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Itis well accepted that stresses should return to theirioddjstate after a closed elastic strain cycle. Here, we con-
sider originally unstressed elements undergoing suchesydlVe presume isotropic materials and use Truesdell's
hypoelastic law. Depending on the applied corotationaéss$rrate, undesirable stress ratchetting is observed in
case of two commonly used objective rates, namely the Zardalmmann and the Green/Naghdi rates. The strain
cycle reaches its original stress-free state when the libigauic rate is applied.

1 Introduction

The concept of objectivity is important in the descriptidriarge elastic and inelastic deformations. A big num-
ber — in fact an infinite number — of objective stress ratest®@n presented in the past. The question arises, if
all of them are equally suitable in the description of lartgestc deformations. In particular, if relevant material
line rotations occur, unreasonable phenomena, like stsslation in simple shear, dissipation in elastic strain
cycles etc., may occur. Such unreliable results may havsiderably negative effects in the description of elasto-
plastic deformations, too, since the elastic deformatiam, phough sometimes small in comparison to the plastic
deformation part, can substantially influence the resutheftotal deformation.

Dienes (1979) revealed the occurrence of stress oscilatiolarge elastic simple shear. A similar observation had
been made by Lehmann (1972) seven years earlier for simphe sif a rigid plastic body. It is widely accepted
that this unreasonable phenomenon results from the sélstess rate in the deformation description. In the last
decades a large variety of objective stress rates has beeanted to avoid the simple shear oscillations, all of
them generally leading to different results. The questiisea if the concept of objectivity is sufficient to account
for cited problems and if the one or other rate will show otinereliabilities in other deformation processes.

Xiao et al. (1997a) presented a hypo-elasticity model basethe logarithmic stress rate (Xiao et al., 1997b).
It has been shown (Xiao et al., 1999) that this model is exantegrable and, moreover, is derivable from an
elastic potential, thus combining hyperelasticity anddslpsticity. Also, this property is exclusively bound te th
logarithmic rate. It was shown (Bruhns et al., 2001), th& thodel showed proper results in the case of simple
shear.

The question remains about results in the case of more camspi@in paths. Lin (2002) proposed to consider
a four phases plain strain cycle: extension, shear, comsipreand back to starting unstrained state. He showed
that for such a cycle some non-corotational stress rateselyarruesdell and Oldroyd rates, lead to erroneous
results: stresses have a much too high value and residaatst remain at the end of the cycle. In the case of
three corotational stress rates, namely the Zaremba-Jaurate (Zaremba, 1903; Jaumann, 1911), the polar or
Green/Naghdi rate (Green and Naghdi, 1965; Green and Mg;|h867; Dienes, 1979, 1987; Scheidler, 1994) and
the logarithmic rate (Lehmann et al., 1991; Reinhardt andeyu1995, 1996; Xiao et al., 1996, 1997b, 1998b),
the stress developmentis very similar; however, only ire@dghe logarithmic rate all stresses return back to their
initial zero state at the end of the cycle.

For a simple shear deformation mode progressing monotnicae of Jaumann rate was known to result in
aberrant oscillatory shear stress response. Neverthelssf Naghdi rate etc. was found to produce reasonable
monotonic shear stress response. On the other hand, fagla sircle of deformation mode recovering the original
shape only once — although the most recent study has repesiglial stresses resulting from use of Naghdi rate
and other rates— their magnitudes may be regarded to betabtefor realistic deformations. Here a pertinent
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question may be: Whenever a strain cycle constantly rejitsatg how will the residual stresses or errors change
with the cycle number? Will their magnitudes remain withim @&ceptable range or, to the contrary, steadily
accumulate themselves and become larger and larger?

Since strain cycles and cyclic loading may be frequentlyimegalistic engineering problems and since they may

repeat themselves in a quite large number, it seems impdddnvestigate the foregoing questions related to

repeated strain cycles and cyclic loading. It is well knowattcyclic loading are related to the so-called strain

ratchetting phenomena for inelastic models. In contragt wiis, we shall study stress responses of the most
widely used hypoelastic model under constantly repeatadhstycles. Here the main ideas are as follows:

a) We consider smooth strain cycles instead of piecewisenan-smooth, cycles;

b) we do not restrict ourselves to a single cycle but treastonily repeated cycles;
and finally

c) we study how residual stresses or errors change with ttie aymber.

Specifically, we shall propose two types of simple straineycharacterized by a single parametén a smooth

and unified manner. We shall show that similar ratchettingnpimena emerge for residual stresses. In particular,
we demonstrate that, with a strain cycle repeating itsaibtantly, the magnitude of the residual stresses or errors
resulting from Naghdi rate etc. will no longer stay withiretacceptable range for the first cycle, but accumulate
themselves steadily and almost linearly. To the contramntte logarithmic rate, no residual stresses emerge after
each cycle, and the foregoing phenomena for residual stressror accumulation thus disappear. In the first
section the constitutive relation, i.e. the hypoelastiatien is given. In the following section the single paraaret
cycles are developed. Then, the numerical results are foymdimerical integration; they are compared for the
three corotational rates cited above.

2 Basic Relations

Let X be the position of a material particle in the reference caméigon ande the position in the current config-
uration. The deformation gradieht describes the motion of the body

ox
F_ﬁ’ detF > 0. Q)

The particle velocityw and the velocity gradient are defined by

v=&, L= ZZ_FFl @)

where a superposed dot denotes the material time derivatiedeformation gradiedt can be uniquely decom-
posed in the positive definite and symmetric left stretclsoel”, embedded in the actual configuration, and the
rotation tensoR

F=VR, R=R". ©)

The obijective left Cauchy-Green tensBris computed fromV' and may be represented throughrtdistinct
eigenvalueg; and its eigenprojectionB; as

B=V?=FF" = ZblB., gBi:I. (4)

HereinI is the second order identity tensor. The following relasibold

m 0, i#k,

For given eigenvaluds the eigenprojectionB; can be found over Sylvester’s formula

M B bl

B = 61mI + b| bk

(6)
ol
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wheredj is the Kronecker symbol. The velocity gradient is addifn@dcomposed in the symmetric and objective
deformation ratdD and the skew-symmetric vorticifiy’

1

L=D+W, D:z(L+LT):DT, W=(L-L")=-W". (7

I\)IH

The corotational — not necessarily objective — rate of a sgirimtime-dependent tensek is defined by
A= A+ AQ —Q*A, (8)

whereQ* is the skew-symmetric spin tensor. Xiao et al. (1998a) slaathat the most general form of objective
corotational rates is related to the spin

—Wt ;h(b' bk)BDBk 9)

Herein |1 is the first basic invariant dB and the spin functioh enjoys the properthi(x,y) = —h(y, x). Particularly,
the spins related to three well known objective rates camsidihere are (Xiao et al., 1998a)

o for the Zaremba-Jaumann rdte-)*’ (Zaremba, 1903; Jaumann, 1911)

X =w; (10)

o for the polar or Green/Naghdi rate--)°R (Green and Naghdi, 1965; Green and Mclnnis, 1967; Dienes,
1979, 1987; Scheidler, 1994)
il by — by

=RR" = W+ b bIBDBk, (11)

o for the logarithmic raté- - -)°- (Lehmann et al., 1991; Reinhardt and Dubey, 1995, 1996; Xiab., 1998b,

1996, 1997b)
W+;k<bk—b| lnbk_lnbi>B.DBk. (12)

In the following we consider the hypoelastic constitutieiation proposed by Truesdell and Noll (1965)
D=K:T1°". (13)
7 is the Kirchhoff stress tensor which is related to the Caumttyue stresg by
T = (detF)o. (14)

We assume an isotropic unstressed initial state. The 4#r gainpliance tensdk is given by

1
K=z (]I—mI®I) (15)

wherel is the 4th order identity tensdg is the shear modulus, ands Poisson’s ratio. Note, th& is a constant
tensor, i.e. it doesn’t change in time. This will be consaddy useful in the single parameter cycles proposed
below.

3 Proposed Single Parameter Cycles

Assume a cycle that is dependent on a single paranpet@le characterize the partial derivative with respedi to
by a prime, i.e.
a(--+)

- oo -: cee !
() =5 (- =C)d. (16)
We introduce barred quantitieﬁ, W, Q" only depending og, by
D=Dd, W=Wo, Q =Q%. (17)

94



SinceK is considered to be constant, equation (13) takes the form
D=K: (7' + T — 5*7') (18)

which constitutes a set of ordinary differential equationg. They are integrated by standard numerical integration
schemes.

Whenever the deformation gradieRtis known, we may evaluate the Cauchy-Green ted3dyy equation (4),

it's eigenvaluedy;, it's eigenprojections by equation (6), the barred defdiomerate and vorticity by equations (2),
(7), (17), the Green/Naghdi and the logarithmic spins bya¢iquns (11), (12) and hence the differential equations
(equation (18)) for the stress development in function ef $imgle parameter characterizing the imposed strain
path and for different considered objective corotatiotr@ss rates.

3.1 Single Parameter Cycle 1

Figure 1: Cycle 1

Consider the square element of sizeH in Figure 1 which is embedded in the Cartesian referencemsyst We
impose a strain cycle where both upper corners rotate aleirgla with radius. Hereby the element is submitted
to combined lengthening iXp-direction and shear and remains a parallelogram in shape.dd't impose a
deformation in directiorXz. The deformed element in the actual configuration is thusrde=d by

B sing -r/H
X=Xt 1+ (1—cosp)-r/H ?
X2 = (14 (1—cosh) -r/H) X%, (19)
X3 = X3
¢ From this and equation (1) we obtain the deformation gnadie
sing -r/H
1+ (1—cosp)-r/H
F=10 1+(1-cosp)-r/H 0 |- (20)
0 0 1

According to explanations given before, with equation (@@)may obtain the differential equation for the stress
development and, hence, perform the numerical integration

3.2 Single Parameter Cycle 2

Similarly to cycle 1, the square element of sizeH is submitted to a deformation of parallelogram shape (Kigur
2), where the two upper corners now perform a circle of radtagheir right size. In difference to the deformation
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Figure 2: Cycle 2

in cycle 1, we have predominant element rotations involwvetthé deformation process. The deformed element is
described in the actual configuration by

B (1—cosh)-r/H
X=Xt 1+sing-r/H °
X2 = (L4sind-r/H) Xz (21)
X3 = X3,
wherefrom
1 (1—cosp)-r/H
1+sing-r/H
F=10 14sinp-r/H 0 (22)
0 0 1

4 Numerical Results

41 Cyclel

For matter of example we select the ratj¢d to be 05, i.e. we consider relatively large elastic deformations.

In Figure 3 the normal Kirchhoff stresses andt,; are plotted for the different corotational rates. It is seen
that there are only marginal differences between the plthe normal stresss; is almost equivalent to;1 and,
therefore, is not included in the graph. Simeg results from the same uncoupled differential equation for a

considered rates, the plots would be exactly congruent.

Differences, however, are seen in the shear stress plaird-i4 At the end of the single cycle residual shear
stresses are detected in case of Green/Naghdi and Jaurbesin ra

In Figure 5, the development of Kirchhoff stresses is ptbfte the case of the logarithmic rate and for 10 cycles.
It is seen that the normal stresses are predominant. As &dhed! stresses show an oscillatory behaviour.

For the same value af/H the stresses in case of Green/Naghdi rate are plotted imé=&ju/Ne may observe the
drift development of shear stress over the cycles, i.e. a stress ratchetting occurs. Alsoptinmal stresses; 1
(dotted line) and 33 (dashed line), initially almost identical, start to deeifitom each other. In case of Zaremba-
Jaumann rate (Figure 7), apart®g, which results from an uncoupled differential equatiohstiesses start to
show a drift. In case of the shear stress, this drift seem® toskillatory. At the end of 10 cycles we identify

undesirable residual stresses of remarkable magnitude.
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Figure 6: Cycle 1: Green/Naghdi rate
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Figure 7: Cycle 1: Zaremba-Jaumann rate
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42 Cycle2

Cycle 2 accentuates material line rotations, i.e. the gpthé corotational derivative.

.
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Figure 8: Cycle 2: Logarithmic rate

In Figure 8 the non-vanishing stresses are plotted in caieedbgarithmic stress rate and in Figure 9 in case of
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Figure 9: Cycle 2: Green/Naghdi rate

the Green/Naghdi rate. It may be seen that in the second lcas®tmal stress;; fails to return to zero already
after the first cycle. Apart ofss, of which the differential equation remains uncoupled saiésses start to drift
away and, moreover, to change their size. The resultingiKioff stresses in case of Zaremba-Jaumann rate show
hazardous behaviour after a few cycles. Stress drifts sedya dscillatory. Especially in case of the shear stress
T12 results seem to be unpredictable.

4.3 Cycle2: StressRatchetting and Error Accumulation

In the above examples the ratigH was chosen to be 0.5. This corresponds to relatively larginst We now
consider the much smaller ratio of. Elastic strains of this amount may occur for a variety oflern materials,
e.g. composites, memory alloys, ceramics etc. Also fordgtethelastoplastic materials in nonlinear iterations the
elastic predictor step can be related to strains of this aou
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Figure 10: Cycle 2: Zaremba-Jaumann rate
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Figure 11: Cycle 2: Error accumulation, Green/Naghdi rate
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In Figure 11 the error, i.e. the residual stress at the endeotycle is plotted versus the number of cycles, for the
case of Green/Naghdi rate. The residual stresgeandt,; are almost linearly increasing with the number of cy-
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Figure 12: Cycle 2: Error accumulation, Zaremba-Jaumaten ra

cles. The elastic limit, generally a few per mill d2can be reached or exceeded in course of the deformation. The
situation appears to be still worse in case of the Zarembedan rate (Figure 12). Not only the residual stresses
raise to approximately double amount compared to the raksdtesses in Green/Naghdi case, but additionally the
shear stresg;» starts to drift away. Such a drift is also observed in the Gidaghdi rate case; however, the drift

is negligibly small. It should be noticed that there are rsideal stresses in case of the logarithmic rate, i.e. there
is no error accumulation over the cycles.

5 Conclusion

For the simple Eulerian constitutive model, i.e. the hypsgt equation of grade zero, three objective stress rates,
namely the Green/Naghdi rate, the Zaremba-Jaumann ratheartagarithmic rate, have been compared in single
parameter elastic cycles. It is shown that there are reksgdtesses at the end of the cycle for two of the three
considered rates, i.e. stress ratchetting is observedy fonthe logarithmic rate stresses are returning to the
vanishing, initial state at the beginning of the cycle, thasfirming the results found in Xiao et al. (1999).
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