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A Numerical Method for Computing the Response of Periodic Structures
with Arbitrary Stiffness Distribution

S. Kallbohm, W.H. Mller *

A method based on Fourier series is presented, which allows to calculate the local stress-strain response of a pe-
riodic structure subjected to an applied (spatial average) strain field. The periodicity allows the reduction of the
problem to that of a Representative Volume Element (R\V.E.), which can be solved by transferring it into Fourier
space. - First, areview of Fourier series as a particular method of solving the set of differential equationsis given.
Second, the solution operator is calculated in Fourier space. Third, a related problem is studied, in which the
material is homogeneous and fourth, the solution for the problemwith arbitrary stiffness distribution is presented
aswell asthe algorithmfor the numerical calculation of the desired fields. Finally, example problems are studied,
and the results are compared to those obtained by the method of Discrete Fourier Transforms (M Uller, 1996).

1 Fourier Coefficients/Fourier Expansion of Function and Derivatives

Let the wave number vectdr = (kq, k2, k3) € Z3 and f be a periodic function (i.e., any of the given or desired
fields) with periodl in each orthogonal direction of spaag. The Fourier series expansigiia) and the Fourier
coefficientsf (k) of a piecewise continuously differentiable functipmre given by

Z Z Z f(k?h ko, k3)ei2ﬁ(k1a1+k2a2+k3a3) — Z f(k)eiQﬁk~a —. f_l{f(k)},
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f(k) - / —0 dOél / =0 da2 / =0 da3f(a17 a2, a3)e*i2ﬂ'(k1a1+k2012+k3013) = f{f(a)}

The Fourier coefficients can be calculated approximately by the following formula, in whid substituted by
/31 , and N; is the discretization in each direction of spdcélhe approximation is useful only fdk;| < Nl

(Nqust critical frequency):
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Using these coefficients, the function itself is approximated by the finite series

Ny No N3
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Note that the last approximation can be evaluated at every point in space describgdabg not only at discrete
points. Note also that Formula (2) and Formula (3) evaluated;at I/f,— represent the discrete forward and
backward Fourier transform. B

If fis a) continuous and b) piecewise continuously differentiable in the R.V.E. ddmdi®, the Fourier series

*In memoriam dfgen Olschewski.
1EachN; should be a power of 2 to exploit the advantages of Fast Fourier Transform (see Press et al. (1996)).

178



of its derivatives with respect to the spatial coordinates- «;2w L; are?:
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2 Discussion and Solution of the Problem

In this section the response of a periodic structure with periodic boundary conditions and arbitrary stiffness distri-
bution is studied. Let the strainconsist of a fluctuation ter@with spatial average zero and a constant term (the
strain average)o, so that: = € 4+ 9. Consequently, the total displacemertonsists of: = @ + uo. We assume

a linear relationship between strainand stresses defined by the material tens6r (Hooke’s law). Moreover

we use small deformation theory. A spatial average strain> is defined by

1 27TL1 27TL2 27TL3
<ege>= € dzzdz»d
7(L1+ Ly + L3) J,,—o /z / TeTratn

/ / / € dasdasda; = £(0).
x1= 0 o= 0 az= 0

The aim is to calculate the local strain and stress field inside of an R.V.E. with a given arbitrary stiffness distribution
and a given average strai.

(6)

2.1 TheBasic Problem, Introduction and Calculation of the Solution Operator T’

Consider the basic problem of an elastically homogeneous R.V.E. (the materiaki€hisaonstant i) subjected
to a stress fielet(x). The following set of equations plus boundary conditions resulting from the periodicity of the
problem describe the problem. The unknown is the fluctuation straingfjeld

<E>=0

1
&= 5(Vii+ V) @)
V(C°8)=V- 1

LetT be an operator so that
Eé=Tr <& ¢£solves (7) (8)

Note thatl" projects divergence-free (and in particular constant) fields to zero.

In order to explicitly calculat& in Fourier space, we combine the second and third Equation of (7) to yield:

0a OTji
?jleg’;l = 6733]-' 9
By using (4) and (5) we find that:
Co Z:LLkmM ' i:.kﬁz ki (10
By using the orthogonality conditions we filvi: \ 0:
QNLkamk gﬁﬁﬂ & U = BiopTpo (11)

2The introduction of spatial coordinates allows to map the unit lenght problem on a problem with R.V.E. dimenstarlg x 27 La X
2w L3. The underlined index denotes that no summation is carried out.
3For further reading see also Eyre and Milton (1999) and Moulinec and Suquet (1998).
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with By, = M,;lL' k, andM;; = —ijk,ﬁkjkl known a priori. Hence we obtain

@) = S (2 Ty = S (b + b )T =
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The Fourier coefficients of the unknowrcan therefore explicitly be calculated from:
- . . _ . 1/ i
Eim(k) = Dumop (K)o (k) With  Timop =3 (L—kmBlop + flk,Bmop). (13)
m [

Fork = 0 we setﬁlm(o) = 0. This is necessary to satisfy the first equation in (7). Note that according to (6) and
(1) we haves(0) =< & >. Due to this, the fact thdf cannot be evaluated &t = 0 does not give cause for a
problem.

2.2 TheRelated Problem with Spatially Constant Stiffness C° and Non-vanishing Strain Averagee,

Consider the related problem, in which the stiffness of the R.V.E. is constar{elastically homogeneous material
as in the previous basic problem). Additionally, assume a non-vanishing strain average and a given stress field

<ege>=¢gg
1 - 1 1
= §(Vu +uV) & E+eo= i(Vu +aV) + §(Vu0 +uoV) (14)
V(C0e)=V 1

The solution of this problem is= 't + ¢4 (use (7) and (8) to verify).

2.3 The Problem with Spatially Varying Stiffness C'(x)

Now consider the following problem, in which the stiffness of the R.V.E. is defined byC(x). Assume a non-
vanishing strain average within the R.V.E. as in the previous related problem. The following equations describe
the problem:

<e>=¢gy
= %(Vu +uV) (15)
V- (C(x)--e)=0 & V-(C%e)=V-(6C-¢)

with 6C = C° - C.
The solution of (15) is known from the related problem (see Subsection 2.2). We introduce the operators

Asc rarg— I'6C --arg
Aco :arg— I'C° --arg (16)
Ac :arg—» IT'C --arg

€ must then satisfy the following integral equation, which can be solved on terms of a series (Neumann expansion):

e = A(jce’:‘ + &
-~ (Zd — A(SC)E =¢&p
= e = (id+ Asc + A%C +...)e0 = €0 + Asc(id + Asc + ...)eo a7
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(id + Asc + Agc + ...) converges againgid — Asc)~! if ||Asc|] < 1. The series can be truncated after the
(m — 1)'st addend (and yield™~!) or after them’'th addend (and yield ™). The relation betweesn™ ande™~!
is given through theecursiorformula:
eM =eg+ Asce™ L =eg+ Apoe™ ! — Age™ L =
go+TCY.eml _TC..emt = (18)

eml_1C g™ =g ™! witho =C - €.

In the previous formula we made uses8t ! = ¢, + I'C? --e™~ 1. This equation is true, because the left and the
right hand side of this equation solve the following problem:

<eg>=¢p

1
€= i(Vu +uV) (19)
V-(C%-e)=V-(C0..em

Sincel is explicitly known in Fourier space according to Equation (13), the solution for (15) be obtained iteratively
using the following algorithm:

Set =gy, 0°=0C-£ & =F{", m=1, iterate: )
. a_m—l — j:{o_m—l}

V< ||k-al? >

W < tolerance, else (20)

CEMm=gmTl D™l VE\ O else &M =g

SeMm=F g™, oM =C-e™

-m=m+1 )

- Stop, if

Note that the algorithm is valid for the continuous case.

3 Examples

The following examples have been calculated for discretizations describad.bfFormula (2) and Formula (3)
have been used for the forward and backward transform in the method presented here.

3.1 First Examplefor the Basic Problem: Eigenstrainswithin a Circular Domain in an Elastically Homo-
geneous Material

An elastically homogeneous isotropic R.V.EZ & 1000,v = 0, i.e., plain strain)

is subjected to eigenstraia$, = 3, = 1 within a circular domain of diameter T
d= %a and to zero eigenstrains elsewhere. Consequently, inside of the domain w
put:
Tji = 0%1151‘1 + 0%22532 21) @ a
=1 =7 = Oy
and we set all other componentsroéqual to zero inside of the domain. Outside of T
the domain all components ofare set to zero. "

The total strairg; is calculated with the method of iller (1996) as well as with the method presented here (basic
problem). The method of Mler (1996) uses the Discrete Fourier Transform (D.F.T.) and approximates difference
quotients by finite difference schemes. It provides no information in between the gridpoints, because no shape
functions for fields are assumed. In contrast to this, the method presented here peovitiesousnformation

for all fields.

Errors in the method presented here result from the truncation of the Fourier series, the approximation of the
Fourier coefficients with Riemannian sums (discrete Fourier Transform) and from Equations (4) and (5) not being
applicable due to the fact, thatis not continuous in this example. The following figures show results computed
for Ny = Ny = 64:
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Figure 1: Discrete values fo£;; computed with the method Figure2: Continuousé;; distribution computed with the
of Muller (1996) method presented in this paper

3.2 Second Examplefor the Basic Problem: Sine Eigenstrainsin an Elastically Homogeneous M aterial

Reconsider the homogeneous isotropic plain strain R.V.E. (dimensioisx 1) from the previous example. Now
the eigenstrains are prescribectas(z,y) = &3, (z,y) = sin 22 sin 27ny 7 is therefore given by:
. 2mx | 27
Ti1(z,y) = T2(x,y) = 0?111 sin o sin Ty.

Only four Fourier coefficients of are (independent of the choice of;) distinct from zero, namely those for
k=(-1,-1,0),(-1,1,0),(1,—1,0)and(1,1,0).

The method presented here yields the exact solution (see Figure (4) ). In contrast to this, the solutiiarof M”
(1996) is a more or less accurate approximation to the exact solution (see Figure (3) ).
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Figure3: £;; computed with the method of Mier (1996)  Figure4: Exact solution forg;; from the method presented

(N1 = N> = 16) in this paper Vi = Ny = 4)
3.21 Comparison of the Results from Both Methods e
1072
In order to assess the accuracy of the D.F.T. results of 0%+
Muller (1996), we compute —3
1072} +
~exact _ ~D.F.T.\2
o= 2T —E) (22) 104
(N1 x Ny)D-FT. +
where the summation is carried out w.r.t. all gridpoints 107%
used for the D.F.T. caculations. The decrease of this er- 6 + DET
ror with increasing number of discretization points for 10 . ‘8 ‘16 2 (N1 = No)>"
the method of Miller (1996)(N; x N»)PFTis shown 3
in Figure 5. Figure 5: Deviation between D.F.T. results (Mér (1996)) and

exact solution from the method presented here
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4 Conclusions and Outlook

A method based on Fourier series has been presented, which allows calculating the local stress-strain response of
a periodic structure subjected to an applied field. Results have been presented for two case studies (homogeneous
and isotropic material was used for both cases), for which the solution opEratas explicitly given in Fourier

space. The same operator is used for problems with arbitrary stiffness distribution.

The method presented here provides continuous information for all fields. The quality of the solution (from the
method presented here) is strongly dependent on the given-field

As it was pointed out in Brown et al. (2003) the convergence of the Neumann approach used for predicting the
local stress-strain response in the case of different stiffnesses of inclusions and matrices depends strongly on the
stiffness contrast and on the data used@d. Similar effects can be expected in the case of Fourier series as
mentioned in the work of Eyre and Milton (1999). A detailed investigation of this problem will be presented in a
later paper.
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