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M acr oscopic Properties of Open-Cell Foams Based on
Micromechanical M odelling

M. Janus-Michalska and R. B. Pecherski

This paper presents a micromechanical analysis for the assessment of macroscopic behaviour of three-
dimensional open-cell solid foams. The analysis is based on material properties of a solid phase and topological
arrangement of cell structure. A foam structure consi$tglealized tetrahedral unit cells, which are built of

four identical half-struts forming diamond-like structurend identifiedas Plateau borders. Such a unit cell
represents theessential microstructural features of foam. An analytical formulation of force-displacement
relations for struts can be found by considering the affinity of node displacements in tensile, bending, and shear
deformation. The elements of the stiffness matrix for a single cell are expressed as functions of the compliance
coefficients for stretching and bending of struts. The t@ffeelastic constants for metallic foam considered as
isotropic material are determined as functions of foam relative density and compared with available results. In
this paper we define an energy-based limit conditiotinefar elasticity for open-cell foams and calculate the
critical energy density pertinent to a particular orthogoealergy state accountingrfelementary interactions

in a microstructure. The study based on the assumption of linear elasticity leads to simple analytical formulas.
Nevertheless, it should be stressed that the propibssdetical basis of microechanical modelling could be

also applied for the analysis of nonlinear elastic behaviour, plasticity, and failure of foams. Such problems
require, however, a more complex numerical approach.

1 Introduction

The term “solid foams’ is commonly used for describing three-dimensional cellular materials with a highly
dispersive solid phase arranged into cells - polyhedra, which fill the three-dimensional space. The cells can be
either open or closed. Such a kind of structure can be found in many natural materials, for example cork, wood,
and cancellous bone. High technology foams are manufactured from polymers, ceramics, and metals and can be
used in reinforced lightweight structures, packaging, and crash-protection systems. Because of their structure
natural and synthetic cellular solids show unique physical properties, which provide their optimal functionality.
The development of mechanics of cellular solids is documented in Gibson and Ashby (1998). In order to develop
new materials it is necessary to understand better the mechanism of foam deformation. We assume that essential
macroscopic features of mechanical behaviour of open-cell foams can be inferred from the deformation response
of arepresentative microstructural element. The properties of cellular solids depend on material from which they

are made, internal geometrical structure and relative density ¢ . By relative density ¢ we understand a quotient of

density of cellular material and density of the solid from which the cells are made; i.e. the cell edges, in case of
open-cell foams, or cell walls for closed-cell foams. A value of foam relative density is usually less than 0.3; and
about 0.001 for ultra-low-density special foams. Above the value of about 0.3 the pore space shrinks and
transformation into a porous material occurs (Gibson and Ashby, 1998). To model a random microstructure and
evaluate its mechanical properties in macroscopic scale a simple periodic structure can be assumed in the first
step. The aim of the paper is to develop a congtitutive description of the linear elastic behaviour of open-cell
foams on the basis of microstructura modelling of a foam skeleton. The study is related to effective models
construction (Phillips, 2001). We also propose an energy-based limit criterion and the critical values of energy
density that are calculated from the discussed microstructura model. Early works on elastic foam mechanics
belong to Gent and Thomas (1959, 1963). The authors assumed that struts in a foam skeleton transmitted axial
load only. A number of later analytical studies have incorporated bending deformation of struts (Choi and Lakes,
1995; Gibson and Ashby, 1982; Ko, 1965; Menges and Knipschild, 1975; Warren and Kraynik, 1987,1997,
1998), which is understood to be a dominant deformation mechanism for small deformations of open-cell foam.
Inthe analysisin Warren and Kraynik (1997) torsion of a strut was aso included.

1.1 Topological Arrangement of Foam Cell Structure and Foam M or phology

The topology and morphology of foam microstructure reflect a method of its preparation, which usually involves
a continuous liquid phase that eventually solidifies and therefore surface tension and related interfacial effects
often control the foam structure. There are two well known elementary features of the liquid foam structure that
are required to minimize surface energy. According to Bikerman (1973), three films always meet at equal angles
of 120° to form a film junction called Plateau border (cf. Gibson and Ashby (1998), where the work of JA.F.

234



Plateau (1873) is cited). Four Plateau borders always join at the tetrahedral angle of 109.47°. For open cell foams
Plateau borders are identified as foam skeleton struts (Warren and Kraynik, 1998). Also in a closed-cellular
structure, if the films are very thin compared to the struts, the similar response to open-cell foam is expected.

e s

Fig. 1. The considered strut cross-sections: a. equilateral triangle; b. Plateau border

The struts originate from liquid in Plateau borders, which form along the edges of polyhedral cells. Surface
tension, viscous flow and other physico-chemical mechanisms control the evolving strut geometry during foam
formation when gas bubbles grow and deform in a highly viscous liquid, which eventualy solidifies. The films
are required to be very thin in comparison to the transverse dimension of struts. For low-density foams with long
struts the cross section can be assumed as an equilateral triangle or Plateau border as shown in Fig. 1. The
considered struts with cross-sections of shapes of an equilateral triangle or Plateau border have threefold axis of
geometric symmetry. This affects the material symmetry of a unit cell. No cell in three-dimensional foam is a
simple polyhedron with planar faces and straight edges. Tetrahedra do not fill out the space so our geometric
assumptions are not precisely compatible with any three-dimensional network of struts, cf. Gibson and Ashby
(1998); however, even though the results cannot be exact they provide useful insight into foam mechanics.

1.2 Micromechanical M odels

Two micromechanical models are known in literature. The first one, based on a tetrahedral element, was adopted
by Warren and Kraynik (1998); the representative tetrahedral element consists of four identical half struts that
meet at equal tetrahedral angles. This choice of a microstructural element is consistent with the topological
feature of foam given previously. The relative orientation of adjacent tetrahedral elements that possess a
common strut is assumed to be random. The boundaries of unit cell consist of four planes that are perpendicular
to each strut at its midpoint and form aregular tetrahedron. This model enables us to obtain only averaged elastic
constants over all possible orientations and to estimate the elastic properties of the foam. According to Gibson
and Ashby (1998), Lord Kelvin (W. Thompson) showed in 1887 that space could be partitioned into identical
tetrakaidecahedral cells of equal volume and minimal surface area. A terakai decahedron has six quadrilateral and
eight non-planar hexagonal surfaces all with curved edges. This model is referred to as Kelvin foam and was
adopted by Zhu et al. (1997) as well as Warren and Kraynik (1997). Predicted elastic properties of the Kelvin
foam model are not isotropic, for the Y oung modulus E varies of about 10% with change of direction. In most
existing foams, however, there are no distinguished directions regarding their microstructure and one should
expect isotropy as elastic properties are concerned. The Kelvin foam model exhibits also an unusua behaviour
that has not been confirmed in real materials, for example, a value of Poisson’s ratio corresponds to
incompressibility v=05, which is not a true value. Gibson and Ashby (1998) found large scattering of
experimental data for Poisson’s ratio. Experiments show its dependence on the skeleton material and foam
morphology but no dependence on density. The value v = 05 has not been obtained as a result of experiment.

In this work we assume that the analysis of the deformation of a representative tetrahedral element without any
assumption concerning cell orientation captures essential features of the mechanical response. We aso assume
that the deformation of cells under uniform strain states is affine. It results in affinity of film midpoint or strut
midpoint displacements. According to Warren and Kraynik (1998) we note that strict affine deformation is a
conseguence of a perfectly ordered structure and cannot be expected in foams that are polydisperse or are
disordered in another way. The affinity assumption is justified by the results of observation of foam under a
microscope (Menges and Knipschild, 1975); foam is regarded as a specia kind of an ordered structure, which
approximately fills out the space.

2 Micromechanical Analysis
2.1 Unit Céll

We model three-dimensional foam with the smallest repetitive element, which defines a spatially periodic
structure. Microstructural mechanical features of an open-cell foam are represented by atetrahedral unit cell with

askeleton of four half struts of length L 5 which meet in the point O with the tetrahedral angle of 109.47°. Asit
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isshown in Fig. 2, the struts are perpendicular to the cell faces. We choose such a position of the unit cell, with
respect to the unit vectors €, ,0 = x,y,z of the assumed coordinate system, which is especially suitable for the
analysis.

Fig. 2. Anidealized tetrahedral unit cell built of four identical half-struts forming a diamond-like structure

The strut midpoints are described then in a simple way by the following position vectors ﬁo i=1..4

Bf:[— LE,LE,LE] Bzf):[Lﬁ,—LE,Lﬁ]
6 6 6 6 6 6
b? ={L£,L£,_Lﬁj b? =[—L£,—Lﬁ,—LﬁJ 1)
6 6 6 6 6 6

A solid skeleton modeled with struts structure that is oriented in accordance with Fig. 2 corresponds to a
diamond-like structure and has, consequently, cubic symmetry. It can be proved by the fact that a composition of
three transformations: right angle rotation with respect to axis a (where a = x,y, z) with mirror reflection with

respect to the plane that is perpendicular to the given axisa , gives the same structure. A transformation law for
the fourth order elasticity tensor gives relations for stiffness matrix components typical for cubic symmetry
(Nalepka, ...). It is worth reminding that such a regular cell is an idedlization; however, it leads to a simple
analytical description. Irregular cells are often observed; members of different length and/or subtending various
relative angles form them. Additionally, different mechanical properties can be assumed for each of the members
in a cell solid skeleton. The effects of geometry of such irregular cells on anisotropy of foams are analyzed in
Wang and Cuitifio (2000). The estimation of elastic properties of model random three-dimensional open-cell
solids for different cellular structures with use of FEM analysisis presented in Roberts and Garboczi (2002).

2.2 Kinematicsof a Unit Cell

The following analysis is based on the discussed above model of a representative unit cell and the assumption of
infinitesimal displacements, uniform strains, and midpoint displacement affinity. Let us consider uniaxial

extension &, inthedirection a =x,y,z of aunit cell (an exampleisshown in Fig.3a). For such a deformation
the strut midpoint relative displacements are given by the following formula:

Afe)=¢.lb0m®)e i=1..4 ©)
For pure shear Vag inthe aB plane (a # B), Fig 3b, the relative displacements are given as follows:
Ai (VGB/2)=(yaB/2)((6|0 IE(1()é]3_(6|0 |}]3)éot) I ::L4 (4)
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Fig.3. Deformation of a unit cell: a) uniaxial extension in x direction; b) pure shear in x-y plane

Displacements obtained in such a way can be represented by the components that are normal and tangent to the
individual strut direction (in the plane of tetrahedral wall).

Ai = Ain + Air ©)
where the displacement components can be obtained by use of the following formulas:

Ainz(ﬁim)é Airz(ﬁixé)xé'
2.3 Force-Displacement Relations of a Foam Skeleton

The model of Timoshenko beam is adopted as the most appropriate for short struts of the foam skeleton; while
for low-density foams with long, slender struts the Bernoulli-Euler beam theory was satisfactory. At this level
we can take into account a non-uniform morphology. Thisis the case where the transverse strut dimension varies
gradually along the centerline axis with the maximum value at the joint and the minimum in the midpoint.

As a consequence of the assumed displacement affinity we find that individual strut deforms antisymmetrically
with respect to its midpoint so the resultant bending moment at the midpoint disappears. The elastic behaviour of
a cantilever beam under axial and transverse load is known from classical solutions; for axia load the differential
equation with boundary condition is to be solved:

I

%ﬁtﬁi : L) ail)=o ©

5 e
s

[ An
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Fig. 4. A representative non-uniform strut subjected to axial load.

where N(E)= F, isthe axial force, A, = A, (%) denotes the midpoint axial displacement and E, corresponds

to the Y oung modulus for a skeleton material. The solution shows that force-displacement relation is linear with
coefficient s, determined as the axial elastic beam stiffness while the elastic compliance is defined as ¢, = s;.".
For uniform cross-section we have:
L

“=2EA )
For non-uniform cross-section elastic beam compliance becomes a function of foam morphology. A solution for
transverse load shows that for a cantilever beam a displacement-force relation is also linear with the coefficient
C, defined as bending elastic strut compliance. For transverse load the differential equation with boundary

conditions for a Bernoulli-Euler beam, where deflections depend only on bending moments, reads:

. g;_—__']tﬁ.“ L @)= s =0, L0n,0)0 @

dE? EJ(E

Fig. 5. A representative non-uniform strut subjected to transverse load.
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M (E) =F, ('/2—6) is a function of the bending moment and MAH=MA“(|/2) denotes the midpoint transverse

displacement. For a Timoshenko beam the additional displacement component related to shear stress should be
included. It can be obtained as a solution of the following differential equations with boundary conditions:

Sonnle)= 2. oanl0)=o ©

Where Q(§)=F,, QA“=QA“(%) and A({):%@ are geometric characteristics of the beam cross-

section. The bending elastic compliance is a sum of two components. The first one corresponds to the Bernoulli-
Euler beam response, whereas the other one is related to shear strains in a Timoshenko beam. For a uniform
cross-section the solution reads:

L3 L
C, = +—
24E.J  2G,A
The bending stiffness of beamsisgiven by s, =c*and then force-displacement relations
I:in =Ain|];n’ Fir =Air|:tr' i ::L4 (11)
enable us to obtain normal and transverse forces in case where displacements from the deformation analysis are

(10)

given. The components of internal forces obtained in such away fulfill the equilibrium conditions:

1

F=0

4
i=1 i

- xb°=0. (12)

M-
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2.4 Effective Stress Tensor Definition

Cutting the representative volume element with planen: x =0 and considering the effective stress that has to act
upon the exposed face to maintain the equilibrium with forces on the remaining volume gives the following
equilibrium equation:

Alo8+0.8+0.8)+F +F, =0 (134)
Ananaogical cutting withuse of 77: y =0, asillustrated in Fig.7, resultsin the following equation:
A (0,8 +0,8,+0,8)+F, +F, =0 (13b)

Similarly, cutting with use of plane 77: z=0 gives
Az(ozxéx + 0-zyéy + 0—zzéz)-i- IES + IE4 = 0 (13C)
where A =A =A = A=§L2 for the square sections and €, ,€,,€, are the unit vectors associated with the

coordinate system. The solution of the set of equations (13) gives the stress tensor components.

—t V
i
4 M i

Fig. 6. The way of calculating the effective stress tensor components.
2.5 Effective Elasticity Tensor
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On the basis of the previous analysis an effective constitutive matrix for the unit cell is constructed. Since the
symmetry of the unit cell is cubic the following matrix represents the elasticity tensor, (axes x, y, z are related
respectively withindices 1, 2, 3):

(S Suz Sum O
Suss Sun Suze 0

S.L122 S.L122 S_Llll O
0 0 0 2s,, O

O 0 0 0 2s, O
O 0 0 © 0 25,]

o O O
o O O o

(14

For cubic symmetry we have three eigenval ues (Kelvin moduli) [17-19]:
)\I = )\l = S_I.111+251122’ }\II =)\2 =}\3 = S_I.lll_s_l.122’ }\III = }\4 = }\5 = }\6 = 25.L212

Two types of specific deformation are considered: uniaxial extension in x directione, #0 and pure shear
Y,y #0. Asaresult, the following elasticity coefficients are obtained as functions of axial and bending stiffness
of the skeleton strut:

2s, +2s,) 2s,-s) 2s,
=—h o] =0 2/ 2g, = 15
S.Llll 9 /_3L S_I.122 9 /_3L S.1212 3 /_3L ( )
The calculated Kelvin moduli are as follows:
2s, 2s,
A=A = +2 =—" A=A, =N, = - =
| 1 Sllll S1122 3\/§L I 2 3 Sllll S.L122 3\/§L
2s,

Ay =A, =A.=A, =28, = 16
1 4 5 6 S1212 3 /_3L ( )

Since A, =A,, the analyss leads to an important conclusion that the considered representative cell is
elagtically isotropic, which in turn leads to the following consegquences:

» theelagtic behaviour is described by two Kelvin moduli

e theorientation of acell can be arbitrary

»  the macroscopic Kelvin moduli for foam are identical with moduli of a representative unit cell.

The above derived elastic isotropy results from the symmetry of the struts cross-sections, Fig. 1.

2.6 Macroscopic Elastic Properties

The first eigenvalue refers to bulk modulusA, =3K . It can be expressed as a function of skeleton stiffness,

which depends on skeleton morphology and the material of which the skeleton is built. Bulk modulus is a linear
function of foam relative density K = o E@, where o isalinear coefficient and does not depend on the type

of cross-section of a foam skeleton. For uniform cross-section the bulk modulus reads K = 253 ¢, where

(p=% for low-density foam @<<1(usually ¢<0.05). The second eigenvalue is interpreted as a shear
modulusA,, =2G . For auniform cross-section and low-density foam it assumes the following form
_2 _ BY (17)
3/3L 1+3.0

where coefficientsf5,0, depend on the type of the strut cross-section and its nonuniform distribution along the
axis. Bg,0; reach higher values for short skeleton struts in the Timoshenko model than in the considered

Bernoulli-Euler model because additional terms responsible for shear modes are to be taken into account. The
Y oung modulus and Poisson’s ratio can be calculated using the two latter constants from the following general
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formula:

E=_ 288 _ Be¥
J3L(2s,+s) 1+5:9
where coefficientsp ., depend on the type of strut cross-section and its nonuniformity. For low density foams

(18)

the Y oung modul us can be approximated with arelation E = 3.¢’ . For open-cell foam experiments show that the

Y oung modulus can be approximated as. E OE, [T, [ , where constant C,. is calibrated from tests, E; isthe
Young modulus of solid skeleton material. On the basis of microstructural analysis we can explain why this
formula is only an approximation and say how accurate it is. We can also give an explicit formula for
constantC. , which is a function of microstructure morphology. According to Gibson and Ashby (1998),
C. = 1for low-density foams, whilein the case of higher density foams C.(1, asthe nodes contain a significant
portion of the material that is not used in a structural sense since it carries little or no load. The Poisson’s ratio
v =Z% does not depend on the foam relative density but only on the type of a cross-section and

morphology.

2.7 Comparison with Other Models

Results obtained by application of the presented model can be compared with results that refer to the tetrahedral
random model given in Warren and Kraynik (1998) and the Kelvin foam model given in Zhu et al. (1997). In
each case low-density foam is assumed and the Bernoulli-Euler model of strut with a uniform cross-section is
adopted. A comparison of the three models is given in Table 1. Other models known in literature and their
comparison with FEM calculations performed for random three-dimensional open-cell solids are thoroughly
discussed in Roberts and Garboczi (2002).

Presented model Tetrahedral model Kelvin foam model
according to Warren | according to Zhu et
and Kraynik (1998) | al. (1997)
C. triangle 1.0 11 0.726*
C. Plateau border | 1.39 1.54 0.979*
E triangle 1.0 ¢? £ - 1056 e . _ 0726 ¢*
1+05¢ ° 1+298¢p ° 107 941000 °
E Plateau border po 13047 o £ 153 ¢ _1.009 ¢?
1+0.695¢ ° 1+4.325¢ ° 10714115149 °
v triangle =05 ( 1-¢ ] ) =05 (1—0.193¢] v, =05 [1—1.51440]
1+0.5¢ 1+2.98p 1+1.514¢
v Plateau border S ( 1—1.4540] . [1—0.280¢] vy =05 [1—1.09¢J
1+0.729¢ 1+4.321p 1+1.09¢
K 2 1 1
K=—¢E K==¢E K==¢E
9 Y Es 9 Y Es 9 Y Es

Tablel. Comparison of three discussed models; * denotes the model, which reveals dight anisotropy.

2.8 Specification of Energy-Based Limit Condition of Linear Elasticity for Open-Cell Foams

The analysis of compression tests carried out on specimens made of different kinds of open-cell foams shows
that a linear elasticity range transforms into a range of non-linear elastic behaviour followed by permanent
strains Gibson and Ashby (1998). Modelling of afoam microstructure with the help of the linear elagticity theory
enables us to predict the macroscopic limit condition of linear elasticity for open-cell foams. An energy-based
approach to limit conditions for isotropic solids was firstly proposed by Maxwell (1936) and Beltrami (1885),
then derived independently by Huber (1904) and further developed for solids of arbitrary anisotropy by
Rychlewski (1984b, 1995). The Rychlewski limit condition is based on the concept of energy orthogonal elastic
stress states, which makes it possible to decompose additively the elastic energy density stored in an anisotropic
body into not more than six digoint parts. In Nalepka and Pecherski (2002) a new ideais proposed to specify the
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Rychlewski criterion by analytical calculation of the critical energy density, pertinent to a particular orthogonal
energy state, with an account of elementary interactions in microstructure. As an example, evaluation of critical
energy density of breaking atomic bonds with application of a quantum-mechanica model of an ideal Cu
nanostructure was studied in Nalepka and Pecherski (2002).

A similar approach can be aso applied in defining the limit condition for open-cell foams. The elaborated
microscopic model enables us to calculate the critical energy density for proper elastic states related with the
change of volume and distortion. The specification of energy-based criterion for isotropic open-cell foam takes
the following form:

1 o 1 SE_
2K Doy 4G Doy

(19)

where 0= %trg is a hydrostatic part of the stresstensor c and S=o0-0ol isits deviator, while @, stands

for critical energy density in an elastic hydrostatic state of stress and @, corresponds to critical energy
density in a deviatoric state of stress. This criterion is formulated on a macroscopic level for the stress tensor @
that is defined for foam as a continuum medium. Our aim isto calculate the energy limits ®,, and ®,, from

a microstructural model. On the microscopic level the stress in the skeleton material is denoted with the upper
index “s’. We adopt the well-known Huber-Mises hypothesis of elastic energy of distortion:

Scb = =1V, [( )2 ( Un_scc)z+(Scz_soc)z+6(ST§n+ST§c+ST§n)] (20)

for elastic isotropic solid skeleton material, while in an uniaxial case the critical energy density for the skeleton
material with the elasticity limit R, isgiven by

o, = 1+vg
3Eg

RS (21)

Let us study the following algorithm: firstly, we assume two proper elastic states and then, considering them
independently, we calculate forces in the skeleton struts for each state respectively. A stress state in foam is
critical when élastic energy density of distortion (20) reaches the critical value (21) for a considered skeleton.
From analysing such a critical state of stress in foam as a continuum we obtain the desired critical energy
density.

Thefirst proper state: a hydrostatic state of stress results only in normal forces in each of the skeleton struts:

F )=

o (22)

It also gives only normal stresses in the skeleton struts:

CACE V3L o

23
4A (23)
When normal stress reaches the critical value:
L2
o [ =R (24)
&Cl
T an,
the critical hydrostatic stressin foam can be expressed as follows:
4A
Ocry =0rl0l )= R O—— 25
cr = Ocr(01) =R, e (25)

The energy limit for the first proper state, which is derived on the basis of the above microscopic analysis, can be
also given by the explicit formula

Re f,(AE).L), (26)
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where f, = f,(A(€),L) isafunction of foam morphology, which gives its dependence on the skeleton material.
For auniform cross-section the solution can be expressed as a square function of foam relative density ¢:

2
1 1 4A 2
Dipy =_GéRl=RR§(\/§L2J =KR92 [4° (27)

The second proper state: We consider uniaxia tension of a specimen for which a stress deviator is given
below; energy density as a scalar isotropic function of tensor arguments does not depend on the deviatoric state
of stress and orientation of arepresentative cell:

—0, 0 0
-1
s={ 0 —ag, O (28)
= 3
0 o ig
L 3 ]

The stress deviator refers only to shear forces present in the foam skeleton and equaling:

F.(9)= [B (29)

in each strut. It also gives a maximum value of normal stress due to the bending moment being the sole non-zero
stress component:

)

J 8J .

ymax max

(30)

The symbols t,.., J..« Characterize the strut cross-section in the node and denote respectively a side-length of
the triangle or Plateau border and the moment of inertia.
When normal stress reaches the critical value oy = R, the respective critical value of tensile stress can be

obtained from the relation:

0XCR2=GCR(_) R, \/—Lysr:ax (31)

For the second proper state we also obtain a formula that shows the dependence of energy density on the foam
material and morphology.

_i 2=i2
Pera == (Sore B )= 55 RE(AE) L) (32)

For a uniform cross-section the solution is as follows:

1 1_,16J°7
CDCRZ = E@CRZ EECR2)2= 6 Re2 3L6t2

(33)

We can calculate the critical values of energy density for considered macroscopic foam when its relative density
and elastic moduli as well as geometric parameters and elasticity limit R, for a solid skeleton are given. Then the
energy-based criterion (19) can be verified experimentally.

3 Conclusion
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The present paper provides an example of a construction of an effective model of linear elaticity, in which
necessary material characteristics such as elastic moduli and elastic limit are calculated basing on an appropriate
microstructural model and elementary interactions between the material micro constituents. The derived
formulas (25) and (33) for the critical energy density specify its dependence on material and geometric
parameters of the solid skeleton morphology. In this way, we obtain a general multiscale algorithm for linear
analysis of each type of afoam microstructure modelled with strut systems. This makes it possible to design and
manufacture new foam materials according to the assumed requirements. It is also feasible to extend the
presented analysis for closed-cell foams; in such a case the cell faces can be modelled with plates. The proposed
approach can be applied for further studies on foam material mechanics within the framework of a non-linear
analysis accounting for the logarithmic strain measure and plastic hinges.
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