceiving: The deformation jumps and the topology of the singular surfaces 0

ij
� depend on the history

of the glide process, as shown by Figure 7. When a dislocation crosses an already existing jump surface, the
deformation jump across the former singular surface changes.
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0Å

(a)

(b)

b1

b1

b2

b2

x0

x0

0

Figure 7. Illustration of the history dependence by a sequence of two shear processes on perpendicular planes. In
case (a), the final value of the displacement jump of the point 0x  is E F0 0 1 2Z Hu x b b�

�� . In case (b) the

displacement jump of the same point is E F0 0 1Zu x b�
�� .

5 Conclusions

Under the hypotheses of small (elastic) strains (i), small lattice curvature at the dislocation scale (ii) and of
statistical homogeneity at the scale of the representative volume element (iii), we have constructed the continuum
model for ductile crystals by suitably averaging the fields at the (discontinuous) dislocation level. Thereby we
have retrieved the usual balance equations at the continuous level. We have also proposed a multiplicative
decomposition of the continuous deformation gradient that is reminiscent of the usually postulated decomposition
in an elastic and a plastic part. While the strains are small at the dislocation level, the strains resulting from
plastic slip at the continuous level may be arbitrarily large.
Without being exhaustive, let us mention the following remaining open questions:
- Are all assumptions (i-iii) necessary to retrieve the classical balance equations and the multiplicative

decomposition of F?
- What happens if the stress tensor at the continuous level is primary defined by averaging the nominal stress

tensor instead of the Cauchy stress?
- To complete the identification of the present theory with the classical crystal plasticity theory, the time

variation of the tensor P must be evaluated. This task is quite intricate because of the random character of
the crossing events between moving dislocations and existing singular surfaces. This will be the object of a
future work.

- The paper focuses on the field equations in the bulk of the material. There remains to derive the appropriate
boundary conditions and the jump conditions at singular surfaces at the continuous level.
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