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Homogenisation of Microheterogeneous Materials Considering Interfacial
Delamination at Finite Strains *

S. Lohnert, P. Wriggers

In modern engineering, composite materials gained impur¢abecause of their specific properties requested by
the individual application. They consist of inclusionstsas particles or fibres which are introduced into a binding
matrix material in order to “design” special material behimur. In case of particle inclusions, typical materials
are concrete, aluminum-boron or rubber filled with carbotibre reinforced composites are typically stiffened by
glass-, carbon- or aramid fibres. Recently, fibre reinforoeetals are also subject to detailed investigation and
application. In all cases the mechanical behaviour on thermievel defines the resulting material behaviour on
the macro scale, which is needed from an engineering poiniegf in an arbitrary design process. The effective
properties of the overall material depend on the geometrihefmicrostructure and the material properties of
the constituents. In case of finite strains one can obseteefatial degradation in a cohesive zone between the
matrix material and the inclusions. In this paper we focuglos homogenisation process of such materials with
interfacial delamination. Here the difficulties arise frdime geometrical and material nonlinearities. Even for
linear elasticity this homogenisation can hardly be donalgtically. Therefore we apply the finite element method
to get a numerical approximation for the mechanical behawviof a representative volume element (RVE). The
homogenisation then is done with a statistically repreatwe set of RVES. In order to increase the efficiency and
accuracy of the computations the finite element meshes fanedeadaptively using non-conforming elements.

1 Introduction

Modern engineering applications have been substantialydved by the use of composite materials designed to
provide the desired mechanical behaviour. Such compositerials consist of a binding matrix and inclusions
such as particles or fibres. Most often the purpose of thadasions is to stiffen the material. Unfortunately for
normal engineering applications one doesn't know the Eetanicrostructure of the material, and even if, it would
hardly be possible to compute the whole component usindpaltietails. Thus it is necessary to homogenise the
microstructure, get all the necessary information for ttective material behaviour of the homogenised material
and use this data to compute the macroscopic componenthdimegenisation process is done on a representative
volume element (RVE) which - as the name already says - istaldtatistically represent the microstructure. For
linear elastic materials first estimates for the behaviduhe homogenised material date back to the works of
Voigt (1889) and Reuss (1929), and to the works of Hill (198hop and Hill (1951b) and Bishop and Hill
(1951a) as well as to Eshelby (1957). Even for linear elastterial behaviour the effective material response to
an applied load on a RVE can only be calculated analyticallyerry few special cases. In the 60s and 70s there
were developed more precise bounds by Hashin and Shtriki#62) and also more precise estimates like the
one from Mori and Tanaka (1973). Unfortunately it is not plolesto compute the effective material response of
a RVE with an arbitrary microstructure analytically. Thesently numerical methods have been employed to get
more precise results. For linear elastic materials indgdiamage this has been done for example by Zohdi and
Wriggers (2001). In general, due to bigger differences imtlagerial data of the components of the microstructure
locally there occur quite large deformations in the traasizone between the inclusion and the matrix material.
This is also the case even when applying only small defoonaton the boundary of the RVE. In this cohesive
zone debonding and delamination phenomena due to largsatrean occur. In this paper we present a numerical
method to efficiently compute the mechanical behaviour of’& Bnder finite deformations including damage in
the cohesive zone around the inclusions, and we homogdmgadterial behaviour of this RVE.

*Dedicated to the memory of J. Olschewski, for his cheerfulaesiscooperation as a colleague and friend over many years
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2 Homogenisation

The effective material data of the RVE is obtained from tHatien between the effective stresses and the effective
strains. This means that the effective material tefisomaps the volume average of the straingn the volume
average of the stregs.

(o) =FE*:{(e)a 1)
where(-) = I_fll\ Jo, - dQ. This also holds in the nonlinear range wheredepends on the deformation and maybe
the deformation path itself. Unfortunately a requirememtthe strain measure in (1) is linearity in the displace-
ments, also for the geometrically nonlinear theory as vélsken in the next section.

2.1 Average Strain Theorem for Finite Deformations

The average strain theorem shows that for a perfectly boR¥Etlunder a uniform displacement boundary con-
dition the volume average of the deformation is the same egitren deformation on the boundary. In finite
deformations the deformation can be described by the deftmmgradientF’. Linear displacements prescribed
on the boundary lead to a constant displacement graient

ulgg, = H- X ‘H = const 2
The strains can be measured by the deformation gradientvigiven on the boundary by
ox ou
Flyg, = =—| =14 —-——| =1 = . 3
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The volume average of the deformation gradient yields
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where()§ are the volumes of the respective material phases in thefammaed configuration.
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Figure 1: Scheme of a microstructure
It can be shown that for the boundary conditions given in (2)olitain

(FYg, = F + —— IQol / [u] ® noddQy> . (5)
0FNoN2

where[u] is the jump within the displacement field in case of a not ptifebonded microstructure. In case of a

perfectly bonded microstructure the displacement jumpssta Then

(Flo, =F . (6)
In a very similar way one can derive that in casd#f = 0 it holds
(Flo,=F . @
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2.2 Average Stress Theorem

The average stress theorem states that in the absence ofdrodg and under a uniform load at the boundary
the volume average stress is the same as the given stress lawuhdary. For finite deformations we have to

distinguish between different configurations. The averstgess theorem can be derived for both, the initial as
well as the current configuration. In this paper we restrigiselves to the derivation with respect to the initial

configuration. We assume a constant stress vector on trecsydiven by Cauchy’s theorem

tlp, =P - 10 P = const, (8)

where?P is the first Piola Kirchhoff stress tensor ang is the unit normal vector on the surfaces of the RVE in
the initial configuration. The equations of motion in thiswtiguration are

DivP + f, =0 )

whereDiv is the divergence operator with respect to the Lagrangiamdooates,P is the field of first Piola
Kirchhoff stresses within the RVE anf}, is the body force in the initial configuration. Using (9) itrclhe shown
that

Div(X@P)=P' - X®f, . (10)

This result is now used to derive an expression for the volaveeage of the transposed of the first Piola Kirchhoff

stress tensor 1 1
(PT)q, = ol /PT dQg = m/(Div(X ®P)+ X ® f,) d ) (11)
Q() QU

Using the divergence theorem and the fact that on the suFfaceP we obtain

1
<PT>Qo=m /X®7"nod590+/X®fono ) 12)
Qo Qo

By applying the divergence theorem again the first term giéh@é constant stress, hence

1
Qo
which for zero body forces yields
(P)g, =P . (14)

2.3 Hill’'sTheorem for Finite Defor mations

A commonly accepted criterion for the choice of the size efRVE is Hill's condition which states that
<0‘ : €>Q = <0’>Q : <€>Q (15)

in case the body is perfectly bonded and there are no bodgdorthis leads to the fact that the RVE has to be
small enough such that from the macroscopic point of viewsthan and the stress of the macroscopic body can
be assumed to be approximately constant at the locatioredRYE. Due to that the RVE can be regarded as one
point of the macroscopic structure. On the other hand the R¥&0 be large enough such that the boundary field
fluctuations are relatively small. In linear theory it is gil@to show that the volume average of the infinitesimal
strain tensor(e)q, is equal to the infinitesimal strain tensor at the boundaryhef RVE. For nonlinear strain
measures like Green’s strain tendgr= %(FTF — 1) this is not possible. This equality can only be fulfilled
by deformation measures which are linearly dependent oditigacement like the deformation gradidnt It is
convenient to derive Hill's theorem for finite deformatidmg using the stress power instead of the strain energy.
Then, it can be formulated in the current configuration a$ asein the initial configuration. Since both derivations
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are very similar we restrict ourselves to the initial confagion. Using (10) we obtain

/P:FdQO = /Div(d3~P) dQO+/a'c-f0dQO (16)
Qo Qo Qo
= /dc-tod89(1)+/:b~tod89§
Glek 02
+ / [&] - to dOQy> + / & - f,dQ
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This equation can be evaluated for the Neumann boundaryitawrgk| o, = P - ng leading to the average stress
power

(P:F)g, = 1 /P . FdQ, (17)
€2
Qo
: 1
= 'P:<F>Qo+m / [[d:]]"P'nodaQ(l]’2+/d3'fonO
0

9Q§NON3 Qo
Again, if f, = 0 and[z] = 0 it follows with (14) (P : F)q, = (P)q, : (F)q,

For Dirichlet boundary conditions|sq, = F - X we have

. 1 .
Qo
. . | .
= <P>Q0 F+ m / [[33] -P-ng d(’?QO’
0
901N0Q232

which means in case ¢f] = 0 we have, based on (AP : F)q, = (P)q, : (F)q,

3 Material Modél

The microstructure consists of randomly distributed sighéparticles embedded in a binding matrix. The delam-
ination process is restricted to a domain around the pastiskee figure 2. This zone is also called “cohesive zone”.
Further details about the cohesive zone approach can bd fouexample in Needleman (1993).

The material chosen for the matrix material and the parti@déerial is a simple kompressible Neo-Hooke material
with the strain energy function

A3

G
O = % (I — 3) — P n(J) + (J*=1-2I(J)) p=12 (19)

where( = 1 indicates the matrix material artl= 2 the particle material. The first Piola-Kirchhoff stresssen
for the two materials follow from

o)
) _
P o (20)
which yields
®B) — ,® —ry A -
P® — 4 (FfF )+T(J ~1)F : (1)

where Iy, is the first invariant of the left Cauchy-Green tensér= det F, and(®) and A(?) are the Lard
parameters.
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3.1 Damage Model for the Cohesive Zone

The material model for the cohesive zone is a simple damagkehialowing the suggestion of Zohdi and Wrig-
gers (2001). The undamaged material is also a kompressixeHdoke material. Its material parameters are
chosen to be a linear combination of the parameters of thexnmaaterial and those of the particle material

WD = 9u® 4 (1— ) (22)
A =A@ 41— )AD

0 is a parameter governing the stiffness of the undamagedsinegheone material. The local degradation is rep-
resented by a variable with 0 < o < 1 which “weakens” the stiffness of the material, which medret the
material constants follow as

N(CZ) = oé’u(()cz) (23)
A = apl

The local constraint condition from whiehcan be computed is
U(a) = M(a) — K(a) <0 (24)

whereM(«) is a scalar valued term representing the stress state ofaterial point

M) = 1/9(0aes(0)) : g(oacs()) (25)
g(adeg(a)) == nl@l + T2 (Udeg - @1) (26)

andn; andn, are parameters scaling the isochoric and deviatoric pag$cyes (). K(a) is a threshold value
which depends on the damage variabliself.

K:(Oé) = (I)lim + ((I)Crit - (blim) aP (27)

.t is the initial threshold value, andl;,, is the threshold value in the limiting case that the matgx@aht has
degraded completelyy(= 0). Finally P is an exponent which controls the rate of degradation.

4 Numerical Model
4.1 Discretisation

The RVE is chosen to be a cube. The distribution of the inohsihas to be random in order to be statistically
representative. In three dimensions it is not easy to gemeranesh of only hexahedra elements approximating
the boundaries of the inclusions accurately. In generadmeshes would contain quite a lot of heavily distorted
elements which would be extremely bad for the numericalisglprocess and the accuracy of the solution. A
tetrahedra mesh would avoid this disadvantage, but limtaattedra elements are locking and lead to a much worse
finite element solution. Quadratic tetrahedra are alscechgid in case of large deformations. These problems
motivate a discretisation only with linear cube shaped heslea which of course is ideal for the equation solver
but also approximates the geometry much less accuratelyncfease the discretisation accuracy we refine the
mesh with non-conforming elements close to the interfaedwéden the particles and the cohesive zones and the
cohesive zones and the matrix material. This refinementt@sahe advantage that the error due to large stress
gradients especially close to the interfaces can be destedsscheme of this adaptive discretisation can be seen
in figure 2.
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Figure 2: Discretisation with non-conforming cubic elertsen

4.2 Statistical Testing

Of course, to get a representative material response one tastatistical tests with different random distribugon

of particles. Of special interest is the number of particlesded for each test, the refinement of the mesh and the
number of tests which have to be computed to get a statistiegiresentative result. The parameters for all tests
are chosen to be

pM = 02 AU = 03

p® = 20 X® = 30
6 = 0.0

m = 1.0 N2 = 1.0

q)lim = 0.5 q)crit = 1.0
P = 01

The particles all have a spherical shape and the same rddiasiolume fraction of the inclusions is chosen to be
15%, and the thickness of the cohesive zon@.% r, wherer is the radius of each particle. Using these material
parameters with the cohesive zone initially having the sproperties as the matrix material one can observe that
the thickness of the cohesive zone has almost no influendeeogl@bal response of the RVE. The displacements
on the entire boundary of the RVE is given through the constmplacement gradient (see (2)) scaled by a load
factor~.

ulyg, =7 H - X (28)
whereH is chosen to be
1 1 1
H=|111 (29)
1 1 1

4.2.1 Resolution of the Finite Element Mesh

To figure out the required resolution of the mesh we perforentéist with only one inclusion and different mesh
refinements. An example of a mesh is displayed in figure 3.
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Figure 3: Finite element mesh: LEFT: undeformed RIGHT: dafd

The dependency of of the stored strain energy with respettietmumber of degrees of freedom can be seen in
figure 4.
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Figure 4: Convergence: overall energy

To decrease the computational effort to an acceptable atniouthie following we use a base resolutionldf x
14 x 14 elements and two subsequent subdivisions of the elemertts th the cohesive zone. Compared to the
finest resolution tested (1.78 million degrees of freeddro}é results have an error of less than 1%.

4.2.2 Number of Inclusions

The necessary number of particles per test can be deterrjnad isotropy condition. Since the boundary con-
ditions are the same in each of the base directions, an Botnaaterial must lead to an effective Cauchy stress

response where
011 = 022 = 033 (30)
and
012 = 023 = 031 . (31)

This can be used to test whether the number of inclusiongisdnough for this specific test to give a representative
result. A scalar measure for the deviation from isotropyheféffective material under isotropic loading conditions
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€iso = ((011 — 022)% + (022 — 033)% + (033 — 011)?

+(012 — 023)* + (023 — 031)* + (031 — 012)2) ?

(32)

A plot of the mean value df;,, as a function of the number of inclusions for a statisticedigresentative number
of tests for each number of inclusions is displayed in figure 5
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Figure 5: Deviation from isotropy

Another test to figure out the required number of inclusiansoi look at the standard deviation of the stress
response for multiple tests with the same number of inchssid@ his value does not decrease with the number of
tests performed. Only the number of inclusions per test hasipact on it. Still, to get a statistical representative
material behaviour it is necessary to compute the same t&sy trmes with a different random distribution of
the inclusions. Each of these tests yield an effective steggl strain response. The statistical representative
effective response can be obtained by averaging all thete#estresses and strains for each load step over all the
tests performed. From figure 6 which shows the standard timviaf the effective stresses it can be seen that a
relatively low number of inclusions is sufficient to obtaistatistically representative result.
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Figure 6: Standard deviation of the effective stresses
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4.2.3 Number of Tests

At last the number of tests which have to be computed to gettistitally representative result is investigated. Itis
not possible to increase the accuracy of the effective respby computing more tests. But at a higher number of
tests performed the collection of the effective resultsamfretest form a more Gaussian distribution of the effective
results. This is shown in the histograms in figure 7 and figure 8
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Figure 7: Histogram for effective Cauchy stress comporient)
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Figure 8: Histogram for stored energy

The actual averaged effective Cauchy stresses as a furdftide load factory which is representative for the
effective strains is shown in figure 9 for a loading and uniogdest, and a typical deformed RVE with the damage
parameter is displayed in figure 10.
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Figure 9: Average effective stresses as a function of the: paaametety

Figure 10: First principal stress of a typical RVE with daragthe cohesive zone

5 Conclusions

In this paper we presented some background informationtavenaging and homogenisation techniques at finite
deformations. We applied those techniques to a RVE congistf a soft matrix material and stiffer spherical
shaped inclusions. In a cohesive zone connecting the nmagigrial and the particles we applied a simple damage
law to model delamination at finite strains. Computatiomal atatistical aspects are shown. Future work will be
directed at the implementation of a more complex delanovnaw which is able to model certain local effects
more detailed. A big issue is the provision of a material lawthe effective material response of the RVE which
is difficult and subject to research even for the nonlineaipowely elastic range.

176



References

Bishop, J.; Hill, R.: A theoretical derivation of the plastiroperties of a polycrystalline face-centred mafdil.
Mag., 42, (1951a), 1298-1307.

Bishop, J.; Hill, R.: A theory of the plastic distortion of algcrystalline aggregate under combined stred3b8.
Mag., 42, (1951b), 414-427.

Eshelby, J.: The elastic field of an ellipsoidal includiondaelated problemsProc. Roy. So¢.A241, (1957),
376-396.

Hashin, Z.; Shtrikman, S.: On some variational principleamisotropic and nonhomogeneous elastidibyirnal
of the Mechanics and Physics of Soljdd, (1962), 335-342.

Hill, R.: The elastic behaviour of a crystalline aggregéte Proc. Phys. Soc. (Lond A65, pages 349-354 (1952).

Mori, T.; Tanaka, K.: Average stress in matrix and averagergnof materials with misfitting inclusiongcta
Metall., 21, (1973), 571-574.

Needleman, A. e. a.: Matrix reinforcement, and interfa&dlure. In: M. A. Suresh, S.; A. Needleman, eds.,
Fundamentals of metal matrix composijtBsitterworth-Heineman publishers (1993).

Reuss, A.: Berechnung der Fliessgrenze von Mischkristalig Grund der PlastizAtsbedingungifr Einkristalle.
Z. angew. Math. Mech?9, (1929), 49-58.

Voigt, W.: Uber die Beziehung zwischen den beiden Elagtigkonstanten isotroperdiper. Wied. Ann. 38,
(1889), 573-587.

Zohdi, T.; Wriggers, P.: Computational micro-macro maletgsting. Archives of Computational Methods in
Engineering, 8, 2, (2001), 131-228.

Address:S. Lohnert, P. Wriggers

Institute of Mechanics and Computational Mechanics
University of Hannover

Appelstr. 9a, 30167 Hannover

email:| oehnert @ bnm uni - hannover. de

177



