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A Numerical Method for Computing the Response of Periodic Structures
with Arbitrary Stiffness Distribution

S. Kaßbohm, W.H. M¨uller �

A method based on Fourier series is presented, which allows to calculate the local stress-strain response of a pe-
riodic structure subjected to an applied (spatial average) strain field. The periodicity allows the reduction of the
problem to that of a Representative Volume Element (R.V.E.), which can be solved by transferring it into Fourier
space. - First, a review of Fourier series as a particular method of solving the set of differential equations is given.
Second, the solution operator is calculated in Fourier space. Third, a related problem is studied, in which the
material is homogeneous and fourth, the solution for the problem with arbitrary stiffness distribution is presented
as well as the algorithm for the numerical calculation of the desired fields. Finally, example problems are studied,
and the results are compared to those obtained by the method of Discrete Fourier Transforms (M üller, 1996).

1 Fourier Coefficients/Fourier Expansion of Function and Derivatives

Let the wave number vector� � ���� ��� ��� � �
� and� be a periodic function (i.e., any of the given or desired

fields) with period� in each orthogonal direction of space� �. The Fourier series expansion���� and the Fourier
coefficients����� of a piecewise continuously differentiable function� are given by
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The Fourier coefficients can be calculated approximately by the following formula, in which� � is substituted by
��
��

, and�� is the discretization in each direction of space.1 The approximation is useful only for�� �� � ��

�

(Nyquist critical frequency):
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Using these coefficients, the function itself is approximated by the finite series

���� �

��

��
����

��

�
��

��

��
����

��

�
��

��

��
����

��

�
��

������ ��� ����
i������������������� (3)

Note that the last approximation can be evaluated at every point in space described by� �, and not only at discrete
points. Note also that Formula (2) and Formula (3) evaluated at� � � ��

��
represent the discrete forward and

backward Fourier transform.

If � is a) continuous and b) piecewise continuously differentiable in the R.V.E. domain��� �	 �, the Fourier series

�In memoriam J¨urgen Olschewski.
1Each�� should be a power of 2 to exploit the advantages of Fast Fourier Transform (see Press et al. (1996)).
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of its derivatives with respect to the spatial coordinates	� � ��

�� are2:
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2 Discussion and Solution of the Problem

In this section the response of a periodic structure with periodic boundary conditions and arbitrary stiffness distri-
bution is studied. Let the strain consist of a fluctuation term� with spatial average zero and a constant term (the
strain average)�, so that � �� �. Consequently, the total displacement� consists of� � ��� ��. We assume
a linear relationship between strains and stresses� defined by the material tensor� (Hooke’s law). Moreover
we use small deformation theory. A spatial average strain�  � is defined by
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The aim is to calculate the local strain and stress field inside of an R.V.E. with a given arbitrary stiffness distribution
and a given average strain.3

2.1 The Basic Problem, Introduction and Calculation of the Solution Operator 

Consider the basic problem of an elastically homogeneous R.V.E. (the material tensor� � is constant in�) subjected
to a stress field����. The following set of equations plus boundary conditions resulting from the periodicity of the
problem describe the problem. The unknown is the fluctuation strain field����:

� � �� �

� �
�



�	��� ��	�

	 
 ��� 

 �� � 	 
 �

����
���

(7)

Let be an operator so that
� � � � � solves (7)� (8)

Note that projects divergence-free (and in particular constant) fields to zero.

In order to explicitly calculate in Fourier space, we combine the second and third Equation of (7) to yield:
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By using (4) and (5) we find that:
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By using the orthogonality conditions we find��  �:
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2The introduction of spatial coordinates�� allows to map the unit lenght problem on a problem with R.V.E. dimensions���� � ���� �

����. The underlined index� denotes that no summation is carried out.
3For further reading see also Eyre and Milton (1999) and Moulinec and Suquet (1998).
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The Fourier coefficients of the unknown� can therefore explicitly be calculated from:
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For� � � we set������ � �. This is necessary to satisfy the first equation in (7). Note that according to (6) and
(1) we have����� �� � �. Due to this, the fact that� cannot be evaluated at� � � does not give cause for a
problem.

2.2 The Related Problem with Spatially Constant Stiffness � � and Non-vanishing Strain Average �

Consider the related problem, in which the stiffness of the R.V.E. is constant in� (elastically homogeneous material
as in the previous basic problem). Additionally, assume a non-vanishing strain average and a given stress field� :
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The solution of this problem is � � � � (use (7) and (8) to verify).

2.3 The Problem with Spatially Varying Stiffness ����

Now consider the following problem, in which the stiffness of the R.V.E. is defined by� � ����. Assume a non-
vanishing strain average within the R.V.E. as in the previous related problem. The following equations describe
the problem:
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with Æ� � �� � �.

The solution of (15) is known from the related problem (see Subsection 2.2). We introduce the operators

�Æ� � arg� Æ� 
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 arg�

(16)

must then satisfy the following integral equation, which can be solved on terms of a series (Neumann expansion):

 � �Æ�� �

� �����Æ�� � �

�  � �����Æ� ���
Æ� � ����� � � ��Æ������Æ� � ����� (17)
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��� � �Æ� � ��
Æ� � ���� converges against��� � �Æ��

�� if ���Æ� �� � �. The series can be truncated after the
��� ��’st addend (and yield��) or after the�’th addend (and yield). The relation between and��

is given through therecursionformula:
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In the previous formula we made use of�� � � ��� 

 ��. This equation is true, because the left and the
right hand side of this equation solve the following problem:
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Since is explicitly known in Fourier space according to Equation (13), the solution for (15) be obtained iteratively
using the following algorithm:
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Note that the algorithm is valid for the continuous case.

3 Examples

The following examples have been calculated for discretizations described by� �. Formula (2) and Formula (3)
have been used for the forward and backward transform in the method presented here.

3.1 First Example for the Basic Problem: Eigenstrains within a Circular Domain in an Elastically Homo-
geneous Material
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An elastically homogeneous isotropic R.V.E. (� � ����� � � �, i.e., plain strain)
is subjected to eigenstrains��� � ��� � � within a circular domain of diameter
� � �

	� and to zero eigenstrains elsewhere. Consequently, inside of the domain we
put:
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and we set all other components of� equal to zero inside of the domain. Outside of
the domain all components of� are set to zero.

The total strain��� is calculated with the method of M¨uller (1996) as well as with the method presented here (basic
problem). The method of M¨uller (1996) uses the Discrete Fourier Transform (D.F.T.) and approximates difference
quotients by finite difference schemes. It provides no information in between the gridpoints, because no shape
functions for fields are assumed. In contrast to this, the method presented here providescontinuousinformation
for all fields.

Errors in the method presented here result from the truncation of the Fourier series, the approximation of the
Fourier coefficients with Riemannian sums (discrete Fourier Transform) and from Equations (4) and (5) not being
applicable due to the fact, that� is not continuous in this example. The following figures show results computed
for �� � �� � ��:
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Figure 1: Discrete values for���� computed with the method
of Müller (1996)

 

 

���

����

����

	

�

�

�

�

�

�
��

�
��

Figure 2: Continuous ���� distribution computed with the
method presented in this paper

3.2 Second Example for the Basic Problem: Sine Eigenstrains in an Elastically Homogeneous Material

Reconsider the homogeneous isotropic plain strain R.V.E. (dimensions�����) from the previous example. Now
the eigenstrains are prescribed as����	� �� � ����	� �� � ��� ��
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Only four Fourier coefficients of� are (independent of the choice of� �) distinct from zero, namely those for
� � ������� ��� ���� �� ��� ������ �� and��� �� ��.

The method presented here yields the exact solution (see Figure (4) ). In contrast to this, the solution of M¨uller
(1996) is a more or less accurate approximation to the exact solution (see Figure (3) ).
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Figure 3: ���� computed with the method of M¨uller (1996)
(�� � �� � ��)
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Figure 4: Exact solution for���� from the method presented
in this paper (�� � �� � �)

3.2.1 Comparison of the Results from Both Methods
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Figure 5: Deviation between D.F.T. results (M¨uller (1996)) and
exact solution from the method presented here

In order to assess the accuracy of the D.F.T. results of
Müller (1996), we compute

� �

�
��exact

�� � �D.F.T.
�� ��

��� ����D.F.T.
(22)

where the summation is carried out w.r.t. all gridpoints
used for the D.F.T. caculations. The decrease of this er-
ror with increasing number of discretization points for
the method of M¨uller (1996)��� ����

D.F.T. is shown
in Figure 5.
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4 Conclusions and Outlook

A method based on Fourier series has been presented, which allows calculating the local stress-strain response of
a periodic structure subjected to an applied field. Results have been presented for two case studies (homogeneous
and isotropic material was used for both cases), for which the solution operator was explicitly given in Fourier
space. The same operator is used for problems with arbitrary stiffness distribution.

The method presented here provides continuous information for all fields. The quality of the solution (from the
method presented here) is strongly dependent on the given field� .

As it was pointed out in Brown et al. (2003) the convergence of the Neumann approach used for predicting the
local stress-strain response in the case of different stiffnesses of inclusions and matrices depends strongly on the
stiffness contrast and on the data used for� �. Similar effects can be expected in the case of Fourier series as
mentioned in the work of Eyre and Milton (1999). A detailed investigation of this problem will be presented in a
later paper.
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