Rotating Flow of Power-Law Fluids over a Stretching Surface
Abstract
The steady flow of a non-Newtonian power-law fluid due to a stretching surface in a rotating fluid has been investigated in this paper. After a similarity transformation, the set of non-linear ordinary differential equations have been solved numerically using the Keller-box method for some values of the parameter which is the ratio of the rotation rate to the stretching rate and the power-law index. It is found that both the skin frictions coefficients in the x and y directions decrease with the increase of the parameter. However, for smaller values of the skin friction coefficients are higher for the dilatant fluid and smaller for the pseudoplastic fluid, respectively.