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Homogenisation of Microheterogeneous Materials Considering Interfacial
Delamination at Finite Strains ∗

S. Löhnert, P. Wriggers

In modern engineering, composite materials gained importance because of their specific properties requested by
the individual application. They consist of inclusions such as particles or fibres which are introduced into a binding
matrix material in order to “design” special material behaviour. In case of particle inclusions, typical materials
are concrete, aluminum-boron or rubber filled with carbon. Fibre reinforced composites are typically stiffened by
glass-, carbon- or aramid fibres. Recently, fibre reinforcedmetals are also subject to detailed investigation and
application. In all cases the mechanical behaviour on the micro level defines the resulting material behaviour on
the macro scale, which is needed from an engineering point ofview in an arbitrary design process. The effective
properties of the overall material depend on the geometry ofthe microstructure and the material properties of
the constituents. In case of finite strains one can observe interfacial degradation in a cohesive zone between the
matrix material and the inclusions. In this paper we focus onthe homogenisation process of such materials with
interfacial delamination. Here the difficulties arise fromthe geometrical and material nonlinearities. Even for
linear elasticity this homogenisation can hardly be done analytically. Therefore we apply the finite element method
to get a numerical approximation for the mechanical behaviour of a representative volume element (RVE). The
homogenisation then is done with a statistically representative set of RVEs. In order to increase the efficiency and
accuracy of the computations the finite element meshes are refined adaptively using non-conforming elements.

1 Introduction

Modern engineering applications have been substantially improved by the use of composite materials designed to
provide the desired mechanical behaviour. Such composite materials consist of a binding matrix and inclusions
such as particles or fibres. Most often the purpose of those inclusions is to stiffen the material. Unfortunately for
normal engineering applications one doesn’t know the detailed microstructure of the material, and even if, it would
hardly be possible to compute the whole component using all the details. Thus it is necessary to homogenise the
microstructure, get all the necessary information for the effective material behaviour of the homogenised material
and use this data to compute the macroscopic component. Thishomogenisation process is done on a representative
volume element (RVE) which - as the name already says - is ableto statistically represent the microstructure. For
linear elastic materials first estimates for the behaviour of the homogenised material date back to the works of
Voigt (1889) and Reuss (1929), and to the works of Hill (1952), Bishop and Hill (1951b) and Bishop and Hill
(1951a) as well as to Eshelby (1957). Even for linear elasticmaterial behaviour the effective material response to
an applied load on a RVE can only be calculated analytically in very few special cases. In the 60s and 70s there
were developed more precise bounds by Hashin and Shtrikman (1962) and also more precise estimates like the
one from Mori and Tanaka (1973). Unfortunately it is not possible to compute the effective material response of
a RVE with an arbitrary microstructure analytically. Thus recently numerical methods have been employed to get
more precise results. For linear elastic materials including damage this has been done for example by Zohdi and
Wriggers (2001). In general, due to bigger differences in thematerial data of the components of the microstructure
locally there occur quite large deformations in the transition zone between the inclusion and the matrix material.
This is also the case even when applying only small deformations on the boundary of the RVE. In this cohesive
zone debonding and delamination phenomena due to large stresses can occur. In this paper we present a numerical
method to efficiently compute the mechanical behaviour of a RVE under finite deformations including damage in
the cohesive zone around the inclusions, and we homogenise the material behaviour of this RVE.
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2 Homogenisation

The effective material data of the RVE is obtained from the relation between the effective stresses and the effective
strains. This means that the effective material tensorE

∗ maps the volume average of the strainsε on the volume
average of the stressσ.

〈σ〉Ω = E
∗ : 〈ε〉Ω (1)

where〈·〉 = 1
|Ω|

∫

Ω
·dΩ. This also holds in the nonlinear range whereE

∗ depends on the deformation and maybe
the deformation path itself. Unfortunately a requirement for the strain measure in (1) is linearity in the displace-
ments, also for the geometrically nonlinear theory as will be seen in the next section.

2.1 Average Strain Theorem for Finite Deformations

The average strain theorem shows that for a perfectly bondedRVE under a uniform displacement boundary con-
dition the volume average of the deformation is the same as the given deformation on the boundary. In finite
deformations the deformation can be described by the deformation gradientF . Linear displacements prescribed
on the boundary lead to a constant displacement gradientH.

u|∂Ω0
= H · X H = const (2)

The strains can be measured by the deformation gradient which is given on the boundary by

F |∂Ω0
=

∂x

∂X

∣

∣

∣

∣

∂Ω0

= 1 +
∂u

∂X

∣

∣

∣

∣

∂Ω0

= 1 + H = F . (3)

The volume average of the deformation gradient yields

〈F 〉Ω0
=

1

|Ω0|

∫

Ω0

F dΩ0 = 1 +
1

|Ω0|







∫

Ω1

0

∂u

∂X
dΩ1

0 +

∫

Ω2

0

∂u

∂X
dΩ2

0






(4)

whereΩα
0 are the volumes of the respective material phases in the undeformed configuration.

Ω
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Ω
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0

Figure 1: Scheme of a microstructure

It can be shown that for the boundary conditions given in (2) we obtain

〈F 〉Ω0
= F +

1

|Ω0|

∫

∂Ω1

0
∩∂Ω2

0

[[u]] ⊗ n0 d∂Ω1,2
0 . (5)

where[[u]] is the jump within the displacement field in case of a not perfectly bonded microstructure. In case of a
perfectly bonded microstructure the displacement jumps vanish. Then

〈F 〉Ω0
= F . (6)

In a very similar way one can derive that in case of[[u̇]] ≡ 0 it holds

〈Ḟ 〉Ω0
= Ḟ . (7)
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2.2 Average Stress Theorem

The average stress theorem states that in the absence of bodyforces and under a uniform load at the boundary
the volume average stress is the same as the given stress at the boundary. For finite deformations we have to
distinguish between different configurations. The averagestress theorem can be derived for both, the initial as
well as the current configuration. In this paper we restrict ourselves to the derivation with respect to the initial
configuration. We assume a constant stress vector on the surface, given by Cauchy’s theorem

t|∂Ω0
= P · n0 P = const, (8)

whereP is the first Piola Kirchhoff stress tensor andn0 is the unit normal vector on the surfaces of the RVE in
the initial configuration. The equations of motion in this configuration are

DivP + f0 = 0 (9)

whereDiv is the divergence operator with respect to the Lagrangian coordinates,P is the field of first Piola
Kirchhoff stresses within the RVE andf0 is the body force in the initial configuration. Using (9) it can be shown
that

Div(X ⊗ P ) = P T − X ⊗ f0 . (10)

This result is now used to derive an expression for the volumeaverage of the transposed of the first Piola Kirchhoff
stress tensor

〈P T 〉Ω0
=

1

|Ω0|

∫

Ω0

P T dΩ0 =
1

|Ω0|

∫

Ω0

(Div(X ⊗ P ) + X ⊗ f0) dΩ0 . (11)

Using the divergence theorem and the fact that on the surfaceP = P we obtain

〈P T 〉Ω0
=

1

|Ω0|





∫

∂Ω0

X ⊗ P · n0 d∂Ω0 +

∫

Ω0

X ⊗ f0 dΩ0



 . (12)

By applying the divergence theorem again the first term yields the constant stress, hence

〈P T 〉Ω0
= P

T +
1

|Ω0|

∫

Ω0

X ⊗ f0 dΩ0 (13)

which for zero body forces yields
〈P 〉Ω0

= P . (14)

2.3 Hill’s Theorem for Finite Deformations

A commonly accepted criterion for the choice of the size of the RVE is Hill’s condition which states that

〈σ : ε〉Ω = 〈σ〉Ω : 〈ε〉Ω (15)

in case the body is perfectly bonded and there are no body forces. This leads to the fact that the RVE has to be
small enough such that from the macroscopic point of view thestrain and the stress of the macroscopic body can
be assumed to be approximately constant at the location of the RVE. Due to that the RVE can be regarded as one
point of the macroscopic structure. On the other hand the RVEhas to be large enough such that the boundary field
fluctuations are relatively small. In linear theory it is simple to show that the volume average of the infinitesimal
strain tensor〈ε〉Ω is equal to the infinitesimal strain tensor at the boundary ofthe RVE. For nonlinear strain
measures like Green’s strain tensorE = 1

2 (F T F − 1) this is not possible. This equality can only be fulfilled
by deformation measures which are linearly dependent on thedisplacement like the deformation gradientF . It is
convenient to derive Hill’s theorem for finite deformationsby using the stress power instead of the strain energy.
Then, it can be formulated in the current configuration as well as in the initial configuration. Since both derivations
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are very similar we restrict ourselves to the initial configuration. Using (10) we obtain
∫

Ω0

P : Ḟ dΩ0 =

∫

Ω0

Div (ẋ · P ) dΩ0 +

∫

Ω0

ẋ · f0 dΩ0 (16)

=

∫

∂Ω1

0

ẋ · t0 d∂Ω1
0 +

∫

∂Ω2

0

ẋ · t0 d∂Ω2
0

+

∫

∂Ω1

0
∩∂Ω2

0

[[ẋ]] · t0 d∂Ω1,2
0 +

∫

Ω0

ẋ · f0 dΩ0

This equation can be evaluated for the Neumann boundary conditions t|∂Ω0
= P ·n0 leading to the average stress

power

〈P : Ḟ 〉Ω0
=

1

|Ω0|

∫

Ω0

P : Ḟ dΩ0 (17)

= ...

= P : 〈Ḟ 〉Ω0
+

1

|Ω0|







∫

∂Ω1

0
∩∂Ω2

0

[[ẋ]] · P · n0 d∂Ω1,2
0 +

∫

Ω0

ẋ · f0 dΩ0







Again, if f0 ≡ 0 and[[ẋ]] ≡ 0 it follows with (14) 〈P : Ḟ 〉Ω0
= 〈P 〉Ω0

: 〈Ḟ 〉Ω0

For Dirichlet boundary conditionṡx|∂Ω0
= Ḟ · X we have

〈P : Ḟ 〉Ω0
=

1

|Ω0|

∫

Ω0

P : Ḟ dΩ0 (18)

= ...

= 〈P 〉Ω0
: Ḟ +

1

|Ω0|

∫

∂Ω1

0
∩∂Ω2

0

[[ẋ]] · P · n0 d∂Ω1,2
0

which means in case of[[ẋ]] ≡ 0 we have, based on (7),〈P : Ḟ 〉Ω0
= 〈P 〉Ω0

: 〈Ḟ 〉Ω0

3 Material Model

The microstructure consists of randomly distributed spherical particles embedded in a binding matrix. The delam-
ination process is restricted to a domain around the particles, see figure 2. This zone is also called “cohesive zone”.
Further details about the cohesive zone approach can be found for example in Needleman (1993).

The material chosen for the matrix material and the particlematerial is a simple kompressible Neo-Hooke material
with the strain energy function

ψ(β) =
µ(β)

2

(

Ib − 3
)

− µ(β) ln(J) +
λ(β)

4

(

J2 − 1 − 2 ln(J)
)

β = 1, 2 , (19)

whereβ = 1 indicates the matrix material andβ = 2 the particle material. The first Piola-Kirchhoff stress tensor
for the two materials follow from

P (β) =
∂ψ(β)

∂F
(20)

which yields

P (β) = µ(β)
(

F − F−T
)

+
λ(β)

2

(

J2 − 1
)

F−T , (21)

whereIb is the first invariant of the left Cauchy-Green tensor,J = detF , andµ(β) andλ(β) are the Laḿe
parameters.
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3.1 Damage Model for the Cohesive Zone

The material model for the cohesive zone is a simple damage model following the suggestion of Zohdi and Wrig-
gers (2001). The undamaged material is also a kompressible Neo-Hooke material. Its material parameters are
chosen to be a linear combination of the parameters of the matrix material and those of the particle material

µ
(cz)
0 = θµ(2) + (1 − θ)µ(1) (22)

λ
(cz)
0 = θλ(2) + (1 − θ)λ(1)

θ is a parameter governing the stiffness of the undamaged cohesive zone material. The local degradation is rep-
resented by a variableα with 0 < α ≤ 1 which “weakens” the stiffness of the material, which means that the
material constants follow as

µ(cz) = αµ
(cz)
0 (23)

λ(cz) = αλ
(cz)
0 .

The local constraint condition from whichα can be computed is

Ψ(α) = M(α) −K(α) ≤ 0 (24)

whereM(α) is a scalar valued term representing the stress state of the material point

M(α) =
√

g(σdeg(α)) : g(σdeg(α)) (25)

g(σdeg(α)) = η1
tr(σdeg)

3
1 + η2

(

σdeg −
tr(σdeg)

3
1

)

(26)

andη1 andη2 are parameters scaling the isochoric and deviatoric parts of g(σdeg(α)). K(α) is a threshold value
which depends on the damage variableα itself.

K(α) = Φlim + (Φcrit − Φlim)αP (27)

Φcrit is the initial threshold value, andΦlim is the threshold value in the limiting case that the materialpoint has
degraded completely (α = 0). FinallyP is an exponent which controls the rate of degradation.

4 Numerical Model

4.1 Discretisation

The RVE is chosen to be a cube. The distribution of the inclusions has to be random in order to be statistically
representative. In three dimensions it is not easy to generate a mesh of only hexahedra elements approximating
the boundaries of the inclusions accurately. In general those meshes would contain quite a lot of heavily distorted
elements which would be extremely bad for the numerical solving process and the accuracy of the solution. A
tetrahedra mesh would avoid this disadvantage, but linear tetrahedra elements are locking and lead to a much worse
finite element solution. Quadratic tetrahedra are also quite bad in case of large deformations. These problems
motivate a discretisation only with linear cube shaped hexahedra which of course is ideal for the equation solver
but also approximates the geometry much less accurately. Toincrease the discretisation accuracy we refine the
mesh with non-conforming elements close to the interfaces between the particles and the cohesive zones and the
cohesive zones and the matrix material. This refinement alsohas the advantage that the error due to large stress
gradients especially close to the interfaces can be decreased. A scheme of this adaptive discretisation can be seen
in figure 2.
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Figure 2: Discretisation with non-conforming cubic elements

4.2 Statistical Testing

Of course, to get a representative material response one hasto do statistical tests with different random distributions
of particles. Of special interest is the number of particlesneeded for each test, the refinement of the mesh and the
number of tests which have to be computed to get a statistically representative result. The parameters for all tests
are chosen to be

µ(1) = 0.2 λ(1) = 0.3
µ(2) = 2.0 λ(2) = 3.0
θ = 0.0
η1 = 1.0 η2 = 1.0

Φlim = 0.5 Φcrit = 1.0
P = 0.1

The particles all have a spherical shape and the same radius.The volume fraction of the inclusions is chosen to be
15%, and the thickness of the cohesive zone is0.25 r, wherer is the radius of each particle. Using these material
parameters with the cohesive zone initially having the sameproperties as the matrix material one can observe that
the thickness of the cohesive zone has almost no influence on the global response of the RVE. The displacements
on the entire boundary of the RVE is given through the constant displacement gradient (see (2)) scaled by a load
factorγ.

u|∂Ω0
= γH · X (28)

whereH is chosen to be

H =





1 1 1
1 1 1
1 1 1



 (29)

4.2.1 Resolution of the Finite Element Mesh

To figure out the required resolution of the mesh we perform the test with only one inclusion and different mesh
refinements. An example of a mesh is displayed in figure 3.
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Figure 3: Finite element mesh: LEFT: undeformed RIGHT: deformed

The dependency of of the stored strain energy with respect tothe number of degrees of freedom can be seen in
figure 4.
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Figure 4: Convergence: overall energy

To decrease the computational effort to an acceptable amount, in the following we use a base resolution of14 ×
14 × 14 elements and two subsequent subdivisions of the elements close to the cohesive zone. Compared to the
finest resolution tested (1.78 million degrees of freedom) those results have an error of less than 1%.

4.2.2 Number of Inclusions

The necessary number of particles per test can be determinedby an isotropy condition. Since the boundary con-
ditions are the same in each of the base directions, an isotropic material must lead to an effective Cauchy stress
response where

σ11 = σ22 = σ33 (30)

and
σ12 = σ23 = σ31 . (31)

This can be used to test whether the number of inclusions is high enough for this specific test to give a representative
result. A scalar measure for the deviation from isotropy of the effective material under isotropic loading conditions
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is

eiso =
(

(σ11 − σ22)
2 + (σ22 − σ33)

2 + (σ33 − σ11)
2 (32)

+(σ12 − σ23)
2 + (σ23 − σ31)

2 + (σ31 − σ12)
2
)

1

2

A plot of the mean value ofeiso as a function of the number of inclusions for a statisticallyrepresentative number
of tests for each number of inclusions is displayed in figure 5.
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Figure 5: Deviation from isotropy

Another test to figure out the required number of inclusions is to look at the standard deviation of the stress
response for multiple tests with the same number of inclusions. This value does not decrease with the number of
tests performed. Only the number of inclusions per test has an impact on it. Still, to get a statistical representative
material behaviour it is necessary to compute the same test many times with a different random distribution of
the inclusions. Each of these tests yield an effective stress and strain response. The statistical representative
effective response can be obtained by averaging all the effective stresses and strains for each load step over all the
tests performed. From figure 6 which shows the standard deviation of the effective stresses it can be seen that a
relatively low number of inclusions is sufficient to obtain astatistically representative result.
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Figure 6: Standard deviation of the effective stresses
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4.2.3 Number of Tests

At last the number of tests which have to be computed to get a statistically representative result is investigated. It is
not possible to increase the accuracy of the effective response by computing more tests. But at a higher number of
tests performed the collection of the effective results of each test form a more Gaussian distribution of the effective
results. This is shown in the histograms in figure 7 and figure 8.
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Figure 7: Histogram for effective Cauchy stress component〈σ11〉
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Figure 8: Histogram for stored energy

The actual averaged effective Cauchy stresses as a functionof the load factorγ which is representative for the
effective strains is shown in figure 9 for a loading and unloading test, and a typical deformed RVE with the damage
parameter is displayed in figure 10.
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Figure 9: Average effective stresses as a function of the load parameterγ

Figure 10: First principal stress of a typical RVE with damage in the cohesive zone

5 Conclusions

In this paper we presented some background information about averaging and homogenisation techniques at finite
deformations. We applied those techniques to a RVE consisting of a soft matrix material and stiffer spherical
shaped inclusions. In a cohesive zone connecting the matrixmaterial and the particles we applied a simple damage
law to model delamination at finite strains. Computational and statistical aspects are shown. Future work will be
directed at the implementation of a more complex delamination law which is able to model certain local effects
more detailed. A big issue is the provision of a material law for the effective material response of the RVE which
is difficult and subject to research even for the nonlinear but purely elastic range.
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