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The purpose of this work is the formulation and applicatiba oontinuum field approach to the phenomenological
modeling of a class of engineering materials which can beadyinally formed using strong magnetic fields. This
is done in the framework of a thermodynamic, internal-vialégabased formulation in which the deformation,
temperature and magnetic fields are in general coupled. Ageisknown, this coupling takes the form of the
Lorentz force as an additional supply of momentum, and éheti@imotive power as an additional supply of energy,
in the material. The constitutive formulation is based asal®n the exploitation of the dissipation principle, here
for the case of generally anisotropic, elastoviscoplastaterial behaviour. In particular, the general results so
obtained are applied in particular to the case of small straind large rotation. As shown here, in this special
case, the electromagnetic field relations become indeperdé¢he deformation field. As such, they can be solved
independently and used as input for the solution of the tberecthanical field relations. Application of this
reduced formulation for small strain to the simulation of thlectromagnetic forming of an aluminum tube shows
the importance of accounting for inertial effects and rdpendence in the modeling.

1 Introduction

Electromagnetic forming (EMF) is a dynamic, high-stra@terforming method in which strain-rates»f103 s—!

are achieved. In this process, deformation of the workp®daven by the interaction of a current generated in the
workpiece with a magnetic field generated by a coil adjacetite workpiece. In particular, the interaction of these
two fields results in a material body fordes., the Lorenz force, representing an additional supply of motum

to the material resulting in deformation. EMF is but one ofuentber of high deformation-rate forming methods
which offer certain advantages over other forming methagth @s increase in formability for certain kinds of
materials, reduction in wrinkling, the ability to combinafing and assembly operations, and many others.

Modeling and simulation work in this area has focused pritpan the structural and coupled-field aspects of
the problem ¢.g, Gourdin, 1989; Gourdiet al, 1989; Takatat al, 1988; Fenton & Daehn, 1998) has focused
mainly on the structural and coupled-field aspects of thelpro. The material modeling, in constrast, is generally
one-dimensional and identified with the help of uniaxiakien-compression tests. Fenton & Daehn (1998), for
example, utilize the Steinberg model, which is a one-dinwerad, purely mechanical stress-strain independent
of the strain rate. It is just such rate-dependence, howewdch is characteristic of the behaviour of metallic
materials at high forming rates such as those achieved glgMF. As such, from a phenomenological point
of view, the relevant material behaviour here is elast@mp$asticity. The main purpose of the current work is
to outline a continuum thermomechanical framework and tdation for the modeling of dynamic deformation
induced by strong magnetic fields and apply this to the sitimraf the electromagnetic forming of an aluminium
tube. In particular, emphasis is placed here on the modabpgcts; details on the algorithmic formulation and
numerical implementation will be presented elsewhere §Biset al., 2003).

2 Basic Field Formulation and Results

Of principle interest in this work is the continuum modelimigthe dynamic interaction of strong external electro-
magnetic fields with metallic solids resulting in their def@tion. To this end, the system consisting of ambient
space and solid components is modeled as an electromagostposite. Further, each of the solid components is
modeled as a continuum with additional degrees of freed@nmesented by the electromagnetic fields. In this case,
the usual thermomechanical balance relations to be foteuliia what follows are extended by Maxwell’'s elec-
tromagnetic field relations. In general, solution of thedations yields wave-like electromagnetic fields. For all
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problems of interest here, however, the frequencies ofaeke {.e., less than 10 MHz) correspond to electromag-
netic wavelengths which are much larger than the relevamttsires. As such, the wave character is insignificant,
and can be neglected here. This represents the so-callsisigtia approximation (Moon, 19862.2 and§8.2)

in the current context. In this case, the formulation thecobges independent of the dielectric displacement. In
addition, for the class of electric conductors of interesteh €.9, aluminum, copper), any charge decays away
so quickly in comparison to any other process that it can beaeably be neglected from the start. Furthermore,
these materials are non-polarizing and non-magnetiziragtly, the processes of interest hezey( electromag-
netic metal forming) are all non-relativistic. On the basfishese assumptions, then, we have the reduced system

0 = b + curle ,
0 = divb,

j = culh,

0 = divyg,

(2.1)

of Maxwell’s relations in any materially homogeneous regid the compositeq.g, Hutter & van de Ven, 1978,
Ch. 1; Mdiller, 1985, Ch. 9; Eringen & Maugin, 1990, Ch. 3).€8k represent, respectively, surface conservation of
magnetic flux (Faraday’s law), volume conservation of maigriex (no free magnetic poles), surface conservation
of electrical charge (Maxwell's generalization of Ampearé&w), and volume conservation of electrical charge,
respectively, again for the case of no free charge, poléoizar magnetization. In these relatiors represents
the electromotive intensityp the magnetic field strength, the magnetic induction or flux density, and

j :jK +jA (2.2)

the conductive current. As indicated, this latter quargiiyerally splits into constitutivg, and appliedj, parts.
Lastly, treating the material under consideration as metagnetically isotropic, the corresponding isotropar(c
stitutive) Maxwell-Lorentz relation

b=Ju, C'h (2.3)

relative to an inertial (Lorentz) frame, again in the notatigistic limit, applies. Here(C' := F'F represents the
right Cauchy-Green deformatiod; the deformation gradient] := det(F"), andy,,, is the magnetic permeabil-
ity.

Consider next the formulation of continuum balance retatid-or simplicity, attention is restricted here to isother
mal conditions. For the case at hand, interaction betwestireinagnetic and mechanical fields takes the forms
of the Lorenz force and electromotive power. Indeed, theotiffe force represented lyacting on current in the

material results in an additional body force (densE/jT(j x b) on the materiali(e., the Lorentz force density),
where F' represents the deformation gradient. Analogously, thecéffe force represented l#/ acting on the
current in the material results in an additional power exjitene with densityj - € (i.e., the electromotive power).
On this basis, in any materially-homogeneous region of tmeposite not containing a singular surface, the local
forms

6 = 0,

. (2.4)

0€ = F '(Jxb)+div(FS) = div(FS + M),

for mass and momentum balance, respectively, hold, togetitie the symmetry ofS'. Here,¢ represents the
motion/deformation field¢ the material velocity, and the second Piola-Kirchhoff stress. Further, we have the

Lorentz forceF" " (§ x b), and the Maxwell stress
M:=F "hob-i(h-b)F . (2.5)

Using rationalized MKSA unitsg.g, Jackson, 1975, Appendix), note titahas units of volt s m?, andh units
of coul m! s=! = amp nT! with amp= coul s!. Since volt= N m coul!, M has units of coul volt m3 =
N m~2, andy,,, has units of volt s amp! m~! = N amp2. In free space, for examplg,,,, = 47 x 10~" N
amp 2.

3 Basic Constitutive Formulation and Results

The formulation to follow pertains to anisotropic viscagtgplastic material behaviour of electrically-condugtin
materials €.g, aluminum) without free charge, polarization or magnéeira For this case, we have the basic
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material frame-indifferent form )
c=CcC,a,C,a,b,e) (3.1)

for the dependent constitutive quantiti®sand. Here,a represents a set of deformation-like internal variables
accounting in an effective fashion for the effects of ingtagrocesses such as isotropic and kinematic hardening,
or damage, on the macroscopic material behaviour. In theeptésothermal anisotropic context, restrictions on
the form of (3.1) are obtained here with the help of the Clagifduhem form

§=38-C+j-e—vy (3.2)
for the dissipation rate densityin the current context. Herg, - € represents the electromotive power, and

the referential free energy density. In the context of (auid (3.2), application of the Coleman-Noll dissipation
principle to the current case (see Svendsen & Chanda, 2008efails) leads to the reduced form

v =9(0,C,a) (33)
for ¢, as well as that .
§=3(8 -2¢0) C+s-a+j-e (3.9
for §, with
S = _w,a (35)

the thermodynamic conjugate &o. On the basis of (3.1) and (3.4), the constitutive model imieted by the
dissipation potential

d=d(C,a,C,a.b.e) (3.6)
(e.g, Edelen, 1973éi|havy, 1997§12.3). Together withy from (3.3),d determines the constitutive formns
S = 2 @7 C 9
0 = ¢4 (3.7)
jK = ®Pe>
via the rate potential .
p:=9v+d. (3.8)
In turn, these yield the constitutive form
d=dy Ctdg a+de-e+j, e (3.9)

)

for the dissipation rate density from (3.4). For simplic#gtention is restricted in this work to the class of matsria
whose dynamic behaviour can be described by the additiite spl

d(C.a,C,a.b.€)=4d,,(C.a,C.a)+d,(C,a.be) (3.10)

of d into internald,,, and electromagneti¢,,, parts. For example, this is the case when we work with Ohrwis la
for the constitutive part of , i.e.,

Ji=J0(0.C.)C e (3.11)

whereo,,, is the electrical conductivity of the material. In thesey #rermoelectric or magnetostriction effects are
neglected. This is reasonable for conductors such as alumin copper at room temperature and “low” magnetic
fields. Sincey has units of amp m?, note tha,,,, has units of amp volt' m=! = Q! m~! with Q = 1 Ohm=
voltamp~!. Again, for most metals,,, ~ 10°.

Among the constitutive forms (3.7), note that (3.7¢presents an implicit or “weak” constitutive relation far
via (3.3). In particular, since ., = d,. .5 IS (at least) positive semi-definite via the convexitydoin this
argument,a minimizesy. Inyany case, the constitutive relation far involved can also be expressed in the
explicit form

a =¢. (3.12)

1In general,d will not be globally differentiable in its non-equilibriurarguments. In this case, the potential relations (3.7) taile the
weaker, more general form of subdifferentials. For siniglihowever, we use the partial derivative notation anchpout the exceptions
explicitly in what follows.
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in terms of the potential . .
¢(C,a,C,6)=6-a —d_(C,a,C,c) (3.13)

Legendre (thermodynamic) conjugateftg . From a thermodynamic point of view, (3.12) implies thaepresents
the driving force for the evolution ak .

4 Special Case: Elastoviscoplagticity at Small Strain

To investigate the consequences of the general resultstfrertast two sections in a concrete setting, these are
specialized now to the case of small strain and (possibitggleotation. Indeed, certain kinds of applications such
as the electromagnetic forming of a metal tube to be disdussw in§5 can be well-approximated by such an
assumption. In this case, we habé~ R, J ~ 1 andC ~ I + 2 E with E := sym(F' — I) as usual. In turn,

S ~ Y E (4.2)
then follows for the second Piola-Kirchhoff stress via §3.7Tn addition, the simplified constitutive forms
b = Hem h )

j o 4.2)
Kk — %en€,

for b and j,., respectively, then follow from (2.3)and (3.11), respectively. As such, the referential Maxwell
Lorentz relations are independent of the deformation fielidhis case.

Consider next the local field relations (2,4pr the motion/deformation field, and (2.1) for the electromagnetic
fields, in the current context of small strain. As usual, thisgaction of (2.1) is obtained identically when we
work with the potential relation

b =curla (4.3)

(e.g, Jackson, 19756.4) for the magnetic flub. In addition, (2.1) is then satisfied identically by the potential
form
e=-a—-Vy (4.4)

for e in terms ofa and the scalar potentigl. Combining (2.13, (4.2), 2, (4.3), and (4.4) results in the inhomo-
geneous “diffusion” equation
O @ + curl(ul;vlI curla) = 3, — 0wy VX (4.5)

via (2.2) fora which is independent of the deformation gradidfit The weak form of this is with respect to a
materially-homogeneous regidhis given by

/ {UEM a - (jA ~ Ogm VX)} - a, +/ :ul;\ld curla - curla, =0 (46)
B B

via (4.2) and (4.3) for all test fielde, assuming the natural boundary conditidng; x 1, = 0 at the current
boundarnyB,. Except for the boundary condition, note that the weak fatré)fora i§indepéndentczf. Besides
7., Vx is considered knowre.g, via a gauge condition. As already mentioned, (4.5) and &) &te parabolic or
diffusive in nature, withl / i, 0,,,, representing the “magnetic” diffusivity. In this case, thiéal vector potential
and so magnetic field will decay away on a timescale give#’py,, o,.,,, where/ is a characteristic lengthscale
for the spatial variation of.

The weak form (4.6) foa is completed here by those
[ (eé-RiG xb)} €.+ [ RS -ve.~0 (4.7)

of momentum balance (2.4with respect to the corresponding test figldassuming traction-free boundaries.
From (4.3) and (4.4), one obtains the expression

R(J X b) = R[(JA — Ogm VX — Oem a’) x curl CL] (48)

for the Lorentz force in terms af, y andj . Alternatively, (4.7) takes the form

/ 0€ €, +/ RS -V, =/ {(bch-nch) hch—Pchnch} &, (4.9)
B B oB
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following from (2.4),, where
pch = % (bch ’ hch) = %NENI hch ’ hch (4-10)

represents the so-called magnetic pressure. The formi(dies that, |fbaB is parallel todB,, such thabaB
Mg =0, then the Lorenz force is equivalent to a pressure at thedmynThls is exactly the type of boundary
condition realized in certain types of applicatioas, certain types of electromagnetic metal formiegy, Fenton

& Daehn, 1998; Beerwaldt al,, 2000). In general, however, this will not be the case.

Next, we turn to the concrete forms of the free energy denisifsom (3.3) and inelastic potential from (3.13),
again for the special case of thermoelastoviscoplastigity isotropic hardening here. A number of models, both
micromechanical&.g, Bruhns & Diehl, 1989) and phenomenological, Lemaitre & Chaboche, 1990) in nature,
for such material behaviour can be found in the literaturethe current context, this case is represented by the
choicea = (¢,, E,), with ¢, the local equivalent accumulated inelastic strain as a ureas isotropic hardening,
and EZ, the local inelastic strain. On this basis, we work with theresponding form

Y=y (E, e, E,) (4.11)

for the free energy density, again from (3.3) reduced to threenit context of small strain. Now, in the context of

small strain, the difference
E.—E-E. (4.12)

is associated with the elastic strain in the material. Adstite energy stored in the material during loading is
dependent od,. In this case, the free energyas given in (4.11) reduces to a functionkbf, alone,i.e.,

V(B e, B,) = (E,,6,) . (4.13)

From a different point of viewF, represents in this case a so-called elastic material igomsn €.g, Wang &
Bloom, 1974; Bertram, 1993; Svendsen, 1998), implyingtimaform of the elastic material response is unaffected
by E.,,. Assuming further that inelastic processes contributintpé evolution of,,, and so to isotropic hardening,
do not affect the elastic response of the material, we haverilit

(B, €)= U (Br) + 4 (e2) (4.14)

of ¢, into elasticy,, and inelastiay, parts, with

the usual Hooke form of,,. Here,A\ andy represents Lame’s constants. In turn, (4.14) determirefotims
CI; = _dj 3
B (4.16)
gp = _dj, €p )

for the stress-like internal variables via (3.5) reduceth®current context. In particularg, represents the flow
stress.

Consider next the form of the inelastic potentiairom (3.13). Restricting attention to the case of rate-dejeat
metallic materials here, the transition to inelastic bétawcan be modeled as an activation process. One common
phenomenological form for such a potential in this case isvago-law relatione.g,

Vew E) 7(en, B)

bl BT, G,) = . (f (e BT )y BOEL (4.17)
m(e,, B) +1
with T)
: o, +¢
f EP,E,’I;,,CP) = 2 e (4-18)
| \/; (e, B)
the activation function. In (4.17), represents a characteristic strain-ré¢,:= + (z + |z|) the MaCauley bracket,

m the strain-rate exponent,the characteristic or effective activation stress or eydansity scale, and

UvNI(CZ-lL) =V -3 IIdeV(CI;;,) = \V %Idev(frpf (419)
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the von Mises effective stress with respectlfa Since|z| is a convex function of;, note that(z) is as well. In
contrast to the general form (3.13), (4.17) has been assexititly independent of the straift and inelastic
strainE ., in this simple case. More generakyg, for the case of deformation-induced anisotropic flow béhay
this is no longer sod.g, Svendsen, 2001; Svendsen & Reese, 2003). From (4.17),wedl@aspecific forms

6'P = S = 3 1 g1 2 " O )
b = b = jlts UN2r ™ (7 #£0) w20)
E, = o5 = s(dev(T)e (T, #£0),

for E/, ande,, respectively, via the general result (3.12) reduced toctireent context. Consequentlf, < 0
determines the elastic range of the material, Anel 0 its inelastic range. In addition,

dp=-¢p=0{(1-Inf)m g—(n7) g—(n7) g} (f>0) (4.21)

follows from (3.13) for the non-equilibrium contribution 1S’ in (4.1). As indicateds as given by (4.17) is
differentiable ing, everywhere except gt = 0, and inZ}, everywhere except gt = 0 and atZ, = 0. The

corresponding subdifferentials, € Or ¢ andé, € 0. ¢ exist everywhere.
P P

5 Finite Element Simulation of an Aluminum Tube

Using the standard numerical methods of backward-Eulegmation and Newton-Raphson iteration as based on
algorithmic or “consistent” linearizatiore(g, Simo & Hughes, 1998), the model discussed in the last secta

be formulated in algorithmic form and implemented with thedphof the finite element method into a numerical
simulation of electromagnetic forming. This has been edrdut and discussed in detail recently in Brogual.
(2003) for the purpose of simulating the electromagnetimfog of aluminum tubes and of sheet metal at room
temperature. As an example of the application of the fortraidrom the previous section, we discuss here briefly
the simulation results for the aluminum tube.

Application of the model from the last section to this casguiees in particular the determination of the isotropic
hardening behaviour of aluminum. As a first approximatibe, quasi-statfcuniaxial test data of Beerwalet al.
(2000) for aluminum was used for this purpose. Model idag#tion based on this data yielded the empirical form

wP(EP) = Opg €p T €1 (EP + CQ)Ca +cy 111(1 +c5 EP) (51)

for the dependenceg,(e.) of ¢ on e, related to energy storage in the material due to isotropidérang, with

op0 = 90 MPa,c; = 139 MPa,c, = 0.001, ¢5 = 0.44, ¢, = 12 MPa,c; = 1609 andcg = 17 MPa for Al. The
remaining inelastic parametersand-~y, as well as the strain-rate sensitivity, have been taken from the literature
or estimated. Generally speaking, these are all a functi®@enoperature, strain and strain rate. For the case of
conventional formingi(e., strain ratesF| betweer0.1 and10? s~1), values for Al ofr = 90 MPa,~ = 6500 and

m = 4 have been estimated from the experimental results in JA9&9]. In a similar fashion, we estimated the
valuesr = 90 MPa,y = 200000 andm = 5 for the case of electromagnetic formirige(, strain rates /| > 103
s~1). Lastly, at room temperature, aluminum is characterizaethb values\ = 39404 MPa andu = 26269 MPa

for the elastic parameters.

On this basis, a series of finite-element simulations of teetemagnetic forming of an aluminum tube were
preformed. The tubes of interest were 40 mm long with a 25 mtaraliamter, 21 mm inner diameter and a wall
thickness of 2mm. The finite-element discretization of thigetand symmetry constraints used in the simulation
are depicted in Figure 1. Experimentally, the magnetic figlgenerated parallel to the boundary of the tube. As
discussed above in the context of (4.9) and (4.10), in thée ¢he Lorentz force can be represented as a pressure
boundary condition. Via the experimentally-determinedymettic field strength (Beerwakt al., 1999, 2000), this
pressure boundary condition has been determined for tleegabmetry as a function of time and position along
the tube axis. Figure 2 depicts this boundary condition asatfon of time at the midplane of symmetry shown

in Figure 1. Here, the peak magnetic pressure was 63 MPaad (Zigure 2).

2Determination of the hardening behaviour of aluminum dyidiynamic forming is the subject of work in progressy, Brosiuset al.
(2003).
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Mid Plane of Symmetry
u3=0

Figure 1. Finite-element mesh and symmetry constraintthfotube simulation.
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Figure 2. Experimentally-determined dynamic magnetisgnee boundary condition at the midplane of symmetry
shown in Figure 1.

Results for a number of such tube simulations are shown iarégy3 and 4. The results in Figure 3 depict the
radial displacement of the tube at the element node indlgat&igure 1 as a function of time and are compared
with corresponding experimental results. Here, the sitrarlaesults labeled “rate-dependent” were obtained with
the elastoviscoplastic model and material parametersisigtl in the last section. For comparison, an analogous
simulation as based on rate-independépelastoplasticity and the same isotropic hardening model garried
out. These are the results labeled as “rate-independefigire 3. As expected, at such high strain-rates, and
confirmed by these results, inertia has a significant inflaemcthe deformation history of the material. Clearly,
neglecting the effect of inertia leads to a substantial @stimation of the effective force acting on the work piece.
In addition, the influence of the rate-dependence of the ma&teehaviour on the simulation results is evident.
Indeed, because the effective stress driving inelastiordedtion is higher than that in the rate-independént
case for corresponding material parameter values, the mimbinelastic and so total deformation achieved in the
former case is greater than that in the latter, as confirmetédoyesults in Figure 3.
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Figure 3. Radial displacement of the tube at nedbown in Figure 1 as a function of time for different simuati
conditions compared with experiment. See text for details.

Consider lastly the strain-rate and von Mises stress fieldsé tube attained at peak magnetic pressure (Figure
4). As indicated, the maximum strain-rate generated is erotier of5 x 103 s~! reached in the middle of the
tube in its interior. This coincides with the region of maxim driving stress as represented by the von Mises
stress as shown in Figure 4. Both of these coincide with thi@neof maximum attained deformatioire., in the
middle of the tube. As is the case in Figure 3, the resultsiobichere as based on rate-dependent modeling agree
guantitatively quite well with the rate and amount of forigimbserved in the experiments.

ER, Max. Principal
(Ave. Crit.: 75%)

+4.750e+03
+4.354e+03
+3.959e+03
+3.563e+03
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+1.979e+03
+1.583e+03
+1.187e+03
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-2.821e-01
ﬁ/ﬁ
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(Ave. Crit.: 75%)
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+1.524e+01
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-

Figure 4. Strain rate and von Mises stress fields in the tupeait magnetic pressure.

For more details concerning the algorithmic formulatiomnerical implementation and further application of the
model to other work piece geometries, the reader is refeor8dosiuset al. (2003).
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6 Summary

In this work, we have developed a continuum thermodynampeagrh with which one can formulate field and
constitutive models in a phenomenological fashion for a<t# engineeering materials which can be dynamically
formed via strong magnetic fields. The corresponding foatioths are based on thermodynamics and internal
variables in which the deformation and magnetic fields ageimeral coupled. This coupling takes the well-known
form of the Lorentz force in the momentum balance, as wellhas of the electromotive power in the energy
balance. In addition, for the case of large deformation,dditenal coupling arises due to a dependence of the
field relation for the magnetic field on the deformation. Bialtion of the dissipation principle in the current
thermodynamic framework yields as usual for the constitutiass of interest thermodynamically consistent ma-
terial models for generally anisotropic, elastoviscoftasaterial behaviour. In particular, the general ressidts
obtained are applied in particular to the case of smallrstaaid large rotation. As shown here, in this special
case, the electromagnetic field relations become indepenfithe deformation field. As such, they can be solved
independently and used as input for the solution of the tberethanical field relations. On the other hand, in
the case of large strain, the electromagnetic and thermioaméeal field relations are coupled and must be solved
simultaneously. Application of the reduced formulation $mall strain to the simulation of the electromagnetic
forming of an aluminum tube shows the importance of accogrfor inertial effects and rate-dependence in the
modeling.
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