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On the Duality of Global Finite Element Discretization Error-Control in
Small Strain Newtonian and Eshelbian Mechanics

M. Rüter, E. Stein

Dedicated to the memory of Dipl.–Ing. Jürgen Olschewski.†

In this paper global a posteriori error estimators are presented for the error obtained during the finite element
discretization of the linear elasticity problem. Thereby, the duality of global error measures is established that are
chosen within the framework of traditional Newtonian mechanics as well as within the framework of Eshelbian
mechanics. In Newtonian mechanics we are concerned with the (physical) Cauchy stress tensor that reflects the
internal resistance of an elastic body to an applied physical force, whereas in Eshelbian mechanics the applied
force is a material force acting on a defect of the elastic body with associated (material) (Newton-)Eshelby stress
tensor which is the dual stress tensor of the Cauchy stress tensor. The derivation of a posteriori error estimators
is based on the well-established strategy of solving an auxiliary dual problem in order to control the global error
measures defined in terms of bounded non-linear functionals. In this paper, two principally different strategies
are presented to estimate the error measure. The first strategy rests upon an equilibrated residual error estimator
based on local Neumann problems, whereas the second one makes use of averaging techniques. The paper is
concluded by a numerical example that illustrates our theoretical results.

1 Introduction

Whenever defects of a material are considered, such as cracks in fracture mechanics, the appropriate framework is
the one of Eshelbian mechanics, cf. Eshelby (1951), Maugin (1993), Kienzler and Herrmann (2000), Steinmann
(2000) and others, rather than Newtonian mechanics. In Eshelbian mechanics, the material force acting on a defect
describes the change in the total potential energy of the elastic body. Hence, if the material is defect free, no
material forces are acting on the elastic body. However, if we consider the material forces as obtained by a finite
element discretization of the associated model problem within Newtonian mechanics, the material forces are not
vanishing because of the finite element discretization error. Different attempts have been made to minimize these
discrete material forces which should, at best, vanish. Most attempts user-adaptive methods based on optimization
strategies where only the nodes of the finite element mesh are moved, see e.g. Mueller and Maugin (2002) and
Kuhl et al. (2003). To our knowledge,h-, p- or hp-adaptive methods – based on a posteriori error-control – have
not been used so far.

The derivation of a posteriori error estimators within the framework of Eshelbian mechanics requires a special
approach widely known as goal-oriented error estimation. This technique generalizes the canonical approach in
estimating the error in the (global) energy norm to more general error measures given by (linear or linearized)
functionals, whereby we restrict our considerations in this paper to global error measures in Newtonian as well as
in Eshelbian mechanics. As introduced in the seminal work by Eriksson et al. (1995) and developed further by
Becker and Rannacher (1996) and others, goal-oriented a posteriori error estimators are based on the widely used
strategy of solving an auxiliary dual problem. Thus, a key feature in this context is the construction of the dual
data. The presented a posteriori error estimators are based either on the residuals of both the original and the dual
problem or on recovery of the associated stress fields. For the residual type error estimators we make the choice
of implicit error estimators of equilibrated residual type based on local Neumann problems, whereby one of the
proposed estimators was originally introduced by Prudhomme and Oden (1999) and Ohnimus et al. (2001) for the
linear elasticity problem.

†The late J̈urgen Olschewski worked at our institute from 1978 to 1981 on the research project “Theoretical and numerical investigation of
thermo-mechanical deformations of mineral salt including damage”. He was a brilliant scientist in the fields of thermodynamics of solids and
of material theory and brought new ideas for constitutive equations as well as suitable engineering solutions matching with test results. We are
very sorry that we couldn’t convince him to become a Dr.–Ing. in appreciation of his excellent research results.
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The paper is outlined as follows: In Section 2 the boundary value problem of linear elasticity is briefly introduced
within the framework of Newtonian and Eshelbian mechanics. In the following section, global error measures in
Newtonian and Eshelbian mechanics are established. Furthermore, error representations are derived that are based
on the solution of an auxiliary dual problem, and the construction of the dual data is discussed. Subsequently,
in Section 4 a posteriori error estimators of equilibrated residual type based on local Neumann problems and,
additionally, error estimators using averaging techniques are derived. Finally, in Section 5 an illustrative numerical
example is presented.

2 The Model Problem

In this section we first introduce the model problem of linear elasticity in the framework of traditional Newtonian
mechanics. Furthermore, we establish the associated Eshelbian formulation. In both frameworks the elastic body
occupies the closure of a bounded open setΩ ⊂ R

3 with piecewise smooth and Lipschitz continuous boundary
Γ such thatΓ = Γ̄D ∪ Γ̄N andΓD ∩ ΓN = ∅, whereΓD andΓN are the Dirichlet and Neumann boundaries,
respectively. For the sake of simplicity, the elastic body is assumed to be isotropic and homogeneous.

2.1 Newtonian Mechanics

To begin with, let us consider the model problem as described within traditional Newtonian mechanics. In the
strong formulation we seek the displacement fieldu ∈ [C2(Ω)]3 ∩ [C1(Ω̄)]3, such that the field equation

div σ = 0 in Ω (1)

and the boundary conditions

u = 0 onΓD (2a)

σ · n = t̄phy onΓN (2b)

are fulfilled. In the above,σ = C : ε denotes the symmetric (physical) Cauchy stress tensor, whereC =
λ1 ⊗ 1 + 2µI is the constant positive definite fourth-order elasticity tensor with positive Lamé constantsλ and
µ as well as second-order and fourth-order identity tensors1 andI, respectively. Furthermore,ε = (gradu)sym

denotes the strain tensor,n is the unit outward normal, and̄tphy ∈ [L2(ΓN )]3 are prescribed (physical) tractions
on the Neumann boundaryΓN . Note that body forces are omitted in this formulation.

In the corresponding weak formulation we search for the displacement fieldu in the Hilbert spaceV = {v ∈
[H1(Ω)]3 ; v|ΓD

= 0} such that the variational equation

a(u,v) = Fphy(v) ∀v ∈ V (3)

is fulfilled. Here, the bilinear forma : V × V → R and the linear formFphy : V → R are defined by

a(u,v) =
∫

Ω

σ(u) : ε(v) dV (4)

and

Fphy(v) =
∫

ΓN

t̄phy · v dS , (5)

respectively. Note that the functionalFphy represents physical forces acting on the Neumann boundaryΓN . More-
over, it should be pointed out that for the chosen model problem a unique solution to the variational problem (3)
exists due to the Lax-Milgram theorem. Observe, however, that although the Lax-Milgram theorem ensures the
existence of a unique solutionu ∈ V , Equation (3) is not the unique variational formulation that is satisfied by
u ∈ V , as we shall see later.

In the associated finite element discretization of the variational problem (3), we subdivide the elastic body into a
finite numberne of connected elements̄Ωe such that̄Ω ≈ ⋃

ne
Ω̄e. On these elements we define polynomials to

construct a finite dimensional subspaceVh ⊂ V . Thus, in the discrete variational problem we solve

a(uh,vh) = Fphy(vh) ∀vh ∈ Vh (6)

for the finite element solutionuh ∈ Vh. Obviously, a unique solutionuh ∈ Vh to this problem exists, since
Vh ⊂ V .
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2.2 Eshelbian Mechanics

Within the framework of Eshelbian mechanics, analogously to (1) and (2) the strong solutionu ∈ [C2(Ω)]3 ∩
[C1(Ω̄)]3 to the boundary value problem defined by (1) and (2) satisfies the field equation

div Σ = 0 in Ω (7)

in case of a homogeneous elastic body. Here,Σ = Ws1 − (gradu)T · σ denotes the non-symmetric and non-
linear (material) Newton-Eshelby stress tensor with specific strain-energy functionWs = 1

2σ : ε. The boundary
conditions, however, cannot be chosen arbitrarily, since they are a direct consequence of the ones within the
framework of Newtonian mechanics. More precisely, we have

u = 0 onΓD (8a)

Σ̄ · n = tmat onΓN , (8b)

wheretmat ∈ [L2(ΓN )]3 denotes the (material) traction vector. Note carefully that within Eshelbian mechanics
the material tractionstmat are not prescribed, since in this case the Newton-Eshelby stress tensor is prescribed
(denoted by the bar). Thus, (8b) is not a boundary condition in the sense that (7) and (8) do not represent a
boundary value problem.

As a consequence, the weak solutionu ∈ V to the linear variational problem (3) also satisfies the non-linear weak
formulation of (7) and (8), i.e.

b(u,v) = Fmat(v) ∀v ∈ V . (9)

Note, however, that this variational equation does not represent the weak form of a boundary value problem. In
the above, the semi-linear formb : V × V → R, i.e. b is linear with respect to its second argument only, and the
linear formFmat : V → R are defined by

b(u,v) =
∫

Ω

Σ(u) : gradv dV (10)

and

Fmat(v) =
∫

ΓN

tmat · v dS , (11)

respectively. We remark that the functionalFmat represents material forces acting onΓN .

It should be stressed that althoughu ∈ V fulfills both the variational equations (3) and (9), because of the finite
element discretization error

eu = u − uh (12)

the solutionuh ∈ Vh of the discretized variational problem (6) does not in general satisfy the finite element
discretization of (9), i.e.

b(uh,vh) 6= Fmat(vh) ∀vh ∈ Vh. (13)

This fundamentally important fact has, as we shall see later, consequences concerning the error analysis.

3 The Finite Element Discretization Error

In what follows we establish error representation formulas in a Newtonian as well as in an Eshelbian setting that
serve as a basis for the subsequent a posteriori error analysis.

3.1 Nodal Physical and Material Forces

Upon inserting the finite element approximationuh ∈ Vh into the variational equation (3), we obtain a non-
vanishing linear functionalRphy,u : V → R (in case thateu 6= 0) defined by

Rphy,u(v) = Fphy(v) − a(uh,v) (14)
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which is also referred to as the (physical) weak form of the residual. Recalling the finite element discretization
(6), it is a simple observation that the weak form of the residual (14) vanishes for all functionsvh ∈ Vh, i.e.
Rphy,u(vh) = 0, sinceuh ∈ Vh is the exact solution of (6). This important property is called the Galerkin
orthogonality. With the definition of the linear form (5) and the bilinear form (4) at hand, the Galerkin orthogonality
can be expressed by

Rphy,u(vh) =
∑
ne

v̂T
{
Fext

phy,e − Fint
phy,e

}
= 0 (15)

with energy-equivalent exterior nodal physical forces

Fext
phy,e =

∫
∂Ωe

NT tphy(uh|Ω̄e
) dS (16)

and energy-equivalent interior nodal physical forces

Fint
phy,e =

∫
Ωe

BT σ(uh|Ω̄e
) dV . (17)

In the above,̂v are nodal values of the test functionsvh associated to the nodesXk ∈ Ω̄e, N is the usual matrix
of the finite element ansatz functionsN , andB denotes the so-calledB-matrix consisting of the derivatives of
the ansatz functionsN according to the definition of strains. Since the test functionsvh|Ω̄e

= Nv̂ can be chosen
arbitrarily, at each element̄Ωe the interior and exterior nodal physical forces are in equilibrium, i.e.

Fint
phy,e = Fext

phy,e. (18)

Consequently, upon summing up the interior or exterior nodal physical forces associated to one nodeXk ∈ Ω,
that means summing up the contributions from the nodal patch, i.e. from the adjacent elements, the resulting nodal
physical forces at each nodeXk vanish.

Likewise, we may insertuh into the variational equation (9) to derive the (material) weak form of the residual
Rmat,u : V → R within the framework of Eshelbian mechanics that is defined by

Rmat,u(v) = Fmat(v) − b(uh,v). (19)

However, as mentioned before,uh ∈ Vh does generally not satisfy the finite element discretization of (9), cf.
(13). As a consequence, the weak form of the residual (19) does generally not vanish for arbitrary test functions
vh ∈ Vh, i.e. Rmat,u(vh) 6= 0. Hence, the Galerkin orthogonality does not hold within the framework of
Eshelbian mechanics which can – similarly to (15) – be expressed as

Rmat,u(vh) =
∑
ne

v̂T
{
Fext

mat,e − Fint
mat,e

} 6= 0 (20)

with energy-equivalent exterior nodal material forces

Fext
mat,e =

∫
∂Ωe

NT tmat(uh|Ω̄e
) dS (21)

and energy-equivalent interior nodal material forces

Fint
mat,e =

∫
Ωe

BT Σ(uh|Ω̄e
) dV . (22)

Apparently, since the (material) weak form of the residual (20) does not vanish or, in other words, sinceuh ∈ Vh

is not the exact solution of (13), the exterior and interior material forces are not in equilibrium, i.e.

Fint
mat,e 6= Fext

mat,e. (23)

Thus, it should be noted that upon summing up the interior or exterior nodal material forces associated to one
nodeXk ∈ Ω, the nodal material forces at each nodeXk do not vanish. Since this is a direct consequence of
the residual (20), we refer to these non-vanishing material forces asresidual material forcesrather than “spurious
material forces” as suggested by other authors, see e.g. Steinmann et al. (2001). The residual material forces
vanish only, ifRmat,u(vh) = 0 for all vh ∈ Vh, i.e. either if we found the exact solutionu ∈ V to (3) which also
satisfies (9) or if we found a discrete solution that satisfies the finite element discretization of (9). Consequently,
if we aim at modifying the finite element solutionuh of (6) (by moving the nodes or, in other words, by changing
the finite element test and solution spaceVh) in such a fashion that, at best, the residual material forces vanish,
nothing can be said about the finite element discretization erroreu. Thus, from the viewpoint of error-controlled
adaptive finite element methods, it is not useful to put efforts in finding such a modified discrete solution, since
although residual material forces are an indicator for the discretization error, the converse is obviously not true, i.e.
vanishing residual material forces are not an indicator for a vanishing discretization error.
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3.2 Error Representation Formulas for the Finite Element Discretization Error

Our objective in this paper is to control the discretization erroreu in terms of adaptive finite element methods
based on a posteriori error estimates. In order to derive such a posteriori error estimates, we shall first establish
the exact error representation formulas which serve as a starting point to derive error estimators. An exact error
representation formula in the framework of Newtonian mechanics is simply derived by recalling the definition of
the weak form of the residual (14) and making use of the variational equation (3) and the linearity properties of the
bilinear forma. Hence, we get

a(eu,v) = Rphy,u(v) ∀v ∈ V (24)

which is a variational equation for the unknown erroreu ∈ V .

In the same manner we can derive an error representation formula for the erroreu within Eshelbian mechanics.
Hence, we first replace the linear functionalFmat in (19) with the semi-linear formb according to the variational
equation (9) to see thatRmat,u takes the form

Rmat,u(v) = b(u,v) − b(uh,v). (25)

Sinceb is semi-linear, we next apply the fundamental theorem of calculus (cf. Eriksson et al. (1995), Becker and
Rannacher (1996)) onb which yields

b(u,v) − b(uh,v) =
∫ 1

0

b′(ξ(s); eu,v) ds (26)

with ξ(s) = uh + s eu, wherebys ∈ [0, 1], and the bilinear formb′ : V × V → R being the tangent form ofb
defined as

b′(ξ(s); eu,v) = Dub(u,v)|ξ(s) · eu (27a)

=
∫

Ω

[ε(ξ(s)) : σ(eu)] div v − [
(grad eu)T · σ(ξ(s)) + (grad ξ(s))T · σ(eu)

]
: gradv dV ,

(27b)

i.e. the Ĝateaux-derivative ofb with respect tou. Sinceb′ is bilinear, we may next introduce the secant form ofb,
that is the bilinear formbS : V × V → R defined as

bS(u,uh; eu,v) =
∫ 1

0

b′(ξ(s); eu,v) ds . (28)

Upon summing up (25), (26) and (28), we thus arrive at the exact error representation formula in an Eshelbian
setting

bS(u,uh; eu,v) = Rmat,u(v) ∀v ∈ V (29)

which has a similar structure to (24) but also depends on the exact solutionu ∈ V and on the finite element
solutionuh ∈ Vh.

3.3 Global Error Measures

It should be clear, however, that the error representation formulas (24) and (29) are generally not solvable, since the
variational problems are infinite dimensional. Furthermore, in case of (24), the finite element discretization error
eu cannot be approximated inVh, since the weak form of the residual vanishes in this case due to the Galerkin
orthogonality as we have seen above. Apart from that, the knowledge of an estimation of the erroreu itself is of less
use in order to drive an adaptive mesh refinement scheme, since a mapping of the error onto the set of real numbers
is required. Therefore, it proves useful to introduce an arbitrary global goal-quantity of interestQ : V → R that
can be any linear or non-linear bounded functional that is defined over the entire domainΩ. We remark thatQ
can also be defined as a local goal-quantity of interest. Within the framework of Newtonian mechanics, such a
local goal-quantity of interest can be mean displacements on a portion of the Neumann boundaryΓN or mean
stress distributions in a subdomain of the elastic bodyΩ, whereas a typical example in Eshelbian mechanics is the
J-integral as a fracture criterion, see e.g. Rüter and Stein (2002), Heintz et al. (2002) and Stein et al. (2004). In
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this contribution, however, we shall confine ourselves to the case of global functionalsQ. SinceQ is non-linear in
general, we may define the associated general error measureE : V × V → R either as the error of the quantity,
i.e. E(u,uh) = Q(u)−Q(uh), or as the quantity of the errorE(u,uh) = Q(eu), where we adopted the notation
as introduced by Larsson et al. (2002).

Upon recalling the error representation formula (24) within the framework of Newtonian mechanics, a natural
choice for an appropriate goal-quantity of interestQ is the non-linear energy functional

Q(u) = a(u,u) =
∫

Ω

σ(u) : ε(u) dV . (30)

Note carefully that although this functional is non-linear (more precisely: quadratic), we observe the important
property thatQ(u) − Q(uh) = Q(eu) due to the Galerkin orthogonality. Hence, the error measureE yields
the same value in either caseE(u,uh) = Q(u) − Q(uh) andE(u,uh) = Q(eu) which is none other than the
well-known statement that the error of the energy is equal to the energy of the error. In practical error estimation
techniques it turns out, however, that the energy norm of the error, i.e.|||eu||| = a(eu, eu)

1
2 , is the appropriate error

measure.

Likewise, in the case of Eshelbian mechanics the natural error measure with respect to the error representation
formula (29) werebS(u,uh; eu, eu). It should be stressed, however, that this error measure depends on the (un-
known) exact solutionu and on the (mesh dependent) finite element solutionuh ∈ Vh. Therefore, similarly to
(30), we define the goal-quantity of interestQ as the non-linear functional

Q(u) = b(u,u) =
∫

Ω

Σ(u) : gradu dV . (31)

Then, the appropriate error measure is defined asE(u,uh) = Q(u) − Q(uh). Note that in this case we observe
thatQ(u) − Q(uh) 6= Q(eu).

Since the above defined error measuresE are non-linear in either case, we apply essentially the same steps as in
Section 3.2, i.e. we first employ the fundamental theorem of calculus on

E(u,uh) = E(u,uh) − E(uh,uh), (32)

whereby it should be noted that clearlyE(uh,uh) = 0, which yields

E(u,u) − E(u,uh) =
∫ 1

0

E′(ξ(s); eu) ds (33)

with tangent form

E′(ξ(s); eu) = DuE(u,uh)|ξ(s) · eu. (34)

Since the tangent formE′ is a linear functional, we next introduce the secant form

ES(u,uh; eu) =
∫ 1

0

E′(ξ(s); eu) ds (35)

to see that the error measureE can be represented as

E(u,uh) = ES(u,uh; eu). (36)

SinceES involves the exact solutionu ∈ V , we shall next introduce an approximationET of ES by replacing the
exact solutionu ∈ V with the finite element solutionuh ∈ Vh. We thus arrive at the tangent form

ET (·) = ES(uh,uh; ·) (37a)

≈ ES(u,uh; ·), (37b)

which holds for small errorseu only. More precisely, in the case where the goal-quantity of interestQ is defined
as in (30), the tangent form takes the form

ET (eu) = 2a(uh, eu) (38)

and vanishes due to the Galerkin orthogonality. In case of (31), however, we obtain the non-vanishing functional

ET (eu) = b′(uh; eu,uh) + b(uh, eu) (39a)

=
∫

Ω

[ε(uh) : σ(eu)] div uh − [
(grad eu)T · σ(uh) + (graduh)T · σ(eu)

]
: graduh dV

+
∫

Ω

Σ(uh) : grad eu dV . (39b)
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3.4 Error Representation Formulas for the Global Error Measure E

In order to derive an error representation formula for the error measureE, we follow the well-established strategy
of solving an auxiliary dual variational problem which reads: find a solutiong ∈ V satisfying

a∗(g,v) = ES(u,uh;v) ∀v ∈ V . (40)

Here,a∗ : V × V → R denotes the dual bilinear form ofa that coincides witha in case of the linear elasticity
problem because of the symmetry ofa. An exact error representation formula in terms of the solution of the dual
problem is now simply obtained by settingv = eu in (40) and reads with (36)

E(u,uh) = ES(u,uh; eu) = a∗(g − πg, eu) (41)

for any πg ∈ Vh due to the Galerkin orthogonality. Thus, a practically useful error representation formula can
only be obtained within the framework of Newtonian mechanics, although clearly the error measureE may either
be defined in Newtonian or in Eshelbian mechanics. Note also that in the case where the functionalQ is defined as
in (30) we clearly obtaing = u, i.e. the dual problem coincides with the primal problem. We further remark that
althoughπg can be chosen arbitrarily, it proves convenient in the a posteriori error analysis to defineπg either as
some projection of the dual solutiong or as the finite element solutiongh ∈ Vh of the discrete dual problem

a∗(gh,vh) = ES(u,uh;vh) ∀vh ∈ Vh (42)

as the best approximation ofg in Vh. Doing this, we may further introduce the finite element discretization error
eg = g − gh of the dual problem and, consequently, the associated exact error representation

a∗(eg,v) = Rphy,g(v) ∀v ∈ V , (43)

where the (physical) weak form of the residual of the dual problemRphy,g : V → R is similarly toRphy,u defined
as

Rphy,g(v) = ES(u,uh;v) − a∗(gh,v). (44)

It has already been pointed out that the main difficulty with error representation formulas such as (41) and (43)
arises from the unknown exact solutionu ∈ V that appears in the secant formES . As we saw earlier, for small
errorseu it is sufficient to use the approximationET . Thus, we obtain the approximate dual variational problem

a∗(g,v) = ET (v) ∀v ∈ V (45)

leading to the approximate error representation

E(u,uh) = ET (eu) = a∗(g − πg, eu) (46)

for any πg ∈ Vh which is restricted to small errorseu. In particular, if we chooseπg to be the finite element
solutiongh of the discretized (approximate) dual problem (45), i.e.

a∗(gh,vh) = ET (vh) ∀vh ∈ Vh, (47)

we may further approximate the error representation (43) by

a∗(eg,v) = R̄phy,g(v) ∀v ∈ V (48)

with approximated (physical) weak form of the residual

R̄phy,g(v) = ET (v) − a∗(gh,v). (49)

Finally, we may combine the presented exact error representations (24), (41) and (43) to get the result

E(u,uh) = Rphy,u(g − πg) = Rphy,g(eu), (50)

which can be interpreted as Betti’s theorem, also known as the reciprocity theorem, see also Cirak and Ramm
(1998).
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4 A Posteriori Error Estimation

With the above considerations in mind, different strategies for the a posteriori estimation of the error measureE
can be envisioned.

4.1 The General Strategy

To illustrate the main idea, we begin with the general strategy for self-adjoint operators to obtain upper error
bounds that can be sketched as follows

|E(u,uh)| = |a(eu, eg)| (51a)

≤ |||eu||| |||eg|||. (51b)

Note that equality only holds in case of (30). It is easy to see that, by employing the Cauchy-Schwarz inequality,
the estimation of the error measure|E(u,uh)| is converted to estimate the discretization error for both the primal
and the dual problem in the energy norm for which various methods, mostly residual based, were developed in the
last two decades. For an overview we refer to Verfürth (1999) and Ainsworth and Oden (2000). In particular, if
the considered energy norm error estimator provides guaranteed upper error bounds, as verified by e.g. a posteriori
error estimators of equilibrated residual type based on local Neumann problems, then|E(u,uh)| is bounded above
as well. However, it is quite evident that such a bound might not be very sharp due to the unknown angle between
the discretization errorseu andeg. Furthermore, the estimate (51) does not provide an appropriate error indicator
on element level which could be used to drive an adaptive mesh refinement algorithm.

To overcome these difficulties, we may now alter the general estimate (51) by involving decoupled element contri-
butions as follows

|E(u,uh)| =

∣∣∣∣∣
∑
ne

ae(eu|Ω̄e
, eg|Ω̄e

)

∣∣∣∣∣ (52a)

≤
∑
ne

|ae(eu|Ω̄e
, eg|Ω̄e

)| (52b)

≤
∑
ne

|||eu|Ω̄e
|||Ωe

|||eg|Ω̄e
|||Ωe

(52c)

≤ |||eu||| |||eg|||. (52d)

Here,ae : Ve × Ve → R, with local test and solution spaceVe = {v|Ω̄e
: v ∈ V } and associated local norm

|||·|||Ωe
= ae(·, ·) 1

2 , denotes the restriction of the bilinear forma to an element̄Ωe such that

a(u,v) =
∑
ne

ae(u|Ω̄e
,v|Ω̄e

) ∀u,v ∈ V . (53)

Next, let us assume that we can compute approximationsϕe ∈ Ve andχe ∈ Ve of the local error contributions
eu|Ω̄e

∈ Ve andeg|Ω̄e
∈ Ve such that

eu|Ω̄e
= ϕe + ∆

ϕe and eg|Ω̄e
= χe + ∆

χe (54)

hold with “small” ∆
ϕe,

∆
χe ∈ Ve. Upon inserting the approximations (54) in the estimates (52a) or (52b), let us

further assume that the approximationsϕe andχe are suitable in the sense that

ae(eu|Ω̄e
, eg|Ω̄e

) ≈ ae(ϕe,χe). (55)

In other words, the contributions containing either∆
ϕe or ∆

χe are small of higher order and therefore negligible, cf.
Babǔska and Strouboulis (2001). If this is the case, we may obviously further introduce the approximations

|||eu|Ω̄e
|||Ωe

≈ |||ϕe|||Ωe
and |||eg|Ω̄e

|||Ωe
≈ |||χe|||Ωe

. (56)

With these notations at hand, we may now introduce three abstract a posteriori error estimators in addition to the
estimate (51). The first error estimator is based on the estimate (52a) and reads with (55)

E(u,uh) ≈
∑
ne

ae(ϕe,χe). (57)
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Note that a possibly sharp error estimator can be obtained in this fashion with the obvious side-effect that the
presented estimator has no bounding properties. Therefore, in the second error estimator, we insert (55) in (52b)
to get a less sharp error estimator which has, on the other hand, the virtue that it provides an upper error bound as
follows

E(u,uh) ≤
∑
ne

|ae(eu|Ω̄e
, eg|Ω̄e

)| (58a)

≈
∑
ne

|ae(ϕe,χe)|. (58b)

Strictly speaking, however, this upper bound is not guaranteed, since we can approximate the bilinear form
ae(eu|Ω̄e

, eg|Ω̄e
) at best. Likewise, we may next insert (56) in (52c) which results in the error estimator

|E(u,uh)| ≤
∑
ne

|||eu|Ω̄e
|||Ωe

|||eg|Ω̄e
|||Ωe

(59a)

≈
∑
ne

|||ϕe|||Ωe
|||χe|||Ωe

, (59b)

cf. Prudhomme and Oden (1999) and Ohnimus et al. (2001). Note that the local error norms|||eu|Ω̄e
|||Ωe

and
|||eg|Ω̄e

|||Ωe
cannot be bounded by an error estimator based on purely local information, since the pollution error

cannot be taken into account in this fashion. However, the upper error bound presumably holds due to the Cauchy-
Schwarz inequality as the main source of overestimation. As has already been noted, a guaranteed upper bound
can only be obtained by the estimate (51) using available energy norm error estimators of equilibrated residual
type based on local Neumann problems.

Summarizing the above presented strategies for a posteriori error estimation (57), (58), (59) and (51) it needs to be
emphasized that upper error bounds on the error measure|E(u,uh)| can be obtained, but the “more guaranteed”
they are, the less sharp they become. We further remark that the presented estimators (59) and (51), which are
based on the Cauchy-Schwarz inequality, are restricted to self-adjoint problems, whereas the estimators (57) and
(58) are more versatile. Moreover, it should be pointed out that in the case where the goal-quantity of interestQ is
defined as in (30), all estimates (52a) - (52d) simplify to the identityE(u,uh) = a(eu, eu).

In what follows we shall derive two principally different strategies to compute the still abstract a posteriori error
estimators (57), (58) and (59). Furthermore, we present a guaranteed upper bound in the sense of the estimate (51).

4.2 Equilibrated Residual Error Estimators based on Local Neumann Problems

In the first strategy, we will apply the well-known approach of solving, in turn, local Neumann problems for the
primal as well as for the dual problem to obtain, in a first step, guaranteed upper error bounds for an energy norm
control of the errorseu andeg. This global a posteriori error estimator (for the primal problem) is originally due
to Bank and Weiser (1985) and Ainsworth and Oden (1993). The main idea of this residual type error estimator
is to solve the variational problems (24) and (43) for the errorseu andeg, respectively, in a cost effective fashion,
i.e. locally on element level.

As a point of departure, let us introduce the “broken” spaceVbr = {v ∈ [L2(Ω)]3 ; v|Ω̄e
∈ Ve ∀Ω̄e} associated

with the local test and solution spaceVe. SinceVbr ⊇ V , we have to extend the weak forms of the residualsRphy,u

and R̄phy,g, originally defined onV , to the broken spaceVbr. We do so introducing additionally equilibrated
tractions̃tphy,e ∈ [L2(∂Ωe)]3 on the element boundaries∂Ωe for both the primal and the dual problem. Hence,

the extended functionals̃Rphy,u : Vbr → R and ˜̄Rphy,g : Vbr → R are given by

R̃phy,u(v) =
∑
ne

R̃phy,u,e(v|Ω̄e
) ∀v ∈ Vbr (60)

and
˜̄Rphy,g(v) =

∑
ne

˜̄Rphy,g,e(v|Ω̄e
) ∀v ∈ Vbr, (61)

respectively. Here,̃Rphy,u,e : Ve → R and ˜̄Rphy,g,e : Ve → R are the restrictions of̃Rphy,u and ˜̄Rphy,g to an
elementΩ̄e given by

R̃phy,u,e(ve) =
∫

∂Ωe

t̃phy,e · ve dS −ae(uh|Ω̄e
,ve) (62)
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and

˜̄Rphy,g,e(ve) = ET,e(ve) +
∫

∂Ωe

t̃phy,e · ve dS −a∗
e(gh|Ω̄e

,ve), (63)

respectively, whereET,e represents the restriction ofET to an element̄Ωe. Apparently, it is necessary that the

equilibrated tractions̃tphy,e are constructed in such a fashion thatR̃phy,u(v) = Rphy,u(v) and ˜̄Rphy,g(v) =
R̄phy,g(v) for all v ∈ V . Thus, from the definitions of the extended weak formsR̃phy,u and ˜̄Rphy,g and the weak
forms of the residuals (60) and (61), we recognize that

∑
ne

∫
∂Ωe

t̃phy,e · v|Ω̄e
dS =

∫
ΓN

t̄phy · v dS ∀v ∈ V . (64)

This condition can easily be fulfilled if the equilibrated tractionst̃phy,e coincide with the Neumann boundary
conditionst̃phy,e = t̄phy on ∂Ωe ∩ ΓN and fulfill the lemma of Cauchỹtphy,e = −t̃phy,f on Ω̄e ∩ Ω̄f . Note
carefully that the right hand side of (64) vanishes in case of the dual problem.

Recalling the error representation formula (24), we are now in the position to introduce the corresponding local
problem, which is a pure Neumann problem, as follows: find a solutionϕe ∈ Ve that satisfies

ae(ϕe,ve) = R̃phy,u,e(ve) ∀ve ∈ Ve. (65)

Similarly, in case of the dual problem we solve the associated local problem

a∗
e(χe,ve) = ˜̄Rphy,g,e(ve) ∀ve ∈ Ve (66)

for χe ∈ Ve. For the well-posedness of these local problems the bilinear formsae anda∗
e are assumed to be

Ve/Ze- andVe/Z ∗
e -elliptic, respectively, whereZe = {ve ∈ Ve ; ae(we,ve) = 0 ∀we ∈ Ve} andZ ∗

e = {ve ∈
Ve ; a∗

e(we,ve) = 0 ∀we ∈ Ve} denote the spaces of rigid body motions, i.e. the kernels of the bilinear formsae

anda∗
e. In other words, the rigid body motions have to be filtered out for the solvability of (65) and (66). Moreover,

the equilibrated tractions̃tphy,e have to be in equilibrium with the interior loads obtained from the finite element
solutionsuh ∈ Vh andgh ∈ Vh. Thus, the equilibration conditions

R̃phy,u,e(ve) = 0 ∀ve ∈ Ze and ˜̄Rphy,g,e(ve) = 0 ∀ve ∈ Z ∗
e (67)

must be fulfilled in either case, which leads to conditional equations for the determination of the (nonunique)
equilibrated tractions̃tphy,e. Here, we will closely follow the approach originally proposed by Ladevèze and
Leguillon (1983) to compute the equilibrated tractionst̃phy,e, see also Brink and Stein (1998). The basic idea of
improving the approximate tractions can be traced back to Bufler and Stein (1970) and Stein and Ahmad (1977).

Once the equilibrated tractions̃tphy,e are determined and the Neumann problems (65) and (66) are solved, all that
remains is to show how an upper error bound can be computed. To this end, let us recall that the equilibrated trac-
tions t̃phy,e were constructed such that

∑
ne

R̃phy,u,e(v|Ω̄e
) = Rphy,u(v) and

∑
ne

˜̄Rphy,g,e(v|Ω̄e
) = R̄phy,g(v)

hold, which is expressed in (64). With the error representation formulas (24) and (43) we have thus found that

a(eu,v) =
∑
ne

ae(ϕe,v|Ω̄e
) ∀v ∈ V (68)

and, in case of the dual problem,

a∗(eg,v) =
∑
ne

a∗
e(χe,v|Ω̄e

) ∀v ∈ V . (69)

Following Ainsworth and Oden (2000), it can be shown that upon applying the Cauchy-Schwarz inequality twice
on (68) and (69) we are led to the (global) a posteriori error estimators

|||eu||| ≤
{∑

ne

|||ϕe|||2Ωe

} 1
2

(70)

and

|||eg||| ≤
{∑

ne

|||χe|||2Ωe

} 1
2

(71)
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without any multiplicative constants. It needs to be emphasized, however, that these bounds are only guaranteed
for functions belonging to the infinite dimensional spaceVe. Hence, in a finite element code higher order ansatz
functions are implemented to retain the upper bound property of the estimator.

As mentioned earlier, upon inserting the above energy norm error estimators (70) and (71) into (51) we thus arrive
at the following a posteriori error estimator with guaranteed upper bounds

|E(u,uh)| ≤
{∑

ne

|||ϕe|||2Ωe

} 1
2

{∑
ne

|||χe|||2Ωe

} 1
2

. (72)

Now, let us recall the local Neumann problems (65) and (66). Since these problems are local forms of the exact
error representations (24) and (48) one might consider their solutionsϕe ∈ Ve andχe ∈ Ve as approximations of
the error contributionseu|Ω̄e

∈ Ve andeg|Ω̄e
∈ Ve, respectively – in the sense of (54) – up to possible rigid body

motions. Indeed, if the equilibrated tractionst̃phy,e are the exact tractionstphy(u|Ω̄e
), for the primal problem, and

tphy(g|Ω̄e
) in case of the dual problem, then we easily obtainϕe = eu|Ω̄e

andχe = eg|Ω̄e
. It is quite evident

that in this special case the broken spaceVbr equals the test and solution spaceV , since no jumps occur on the
interelement boundaries. With the solutionsϕe andχe at hand we may now compute the presented a posteriori
error estimators (57), (58) and (59). Recalling the general strategy (52) and summarizing the presented error
estimators of equilibrated residual type reveals that

∑
ne

ae(ϕe,χe) ≤
∑
ne

|ae(ϕe,χe)| ≤
∑
ne

|||ϕe|||Ωe
|||χe|||Ωe

≤
{∑

ne

|||ϕe|||2Ωe

} 1
2

{∑
ne

|||χe|||2Ωe

} 1
2

. (73)

It should be carefully noted, however, that this order – contrarily to the estimate (52) – is not guaranteed. For the
sake of clearness, in view of the numerical example in Section 5 the error estimators (73) are henceforth denoted
as “residual 1”, “residual 2”, “residual 3” and “residual 4” (from left to right).

4.3 Averaging Techniques

Another widely used technique to control the finite element discretization error in the energy norm was originally
proposed by Zienkiewicz and Zhu (1987) and is based on averaging techniques or, more precisely, on recovery
of the approximate stress fieldσ(uh). Recently, Carstensen and Funken (2001) have shown the reliability of
averaging estimators, if all geometrical and physical data are smooth enough. Therefore, we shall discuss below
in greater detail how a recovery technique can be applied to estimate the error measureE.

To begin with, we recall the error estimators (57), (58) and (59) (which are henceforth denoted as “averaging
1”, “averaging 2” and “averaging 3”, respectively) as presented in the preceding section. It is readily seen that
the secret of an efficient estimator is the local, i.e. element- or patchwise approximation of error contributions.
Following Zienkiewicz and Zhu (1987), this can be established by introducing the complementary energy and
subsequent recovery of the stresses. Hence, we may introduce the approximation

ae(eu|Ω̄e
, eg|Ω̄e

) ≈ ae(ϕe,χe) =
∫

Ωe

σ(ϕe) : C−1 : σ(χe) dV (74)

as used in the error estimators (57) and (58) as well as

|||eu|Ω̄e
|||2Ωe

≈ ae(ϕe,ϕe) =
∫

Ωe

σ(ϕe) : C−1 : σ(ϕe) dV (75a)

|||eg|Ω̄e
|||2Ωe

≈ ae(χe,χe) =
∫

Ωe

σ(χe) : C−1 : σ(χe) dV (75b)

in case of the estimator (59), whereC−1 denotes the fourth-order tensor of elastic compliances. By the linearity
of the stress tensorσ we get

σ(ϕe) = σ∗(uh|Ω̄e
) − σ(uh|Ω̄e

) (76a)

σ(χe) = σ∗(gh|Ω̄e
) − σ(gh|Ω̄e

), (76b)

whereσ∗(uh|Ω̄e
) andσ∗(gh|Ω̄e

) are recovered stress fields from the finite element solutionsuh ∈ Vh andgh ∈
Vh, respectively.
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What remains to show is how the recovered stress fieldsσ∗(uh) andσ∗(gh) can be computed. For the sake of
conciseness, we shall restrict our considerations to the case of recoveringσ∗(uh), since the general procedure is
the same for both considered stress fields. Basically, the approximated stress fieldσ(uh) involves gradients of the
finite element solutionuh ∈ Vh. Hence, by definition of the spaceVh ⊂ V , it is easy to see that the approximated
stress field is generally discontinuous on the interelement boundaries and therefore contradicts with the exact (in
most cases) smooth solution. Thus, it is obvious to assume that a smoothed stress fieldσ∗(uh) might lead to a
better approximation of stresses (in most cases), which can easily be achieved by taking the same ansatz functions
for the stresses as for theC0-continuous displacement field. As a consequence, appropriate nodal valuesσ̂∗ of
the stresses are required. For this purpose, different strategies were developed in recent years. One of those is the
so-called Superconvergent Patch Recovery (SPR) technique, introduced by Zienkiewicz and Zhu (1992), which we
apply here.

5 Numerical Example

The purpose of the present section is to present an illustrative numerical example that shows the performance of
the a posteriori error estimators as derived in the preceding section.

In this paper we restrict our considerations to the linear elasticity theory and therefore to materials well-known for
their brittle material behavior. More precisely, we make the choice of the inorganic and amorphous material glass
at room temperature, since the use of glass – as one of the oldest building materials – in structural engineering
has enormously increased in recent years. The (theoretical) strength of glass products is rather high. However,
from a practical point of view the strength is considerably reduced by a huge amount of surface flaws in the range
from microcracks, introduced during manufacture, up to large macroscopic cracks caused by material damage.
Therefore, investigations on the fracture behavior of glass within the framework of linear elasticity theory and
linear elastic fracture mechanics are of the utmost importance.

5.1 Single Edge Cracked Tension (SECT) Specimen

In the numerical example let us consider a single edge cracked tension (SECT) specimen made of glass in plane
stress state. Obviously, by symmetry considerations, only one half of the SECT specimen needs to be modeled, as
depicted in Figure 1. In this example, the finite element subspaceVh is constructed by using bilinear isoparametric
Q1-elements. For the chosen material glass, the following material data are assumed: Young’s modulusE = 70000
N/mm2 and Poisson’s ratioν = 0, 29. Furthermore, the (primal) load on top of the specimen is chosen asF = 0, 7
N/mm2.

100 mm 100 mm

200
m

m

F

x

y

Figure 1: Modeled single edge cracked tension
specimen, primal loading and measurements.

Figure 2: Modeled single edge cracked tension
specimen and dual loading.
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Figure 3: Newtonian mechanics: Estimated errors.
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Figure 4: Newtonian mechanics: Effectivity indices.

In a first computation we aim at controlling the erroreu measured by the energy norm within Newtonian mechanics.
The applied adaptive mesh refinement strategy for all computations in this paper reads as follows: an element is
refined, if the scaled error indicator, i.e. the estimated error divided by the maximum estimated error on element
level, is larger than a predefined toleranceθ ∈ (0, 1) which was set here toθ = 0, 5. The convergence of the
estimated error, as obtained by the equilibrated residual error estimator based on local Neumann problems and by
the averaging technique based on the SPR technique can be seen in Figure 3. Here, it can be observed that both
error estimators yield an optimal convergence rate.

The associated effectivity indices, i.e. the ratios of the estimated errors to the true error, are plotted in Figure 4.
A reference solution for the exact value|||u||| was obtained on an adaptively refined mesh based on biquadratic
isoparametricQ2-elements with 132740 degrees of freedom (dof) and became|||u||| ≈ |||uh||| = 0.84116936
mJ. The effectivity indices show that the residual error estimator yields, as expected, a guaranteed upper bound
on the error measureE, which is also quite sharp. Only for the coarse start mesh we do not observe an upper
error bound. This is simply because the local Neumann problems are solved with only one order higher ansatz
functions, i.e.p = 2. With increasing polynomial orderp the upper bound can also be retained on a coarse mesh.
An astonishingly sharp estimate of the error (around the desired value “1”) can be obtained by using the averaging
technique. With the latter error estimator, however, we do not obtain an upper bound on the error measureE as
can be verified by means of Figure 4.
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Figure 5: Eshelbian mechanics: Estimated errors.
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Figure 6: Eshelbian mechanics: Effectivity indices.
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In a second computation, let us investigate how the finite element discretization erroreu can be controlled within
Eshelbian mechanics by means of the global functional (31). Therefore, we first have to solve the associated dual
problem. The dual load is depicted in Figure 2. Here it can be seen that high loads occur on the Neumann boundary
ΓN and in the region around the crack tip with (Cauchy) stress singularity ofr−

1
2 -type. Moreover, the “global”

character of the Eshelby functionalb(u,u) can be verified, since loads appear in the entire domainΩ.

As can be seen from Figure 5, the convergence of the error estimators is much higher now compared to the
energy norm error estimator of the previous computation. This is simply due to the fact that the energy norm
is the square root of the functionala(u,u), whereas in Eshelbian mechanics we consider the functionalb(u,u).
Furthermore, it can be observed that the guaranteed upper bound error estimator “residual 4” does not yield an
optimal convergence rate, whereas the remaining error estimators show a good convergence. Remarkably, all error
estimators of averaging type are rather close to each other and yield lower values for the estimated error measure
than the residual type error estimators.

Virtually the same results can be observed by means of the associated effectivity indices as plotted in Figure 6.
Again, the averaging type error estimators yield rather sharp error estimates around “1”. Note, however, that no
error bounds can be obtained in this fashion. The residual error estimators show bounds on the error measureE,
but they are not as sharp as the averaging error estimators. We remark that in this numerical example all residual
error estimators yield an upper error bound (except for the coarse start mesh), although from the theory only the
upper bound as obtained from “residual 4” is guaranteed. However, this upper bound is comparatively high due to
the before mentioned overestimation resulting from the Cauchy-Schwarz inequality, since the angle between the
errorseu andeg can become rather large.

Next, let us compare the finite element meshes as obtained in Newtonian and in Eshelbian mechanics. As can be
verified from Figures 7 and 8, where the mesh is plotted on the magnified deformed structure, both meshes look
rather similar for about the same number of degrees of freedom. Clearly, heavy mesh refinement takes place at the
crack tip because of the stress singularity at this point.

Figure 7: Newtonian mechanics: primal solution,
15th adaptively refined mesh, 6743 dof (for the

modeled system), “averaging” estimator, deformed
structure (displacements are magnified a 1000 times).

Figure 8: Eshelbian mechanics: primal solution, 19th
adaptively refined mesh, 6389 dof (for the modeled

system), “averaging 1” estimator, deformed structure
(displacements are magnified a 1000 times).
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Figure 9: Newtonian mechanics: Equivalent Cauchy stressσe, deformed configuration (displacements are
magnified a 1000 times).
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Figure 10: Eshelbian mechanics: Equivalent Newton-Eshelby stressΣe, undeformed configuration.

The stress singularity (of the Cauchy stress) can also be verified by means of the distribution of the equivalent
Cauchy stressσe =

√
3/2 dev σ : dev σ as depicted in Figure 9. Clearly, within the framework of Eshelbian

mechanics we also obtain a stress singularity in the Newton-Eshelby stress. In this case we observe a singularity of
r−1-type. Similarly to Figure 9 the stress singularity is visualized in Figure 10 where analogously to the equivalent
Cauchy stressσe the equivalent Newton-Eshelby stress, defined asΣe =

√
3/2 dev Σ : dev Σ, is plotted. Note

that apart from the vicinity of the crack tip, the equivalent Newton-Eshelby stress is vanishingly small in the
remaining part of the domainΩ.

Finally, let us consider the distribution of discrete material forces within the framework of Eshelbian mechanics on
different meshes. In other words, we consider the distribution of discrete material forces as obtained by different
finite element solutionsuh,1 anduh,2 in different finite element subspacesVh,1 andVh,2, respectively, whereby
Vh,1 ⊂ Vh,2, sinceVh,2 is constructed by using more elements. Since the mesh is adapted with respect to the
chosen error measureE(u,uh) = b(u,u) − b(uh,uh), the finite element solutionuh,2 is better thanuh,1 and
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therefore closer to the exact solutionu in the sense that|E(u,uh,2)| < |E(u,uh,1)|. Hence, one can expect that
the residual material forces become smaller on the finer mesh which can be verified by means of Figures 11 and 12.
Since the material is homogeneous, for the exact solutionu no material forces occur in the domainΩ. However,
at the crack tip a material force arises in the opposite direction of crack propagation. The length of this material
force equals the value of the well-knownJ-integral and can therefore be used as a fracture criterion in linear elastic
fracture mechanics. Now, let us consider the coarse start mesh as plotted in Figure 11. Here, we observe residual
material forces e.g. at the pointsP1 andP2 with coordinates(100, 50) and(50, 0), respectively. Figure 12 shows
that these residual material forces nearly vanish during adaptive mesh refinements. However, new residual material
forces arise closer to the crack tip. Clearly, these residual material forces will also (nearly) vanish with increasing
adaptive mesh refinements.

P

P1

2

Figure 11: Distribution of discrete material forces, coarse mesh (start mesh), 46 dof.

P

P1

2

Figure 12: Distribution of discrete material forces, 5th adaptively refined mesh, 217 dof.

6 Conclusions

In this paper we presented residual and averaging type global a posteriori error estimators within the frameworks
of Newtonian and Eshelbian mechanics. Upon introducing the exact error representation formulas for the finite el-
ement discretization error, the error estimators were derived in Newtonian mechanics by equilibrating the tractions
on the interelement boundaries or by recovery of the stress fields. In order to derive error estimators in Eshelbian
mechanics, an auxiliary dual problem in the Newtonian setting had to be solved, since the Galerkin orthogonality
does not hold in Eshelbian mechanics. Finally, in a numerical example we obtained good numerical evidence for
both the upper bound property of the residual error estimator and the sharpness of the averaging technique.
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