
TECHNISCHE MECHANIK,Band 23, Heft 2-4, (2003), 103-112
Manuskripteingang: 23. Juni 2003

Continuum Thermodynamic Modeling and Simulation of
Electromagnetic Metal Forming

Dedicated to the memory of our friend and mentor Jürgen Olschewski

B. Svendsen, T. Chanda

The purpose of this work is the formulation and application of a continuum field approach to the phenomenological
modeling of a class of engineering materials which can be dynamically formed using strong magnetic fields. This
is done in the framework of a thermodynamic, internal-variable-based formulation in which the deformation,
temperature and magnetic fields are in general coupled. As iswell-known, this coupling takes the form of the
Lorentz force as an additional supply of momentum, and the electromotive power as an additional supply of energy,
in the material. The constitutive formulation is based as usual on the exploitation of the dissipation principle, here
for the case of generally anisotropic, elastoviscoplasticmaterial behaviour. In particular, the general results so
obtained are applied in particular to the case of small strain and large rotation. As shown here, in this special
case, the electromagnetic field relations become independent of the deformation field. As such, they can be solved
independently and used as input for the solution of the thermomechanical field relations. Application of this
reduced formulation for small strain to the simulation of the electromagnetic forming of an aluminum tube shows
the importance of accounting for inertial effects and rate-dependence in the modeling.

1 Introduction

Electromagnetic forming (EMF) is a dynamic, high-strain-rate forming method in which strain-rates of≥ 103 s−1

are achieved. In this process, deformation of the workpieceis driven by the interaction of a current generated in the
workpiece with a magnetic field generated by a coil adjacent to the workpiece. In particular, the interaction of these
two fields results in a material body force,i.e., the Lorenz force, representing an additional supply of momentum
to the material resulting in deformation. EMF is but one of a number of high deformation-rate forming methods
which offer certain advantages over other forming methods such as increase in formability for certain kinds of
materials, reduction in wrinkling, the ability to combine forming and assembly operations, and many others.

Modeling and simulation work in this area has focused primarily on the structural and coupled-field aspects of
the problem (e.g., Gourdin, 1989; Gourdinet al., 1989; Takataet al., 1988; Fenton & Daehn, 1998) has focused
mainly on the structural and coupled-field aspects of the problem. The material modeling, in constrast, is generally
one-dimensional and identified with the help of uniaxial tension-compression tests. Fenton & Daehn (1998), for
example, utilize the Steinberg model, which is a one-dimensional, purely mechanical stress-strain independent
of the strain rate. It is just such rate-dependence, however, which is characteristic of the behaviour of metallic
materials at high forming rates such as those achieved during EMF. As such, from a phenomenological point
of view, the relevant material behaviour here is elastoviscoplasticity. The main purpose of the current work is
to outline a continuum thermomechanical framework and formulation for the modeling of dynamic deformation
induced by strong magnetic fields and apply this to the simulation of the electromagnetic forming of an aluminium
tube. In particular, emphasis is placed here on the modelingaspects; details on the algorithmic formulation and
numerical implementation will be presented elsewhere (Brosiuset al., 2003).

2 Basic Field Formulation and Results

Of principle interest in this work is the continuum modelingof the dynamic interaction of strong external electro-
magnetic fields with metallic solids resulting in their deformation. To this end, the system consisting of ambient
space and solid components is modeled as an electromagneticcomposite. Further, each of the solid components is
modeled as a continuum with additional degrees of freedom represented by the electromagnetic fields. In this case,
the usual thermomechanical balance relations to be formulated in what follows are extended by Maxwell’s elec-
tromagnetic field relations. In general, solution of these relations yields wave-like electromagnetic fields. For all
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problems of interest here, however, the frequencies of relevance (i.e., less than 10 MHz) correspond to electromag-
netic wavelengths which are much larger than the relevant structures. As such, the wave character is insignificant,
and can be neglected here. This represents the so-called quasistatic approximation (Moon, 1980,§2.2 and§8.2)
in the current context. In this case, the formulation then becomes independent of the dielectric displacement. In
addition, for the class of electric conductors of interest here, (e.g., aluminum, copper), any charge decays away
so quickly in comparison to any other process that it can be reasonably be neglected from the start. Furthermore,
these materials are non-polarizing and non-magnetizing. Lastly, the processes of interest here (e.g., electromag-
netic metal forming) are all non-relativistic. On the basisof these assumptions, then, we have the reduced system

0 = ḃ + curle ,

0 = divb ,

j = curlh ,

0 = div j ,

(2.1)

of Maxwell’s relations in any materially homogeneous region of the composite (e.g., Hutter & van de Ven, 1978,
Ch. 1; Müller, 1985, Ch. 9; Eringen & Maugin, 1990, Ch. 3). These represent, respectively, surface conservation of
magnetic flux (Faraday’s law), volume conservation of magnetic flux (no free magnetic poles), surface conservation
of electrical charge (Maxwell’s generalization of Ampere’s law), and volume conservation of electrical charge,
respectively, again for the case of no free charge, polarization or magnetization. In these relations,e represents
the electromotive intensity,h the magnetic field strength,b the magnetic induction or flux density, and

j = j
K

+ j
A

(2.2)

the conductive current. As indicated, this latter quantitygenerally splits into constitutivej
K

and appliedj
A

parts.
Lastly, treating the material under consideration as electromagnetically isotropic, the corresponding isotropic (con-
stitutive) Maxwell-Lorentz relation

b = J µ
EM

C
−1

h (2.3)

relative to an inertial (Lorentz) frame, again in the non-relativistic limit, applies. Here,C := F
T

F represents the
right Cauchy-Green deformation,F the deformation gradient,J := det(F ), andµ

EM
is the magnetic permeabil-

ity.

Consider next the formulation of continuum balance relations. For simplicity, attention is restricted here to isother-
mal conditions. For the case at hand, interaction between electromagnetic and mechanical fields takes the forms
of the Lorenz force and electromotive power. Indeed, the effective force represented byb acting on current in the

material results in an additional body force (density)F
−T

(j ×b) on the material (i.e., the Lorentz force density),
whereF represents the deformation gradient. Analogously, the effective force represented bye acting on the
current in the material results in an additional power expenditure with densityj ·e (i.e., the electromotive power).
On this basis, in any materially-homogeneous region of the composite not containing a singular surface, the local
forms

%̇ = 0 ,

% ξ̈ = F
−T

(j × b) + div(FS ) = div(FS + M ) ,
(2.4)

for mass and momentum balance, respectively, hold, together with the symmetry ofS . Here,ξ represents the
motion/deformation field,̇ξ the material velocity, andS the second Piola-Kirchhoff stress. Further, we have the

Lorentz forceF
−T

(j × b), and the Maxwell stress

M := F
−T

h ⊗ b − 1
2 (h · b)F

−T

. (2.5)

Using rationalized MKSA units (e.g., Jackson, 1975, Appendix), note thatb has units of volt s m−2, andh units
of coul m−1 s−1 = amp m−1 with amp= coul s−1. Since volt= N m coul−1, M has units of coul volt m−3 =
N m−2, andµ

EM
has units of volt s amp−1 m−1 = N amp−2. In free space, for example,µ

EM
= 4π × 10−7 N

amp−2.

3 Basic Constitutive Formulation and Results

The formulation to follow pertains to anisotropic viscoelastoplastic material behaviour of electrically-conducting
materials (e.g., aluminum) without free charge, polarization or magnetization. For this case, we have the basic
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material frame-indifferent form
C = C(C ,α , Ċ , α̇ ,b,e) (3.1)

for the dependent constitutive quantitiesS andψ . Here,α represents a set of deformation-like internal variables
accounting in an effective fashion for the effects of inelastic processes such as isotropic and kinematic hardening,
or damage, on the macroscopic material behaviour. In the present isothermal anisotropic context, restrictions on
the form of (3.1) are obtained here with the help of the Clausius-Duhem form

δ = 1
2 S · Ċ + j · e − ψ̇ (3.2)

for the dissipation rate densityδ in the current context. Here,j · e represents the electromotive power, andψ
the referential free energy density. In the context of (3.1)and (3.2), application of the Coleman-Noll dissipation
principle to the current case (see Svendsen & Chanda, 2003, for details) leads to the reduced form

ψ = ψ(θ,C ,α ) (3.3)

for ψ , as well as that

δ = 1
2 (S − 2ψ

, C ) · Ċ + ς · α̇ + j · e (3.4)

for δ , with
ς := − ψ, α

(3.5)

the thermodynamic conjugate toα . On the basis of (3.1) and (3.4), the constitutive model is completed by the
dissipation potential

d = d(C ,α , Ċ , α̇ ,b,e) (3.6)

(e.g., Edelen, 1973;̌Silhavý, 1997,§12.3). Together withψ from (3.3),d determines the constitutive forms1

S = 2ϕ
, Ċ

,

0 = ϕ, α̇
,

j
K

= ϕ, e ,

(3.7)

via the rate potential
ϕ := ψ̇ + d . (3.8)

In turn, these yield the constitutive form

δ = d
, Ċ

· Ċ + d, α̇
· α̇ + d, e · e + j

A
· e (3.9)

for the dissipation rate density from (3.4). For simplicity, attention is restricted in this work to the class of materials
whose dynamic behaviour can be described by the additive split

d(C ,α , Ċ , α̇ ,b,e) = d
Int

(C ,α , Ċ , α̇ ) + d
EM

(C ,α ,b,e) (3.10)

of d into internald
Int

and electromagneticd
EM

parts. For example, this is the case when we work with Ohm’s law
for the constitutive part ofj , i.e.,

j
K

= J σ
EM

(θ,C ,α )C
−1

e (3.11)

whereσ
EM

is the electrical conductivity of the material. In these, any thermoelectric or magnetostriction effects are
neglected. This is reasonable for conductors such as aluminum or copper at room temperature and “low” magnetic
fields. Sincej has units of amp m−2, note thatσ

EM
has units of amp volt−1 m−1 = Ω−1 m−1 with Ω = 1 Ohm=

volt amp−1. Again, for most metalsσ
EM

≈ 107.

Among the constitutive forms (3.7), note that (3.7)2 represents an implicit or “weak” constitutive relation forα̇

via (3.3). In particular, sinceϕ, α̇α̇
= d

Int, α̇α̇
is (at least) positive semi-definite via the convexity ofd in this

argument,α̇ minimizesϕ. In any case, the constitutive relation forα involved can also be expressed in the
explicit form

α̇ = φ, ς
(3.12)

1In general,d will not be globally differentiable in its non-equilibriumarguments. In this case, the potential relations (3.7) willtake the
weaker, more general form of subdifferentials. For simplicity, however, we use the partial derivative notation and point out the exceptions
explicitly in what follows.
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in terms of the potential
φ(C ,α , Ċ , ς ) = ς · α̇ − d

Int
(C ,α , Ċ , α̇ ) (3.13)

Legendre (thermodynamic) conjugate tod
Int

. From a thermodynamic point of view, (3.12) implies thatς represents
the driving force for the evolution ofα .

4 Special Case: Elastoviscoplasticity at Small Strain

To investigate the consequences of the general results fromthe last two sections in a concrete setting, these are
specialized now to the case of small strain and (possibly) large rotation. Indeed, certain kinds of applications such
as the electromagnetic forming of a metal tube to be discussed below in§5 can be well-approximated by such an
assumption. In this case, we haveF ≈ R , J ≈ 1 andC ≈ I + 2E with E := sym(F − I) as usual. In turn,

S ≈ ϕ, Ė (4.1)

then follows for the second Piola-Kirchhoff stress via (3.7)1. In addition, the simplified constitutive forms

b = µ
EM

h ,

j
K

= σ
EM

e ,
(4.2)

for b andj
K

, respectively, then follow from (2.3)2 and (3.11), respectively. As such, the referential Maxwell-
Lorentz relations are independent of the deformation field in this case.

Consider next the local field relations (2.4)2 for the motion/deformation fieldξ, and (2.1) for the electromagnetic
fields, in the current context of small strain. As usual, the satisfaction of (2.1)2 is obtained identically when we
work with the potential relation

b = curla (4.3)

(e.g., Jackson, 1975,§6.4) for the magnetic fluxb. In addition, (2.1)1 is then satisfied identically by the potential
form

e = −ȧ −∇χ̇ (4.4)

for e in terms ofa and the scalar potentialχ. Combining (2.1)3, (4.2)1,2, (4.3), and (4.4) results in the inhomo-
geneous “diffusion” equation

σ
EM

ȧ + curl(µ−1
EM

curla) = j
A
− σ

EM
∇χ̇ (4.5)

via (2.2) fora which is independent of the deformation gradientF . The weak form of this is with respect to a
materially-homogeneous regionB is given by

∫

B

{σ
EM

ȧ − (j
A
− σ

EM
∇χ̇)} ·a

∗
+

∫

B

µ−1
EM

curla · curla
∗

= 0 (4.6)

via (4.2)1 and (4.3) for all test fieldsa
∗

assuming the natural boundary conditionsh∂B
c
×n∂B

c

= 0 at the current
boundary∂Bc. Except for the boundary condition, note that the weak form (4.6) fora is independent ofξ. Besides
j

A
, ∇χ̇ is considered known,e.g., via a gauge condition. As already mentioned, (4.5) and so (4.6) are parabolic or

diffusive in nature, with1/µ
EM
σ
EM

representing the “magnetic” diffusivity. In this case, theinitial vector potential
and so magnetic field will decay away on a timescale given by`2µ

EM
σ
EM

, where` is a characteristic lengthscale
for the spatial variation ofh.

The weak form (4.6) fora is completed here by those
∫

B

{% ξ̈ −R(j × b)} · ξ
∗

+

∫

B

RS · ∇ξ
∗

= 0 (4.7)

of momentum balance (2.4)1 with respect to the corresponding test fieldξ
∗

assuming traction-free boundaries.
From (4.3) and (4.4), one obtains the expression

R(j × b) = R [(j
A
− σ

EM
∇χ̇ − σ

EM
ȧ) × curla] (4.8)

for the Lorentz force in terms ofa, χ̇ andj
A
. Alternatively, (4.7)1 takes the form

∫

B

% ξ̈ · ξ
∗

+

∫

B

RS · ∇ξ
∗

=

∫

∂B

{(b∂B
c
·n∂B

c
)h∂B

c
− p∂B

c
n∂B

c
} · ξ

∗
(4.9)
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following from (2.4)2, where

p∂B
c
:= 1

2 (b∂B
c
· h∂B

c
) = 1

2 µEM
h∂B

c
· h∂B

c
(4.10)

represents the so-called magnetic pressure. The form (4.9)implies that, ifb∂B
c
is parallel to∂Bc, such thatb∂B

c
·

n∂B
c

= 0, then the Lorenz force is equivalent to a pressure at the boundary. This is exactly the type of boundary
condition realized in certain types of applications,e.g., certain types of electromagnetic metal forming (e.g., Fenton
& Daehn, 1998; Beerwaldet al., 2000). In general, however, this will not be the case.

Next, we turn to the concrete forms of the free energy densityψ from (3.3) and inelastic potentialφ from (3.13),
again for the special case of thermoelastoviscoplasticitywith isotropic hardening here. A number of models, both
micromechanical (e.g., Bruhns & Diehl, 1989) and phenomenological (e.g., Lemaitre & Chaboche, 1990) in nature,
for such material behaviour can be found in the literature. In the current context, this case is represented by the
choiceα = (ε

P
,E

P
), with ε

P
the local equivalent accumulated inelastic strain as a measure of isotropic hardening,

andE
P

the local inelastic strain. On this basis, we work with the corresponding form

ψ = ψ(E, ε
P
,E

P
) (4.11)

for the free energy density, again from (3.3) reduced to the current context of small strain. Now, in the context of
small strain, the difference

E
E

:= E −E
P

(4.12)

is associated with the elastic strain in the material. As such, the energy stored in the material during loading is
dependent onE

E
. In this case, the free energyψ as given in (4.11) reduces to a function ofE

E
alone,i.e.,

ψ(E, ε
P
,E

P
) = ψ

I
(E

E
, ε

P
) . (4.13)

From a different point of view,E
P

represents in this case a so-called elastic material isomorphism (e.g., Wang &
Bloom, 1974; Bertram, 1993; Svendsen, 1998), implying thatthe form of the elastic material response is unaffected
byE

P
. Assuming further that inelastic processes contributing to the evolution ofε

P
, and so to isotropic hardening,

do not affect the elastic response of the material, we have the split

ψ
I
(E

E
, ε

P
) = ψ

E
(E

E
) + ψ

P
(ε

P
) (4.14)

of ψ
I
into elasticψ

E
and inelasticψ

P
parts, with

ψ
E
(E

E
) = 1

2 λ (I ·E
E
)2 + µE

E
·E

E
(4.15)

the usual Hooke form ofψ
E
. Here,λ andµ represents Lame’s constants. In turn, (4.14) determines the forms

T
P

:= −ψ
,E

P

,

ς
P

:= −ψ, ε
P

,
(4.16)

for the stress-like internal variables via (3.5) reduced tothe current context. In particular,−ς
P

represents the flow
stress.

Consider next the form of the inelastic potentialφ from (3.13). Restricting attention to the case of rate-dependent
metallic materials here, the transition to inelastic behaviour can be modeled as an activation process. One common
phenomenological form for such a potential in this case is a power-law relation,e.g.,

φ(ε
P
, Ė,T

P
, ς

P
) =

γ(ε
P
, Ė) τ(ε

P
, Ė)

m(ε
P
, Ė) + 1

〈f (ε
P
, Ė,T

P
, ς

P
)〉m(ε

P
,Ė)+1 , (4.17)

with

f (ε
P
, Ė,T

P
, ς

P
) :=

√

2
3

σ
vM

(T
P
) + ς

P

τ(ε
P
, Ė)

(4.18)

the activation function. In (4.17),γ represents a characteristic strain-rate,〈x〉 := 1
2 (x+ |x|) the MaCauley bracket,

m the strain-rate exponent,τ the characteristic or effective activation stress or energy density scale, and

σ
vM

(T
P
) :=

√

−3 IIdev(T
P
) =

√

3
2 Idev(T

P
)2 (4.19)
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the von Mises effective stress with respect toT
P
. Since|x| is a convex function ofx, note that〈x〉 is as well. In

contrast to the general form (3.13), (4.17) has been assumedexplicitly independent of the strainE and inelastic
strainE

P
, in this simple case. More generally,e.g., for the case of deformation-inducedanisotropic flow behaviour,

this is no longer so (e.g., Svendsen, 2001; Svendsen & Reese, 2003). From (4.17), we have the specific forms

ε̇
P

= φ, ς
P

= 1
2 (1 + sgn(f ))

√

2
3 γ 〈f 〉

m
(f 6= 0) ,

Ė
P

= φ
, T

P

= sgn(dev(T
P
)) ε̇

P
(T

P
6= 0) ,

(4.20)

for E
P

andε
P
, respectively, via the general result (3.12) reduced to thecurrent context. Consequently,f < 0

determines the elastic range of the material, andf > 0 its inelastic range. In addition,

d, Ė = −φ, Ė = φ{(1 − ln f )m, Ė − (ln γ), Ė − (ln τ), Ė} (f > 0) (4.21)

follows from (3.13) for the non-equilibrium contribution to S in (4.1). As indicated,φ as given by (4.17) is
differentiable inς

P
everywhere except atf = 0, and inT

P
everywhere except atf = 0 and atT

P
= 0. The

corresponding subdifferentialṡE
P
∈ ∂

T
P

φ andε̇
P
∈ ∂ς

P

φ exist everywhere.

5 Finite Element Simulation of an Aluminum Tube

Using the standard numerical methods of backward-Euler integration and Newton-Raphson iteration as based on
algorithmic or “consistent” linearization (e.g., Simo & Hughes, 1998), the model discussed in the last section can
be formulated in algorithmic form and implemented with the help of the finite element method into a numerical
simulation of electromagnetic forming. This has been carried out and discussed in detail recently in Brosiuset al.
(2003) for the purpose of simulating the electromagnetic forming of aluminum tubes and of sheet metal at room
temperature. As an example of the application of the formulation from the previous section, we discuss here briefly
the simulation results for the aluminum tube.

Application of the model from the last section to this case requires in particular the determination of the isotropic
hardening behaviour of aluminum. As a first approximation, the quasi-static2 uniaxial test data of Beerwaldet al.
(2000) for aluminum was used for this purpose. Model identification based on this data yielded the empirical form

ψ
P
(ε

P
) = σ

F0 εP + c1 (ε
P

+ c2)
c
3 + c4 ln(1 + c5 εP) (5.1)

for the dependenceψ
P
(ε

P
) of ψ on ε

P
related to energy storage in the material due to isotropic hardening, with

σ
F0 = 90 MPa,c1 = 139 MPa,c2 = 0.001, c3 = 0.44, c4 = 12 MPa,c5 = 1609 andc6 = 17 MPa for Al. The

remaining inelastic parametersτ andγ, as well as the strain-rate sensitivitym, have been taken from the literature
or estimated. Generally speaking, these are all a function of temperature, strain and strain rate. For the case of
conventional forming (i.e., strain rates|Ė| between0.1 and103 s−1), values for Al ofτ = 90 MPa,γ = 6500 and
m = 4 have been estimated from the experimental results in Jones (1989). In a similar fashion, we estimated the
valuesτ = 90 MPa,γ = 200000 andm = 5 for the case of electromagnetic forming (i.e., strain rates|Ė| > 103

s−1). Lastly, at room temperature, aluminum is characterized by the valuesλ = 39404 MPa andµ = 26269 MPa
for the elastic parameters.

On this basis, a series of finite-element simulations of the electromagnetic forming of an aluminum tube were
preformed. The tubes of interest were 40 mm long with a 25 mm outer diamter, 21 mm inner diameter and a wall
thickness of 2mm. The finite-element discretization of the tube and symmetry constraints used in the simulation
are depicted in Figure 1. Experimentally, the magnetic fieldis generated parallel to the boundary of the tube. As
discussed above in the context of (4.9) and (4.10), in this case the Lorentz force can be represented as a pressure
boundary condition. Via the experimentally-determined magnetic field strength (Beerwaldet al., 1999, 2000), this
pressure boundary condition has been determined for the tube geometry as a function of time and position along
the tube axis. Figure 2 depicts this boundary condition as a function of time at the midplane of symmetry shown
in Figure 1. Here, the peak magnetic pressure was 63 MPa at 12µs (Figure 2).

2Determination of the hardening behaviour of aluminum during dynamic forming is the subject of work in progress,e.g., Brosiuset al.
(2003).
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Figure 1. Finite-element mesh and symmetry constraints forthe tube simulation.

Figure 2. Experimentally-determineddynamic magnetic pressure boundary condition at the midplane of symmetry
shown in Figure 1.

Results for a number of such tube simulations are shown in Figures 3 and 4. The results in Figure 3 depict the
radial displacement of the tube at the element node indicated in Figure 1 as a function of time and are compared
with corresponding experimental results. Here, the simulation results labeled “rate-dependent” were obtained with
the elastoviscoplastic model and material parameters discussed in the last section. For comparison, an analogous
simulation as based on rate-independentJ2-elastoplasticity and the same isotropic hardening model was carried
out. These are the results labeled as “rate-independent” inFigure 3. As expected, at such high strain-rates, and
confirmed by these results, inertia has a significant influence on the deformation history of the material. Clearly,
neglecting the effect of inertia leads to a substantial overestimation of the effective force acting on the work piece.
In addition, the influence of the rate-dependence of the material behaviour on the simulation results is evident.
Indeed, because the effective stress driving inelastic deformation is higher than that in the rate-independentJ2

case for corresponding material parameter values, the amount of inelastic and so total deformation achieved in the
former case is greater than that in the latter, as confirmed bythe results in Figure 3.
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Figure 3. Radial displacement of the tube at node∗ shown in Figure 1 as a function of time for different simulation
conditions compared with experiment. See text for details.

Consider lastly the strain-rate and von Mises stress fields in the tube attained at peak magnetic pressure (Figure
4). As indicated, the maximum strain-rate generated is on the order of5 × 103 s−1 reached in the middle of the
tube in its interior. This coincides with the region of maximum driving stress as represented by the von Mises
stress as shown in Figure 4. Both of these coincide with the region of maximum attained deformation,i.e., in the
middle of the tube. As is the case in Figure 3, the results obtained here as based on rate-dependent modeling agree
quantitatively quite well with the rate and amount of forming observed in the experiments.

Figure 4. Strain rate and von Mises stress fields in the tube atpeak magnetic pressure.

For more details concerning the algorithmic formulation, numerical implementation and further application of the
model to other work piece geometries, the reader is referredto Brosiuset al. (2003).
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6 Summary

In this work, we have developed a continuum thermodynamic approach with which one can formulate field and
constitutive models in a phenomenological fashion for a class of engineeering materials which can be dynamically
formed via strong magnetic fields. The corresponding formulations are based on thermodynamics and internal
variables in which the deformation and magnetic fields are ingeneral coupled. This coupling takes the well-known
form of the Lorentz force in the momentum balance, as well as that of the electromotive power in the energy
balance. In addition, for the case of large deformation, an additional coupling arises due to a dependence of the
field relation for the magnetic field on the deformation. Exploitation of the dissipation principle in the current
thermodynamic framework yields as usual for the constitutive class of interest thermodynamically consistent ma-
terial models for generally anisotropic, elastoviscoplastic material behaviour. In particular, the general resultsso
obtained are applied in particular to the case of small strain and large rotation. As shown here, in this special
case, the electromagnetic field relations become independent of the deformation field. As such, they can be solved
independently and used as input for the solution of the thermomechanical field relations. On the other hand, in
the case of large strain, the electromagnetic and thermomechanical field relations are coupled and must be solved
simultaneously. Application of the reduced formulation for small strain to the simulation of the electromagnetic
forming of an aluminum tube shows the importance of accounting for inertial effects and rate-dependence in the
modeling.
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