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Contact Strength and Fracture Toughness from Opposite 
Cylinder Loading Tests 

T. Fett, D. Munz 

Bars loaded by oppositely concentrated forces via rollers are appropriate test specimens for the determination of 
strength and fracture toughness under contact loading. Test devices are described and solutions for the stress, 
the stress intensity factor, and the T-stress term are reported. Experimental results are compiled for the contact 
strength. For most investigated materials, measured contact strengths showed strongly reduced Weibull 
exponents compared with those from 4-point bending tests. This important effect is attributed to the strong stress 
gradients near the contact zone.  

1   Introduction 

Conventional strength tests of brittle materials mostly describe the failure behaviour under simple stress states. 
These tests comprise uniaxial stresses with relatively small stress gradients. In most cases four-point bend tests 
with a linear stress distribution are performed. Predictions of the strength under more complicated stress states 
are possible - in principle - on the basis of the Weibull theory, including a multiaxial failure criterion (Batdorf 
and Heinisch, 1978; Evans, 1978; Matsuo, 1981). This approach is applicable at least in cases where the stress 
variations are small and sufficiently constant stresses can be assumed over the size of natural flaws from which 
the failure is initiated. The scatter of the strength is described by a two-parameter Weibull distribution, where the 
Weibull parameter m (see. eq.(21)) is independent of the stress distribution in the component. Under contact 
loading two damage modes are possible: the initiation of cracks in the compressive region under the indenter and 
extension of existing flaws under the tensile stresses near the indentation. Failure occurs usually by the unstable 
extension of these flaws. Due to the severe stress gradients the assumptions of the multiaxial Weibull theory no 
longer is valid. 

In this paper a test method is described which allows the measurement of the contact strength. In addition, this 
device can be used to measure fracture toughness.  It will be shown that the Weibull parameter m differs from 
that of bending tests and an explanation for this difference will be given. 

2   Contact Strength Test 

Fett et al. (2001a) developed a test for the direct determination of strength under contact loading. The test device 
is illustrated in Fig. 1. Two cylinders of 8 mm diameter made of hardened steel are pressed onto the rectangular 
specimen with a force P. The rollers are about 0.1 mm smaller than the guide groove in the supporting structure 
in order to avoid any clamping during load application (cylinders become oval under load). 

For contact between the cylinders and the plane bar, the pressure distribution acting on the region −s ≤ x ≤ s is 
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with the maximum pressure p0 related to the total force P (Fig. 1). Under this load, the failure-relevant stress 
components can be computed from the Green’s function given by Filon (1903), resulting in (Fett et al., 2001a) 
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with the Bessel function of first order, J1. The maximum tensile stress of the bar is reached on the upper and 
lower surfaces, y = ±H, directly near the rollers (x≈0). At these locations, 
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Figure 1. A two-roller test device for contact strength tests and Hertzian pressure distribution. 
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Figure 2. a) Geometric data of the two-roller test device b) stress normal to cross-section AA, c) shear 

stress in cross-section AA. 

The stress state in a bar under contact loading by cylinders is demonstrated here for the case of s/H = 0.1. The 
stress components σx and τxy are plotted in Fig. 2 versus the cross-section of the bar under contact loading. The 
stress component σx is positive only in a very thin surface layer and then changes to compression. The shear 
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stress τxy is zero on the free surface and increases very strongly with increasing depth. The smaller the distance 
from the contact area is, the steeper are the stress gradients. The influence of the finite load contact area on the 
stress state is plotted in Fig. 3a along the free surface, i.e. for y = H. The maximum stress values (identical with 
the maximum tensile stresses in the whole specimen) occur near x/H ≈ s/H+0.025. These maximum stresses (Fig. 
3b) are influenced only slightly by the width of the contact zone. In realistic cases, the deviations from the 
maximum stress obtained as s/H→0 are less than 3%. 
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Figure 3. Influence of a finite pressurized zone: a) stresses σx along the surface (y = H), b) maximum 

tensile stress on the surface. 

3  Fracture Toughness Test 

A modification of the contact strength test device (Fig. 4) is an appropriate tool to determine fracture toughness 
and crack resistance curves of ceramic materials (Fett et al., 2001a, Fett et al., 2001c). A pre-notched bar is 
loaded via four rollers in order to create a sharp crack. The load Pappl = 2P is applied by a half-sphere to the upper 
rollers.  
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Figure 4. Four roller test device for fracture toughness determination 
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Figure 5. Axial stresses σx along the symmetry line x = 0 for two pairs of concentrated opposite forces. 

The stresses in the uncracked bar normal to the crack plane are shown in Fig. 5. Application of the weight 
function technique (for details see e.g. Fett and Munz 1997) yields the mode-I stress intensity factors KI. The 
stress intensity factor is proportional to the applied load and depends on the ratios a/H, d/H and a characteristic 
size parameter. Usually, this size parameter is the crack length a. Then 
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We use here the notation 

 )/,/( HdHaYHKI
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with        HaYY /∗= . 

Y is shown in Fig. 6 as a function of α=a/(2H) with d/(2H) as a parameter. It is of high importance that for 
d/(2H)=1 the stress intensity factor firstly increases with crack length a, but then decreases monotonously. This 
causes completely stable crack propagation under increasing load. For the special case d/(2H) = 1, the geometric 
function Y is fitted for α ≤ 0.6 by 
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Figure 6. a) Geometry function Y according to eq.(7) and b) biaxiality ratio β for d/(2H) = 1. 
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In special applications, it may be important to know the stress field over a longer distance from the crack tip. 
This can be done by including higher-order stress terms. Taking into consideration the singular stress term and 
the first regular term, the near-tip stress field of a cracked body can be described by 

 jiij
I

ij Tf
r

K
11)(

2
δδϕ

π
σ +=   (9) 

where fij are the well-known angular functions for the singular stress contribution. The constant stress term is 
called the "T-stress". In Fig. 6b the biaxiality ratio β is plotted, which is given by the ratio of the T-stress and 
stress intensity factor according to 
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The curve given in Fig. 6b can be described (Fett et al., 2001b) by 

 
α

ααααβ
−

+−++−=
1

994.127477.133527.348589.1469.0 432

 (11) 

4 Experimental Results 

4.1 Contact Strength 

The authors measured the contact strength for several materials and in addition the bending strength applying 
four-point bend tests (Fett and Munz, 2002a; Fett et al., 2003). The results are described by the Weibull 
distribution. The probability that failure occurs below the stress ∗

cσ  is: 
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The Weibull-parameters for the bending and the contact tests are called σ0,bend, mbend, and σ0,cont, mcont. In Fig. 7, 
the Weibull parameters are plotted. In this diagram, the rectangles represent 90% confidence intervals. The 
commercial alumina investigated were: V38, CeramTec, Plochingen (an alumina containing about 4 wt% glass 
phase), Frialit F99.7 (dm≈9µm), and Frialit F99.9 (dm≈2.3µm) both from Friatec, Friedrichsfeld. Frialit F99.7 
was tested in two different surface states, denoted as materials F99.7(I) and F99.7(II). The other materials were a 
fine-grained AlN (CeramTec, Marktredwitz) and a low-strength HPSN (NH209, Annawerk, Rödental). The 
experiments on these ceramics yielded (Fett and Munz, 2002a; Fett et al., 2003) 

• a linear relation between the Weibull parameters σ0 for bending strength and contact strength with roughly  

  ontc,0bend,0 σσ ≈   

as shown in Fig. 7a, where the 90% confidence intervals for the two tests are plotted 

• lower Weibull exponents in the roller tests compared to the 4-point bending tests as shown in Figs. 7b and 7c 
by the 90% confidence intervals for the second Weibull parameter m. The only exception was found for the 
fine-grained Al2O3 (Frialit F 99.9). This material showed identical Weibull exponents in bending and contact 
loading. 

From microscopic observation of fracture surfaces, it can be concluded that failure starts from surface flaws. In a 
recent paper, it could be shown that for cracks extending directly at the end of the Hertzian contact zone, the 
effective stress intensity factor depends linearly on the crack size. This behaviour results in reduced Weibull 
exponents for the strength (Fett and Munz, 2002a; Fett et al., 2003). In the present investigation, a more detailed 
analysis will be given. 
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Figure 7. Interrelation between Weibull parameters of contact strength and 4-point bending 
strength tests; a) characteristic strength σ0, b) and c) Weibull exponent m (widths and heights of 
rectangles given by the 90% confidence intervals). 

4.2 Interpretation of Differences in Weibull Exponents of Contact Strength 

The Weibull theory is a weakest link theory assuming that there exists a statistical distribution of flaws of 
different severity. In a fracture mechanics approach the flaws are described as cracks of different length a. The 
fracture criterion is under mode I loading (stress perpendicular to the crack plane) is 
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where KIc is the fracture toughness. For the small natural flaws and moderate stress gradients Y* is independent 
of the flaws size a.  

This assumption is approximately fulfilled for bending tests, but violated in a contact strength test near the 
loading cylinders. In order to include the strong stress gradients in the failure analysis the natural flaws are 
described as surface cracks perpendicular to the surface. From the stresses present in the uncracked body, the 
stress intensity factors KI and KII can be computed according to  
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with the weight functions hI for mode-I and hII for mode-II loading and the distance η=H-y from the surface. The 
results obtained with the weight function solutions given by Fett and Munz (1997) are plotted in Figs. 8a and 8b, 
in a non-dimensional way (see eq.(6). From this representation, it is obvious that the mode-I stress intensity 
factors are positive close to the surface due to the tensile stresses near the free surface and then become negative 
at larger depths. In this case, at least partial crack closure must occur. The remaining stress intensity factor KII is 
reduced by crack surface friction. 
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Figure 8. Stress intensity factors for edge cracks, a) mode-I and b) mode-II stress intensity factor (s/H = 0.1). 

The effective stress intensity factor Keff, combining KI and KII, was computed by the empirical Richard formula 
(Richard, 1985). It provides the effective stress intensity factor (Fett and Munz, 2002b)  
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µ is the friction coefficient of the crack surfaces which has to be introduced for compressive normal stress at the 
crack. A value of 0.5 was chosen. The resulting effective stress intensity factors are shown in Fig. 9a as a 
function of crack depth a and distance x from the centre of the Hertzian contact zone. Figure 9b shows that large 
cracks with a/(2H) > a*/(2H) (where a*/(2H) ≅  0.01) will predominantly fail near x/s = 1, whereas smaller cracks 
fail at a larger distance from the Hertzian contact zone. For the cracks near x/s = 1, the slope in the log-log plot is 
≈1 for both criteria. In case of a larger distance, the slope is ≈1/2, i.e. 
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Figure 9. Normalized effective stress intensity factor Keff, a) for variably deep edge cracks as a function of the 

distance x from the contact centre, b) as a function of a/(2H) for different x/s 
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Figure 10. Ratio of Weibull exponents for contact and bending strength versus the initial crack size a∝ (KIc/σc)

2. 

The different relation between Keff and the crack length leads to different Weibull parameters m. It is assumed 
that the asymptotic behaviour of the flaw size distribution can be described by a power law 
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From this relation the related strength distribution F(σc) follows (for details see Munz and Fett, 1999) 

 

















−−=

−1

0
c exp1)(

r

a

a
zSF σ   (19) 

where z is the number of cracks per surface unit and S the surface of the component. Insertion of the relation 
between crack size a and strength σc in the form of 
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in (19) yields 
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with the characteristic strength σ0 and 

 )1( −= rpm  (22) 

As a consequence of eq.(17), we obtain the usual value of p = 2 in the absence of strong stress gradients as in the 
bend tests 

 )1(2 −= rmbend  (23a) 

For the contact loading with p =1 there is 

 1−= rmcont  (23b) 

i.e. the ratio 2/ =contbend mm in agreement with the experimental results. 

In Fig.7c an exception of the above can be seen for the material F99, for which the same Weibull parameter m 
for both test methods was observed. An explanation can be given considering Fig.10 where the ratio mcont/mbend is 
plotted versus (KIc/σc)

2. The ratio (KIc/σc)
2 is proportional to the size of the crack from which the fracture is 

initiated. Obviously for short cracks the Weibull exponents in both tests are identical, whereas for longer cracks 
lower exponents for the contact strengths are visible.  
In the case of a large crack size (i.e. for large (KIc/σc)

2), it holds a>a*and from (17) K ∝  a. For a small crack size 
with a<a* we have to conclude from (17) that K ∝  √a. This difference leads to respective m-values differenting 
by a factor of 2. 
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4.3 Determination of the Fracture Toughness and Crack Growth Resistance 

As pointed out in section 3 the four-roller test device can be applied to measure the fracture toughness. In most 
ceramics the crack growth resistance is not characterized by a unique value KIc, there exists rather an increase in 
the stress intensity factor with increasing crack extension (see e.g. Munz and Fett, 1999).  

A result obtained for a commercial soft piezoelectric ceramic (PZT) is presented here as an example. V-notches 
within a range of depths of a = 0.5-0.55 mm were cut into the unpoled and poled specimens of 3×4×45 mm3 by 
the razor blade procedure (Nishida et al., 1996). The poling direction was parallel to the crack tip line with 
electrodes on the 4×45 mm2 surfaces. Then, the specimens were loaded in the 4-roller testing device with d/H = 2 
up to different forces. After unloading, the cracks generated were marked with a penetration dye and the length 
could be measured easily under the optical microscope following fracturing, thus providing the final crack depth 
a (Fig. 11). From the load P and the related crack length a, the stress intensity factor KR was computed according 
to eq.(7) with the geometric function Y given by eq.(8). The results are plotted in Fig. 11. 
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Figure 11. Crack resistance KR for unpoled and poled (poling direction parallel to the crack tip 

line) PZT as a function of crack extension. 

Conclusions 

Rectangular bars loaded by opposite concentrated forces via rollers are appropriate test specimens for the 
determination of the contact strength, the fracture toughness KIc, and the crack resistance curve (R-curve). In the 
paper the stress solutions for the cylinder contact tests are reported. For the fracture mechanics test, the stress 
intensity factor and T-stress solutions are given. The main results were: 

• From contact strength tests on several ceramics it was found that the Weibull parameter, m, for the 
contact strength tests is about half that for bending tests. This could be explained by the strong stress 
gradients in the contact strength test. 

• Due to the continuously decreasing stress intensity factor with increasing crack depth, unstable crack 
propagation is completely prevented in the cylinder contact tests. This advantage allows simple 
determination of crack growth resistance curves. 
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part of this work within the SFB 483.  
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