Consistent Time Window Assignments for Stochastic Multi-Depot Multi-Commodity Pickup and Delivery


  • Shohre Zehtabian
  • Marlin W. Ulmer



Agri-food supply chains, Time window assignment, Consistency, Two-stage stochastic programming, Progressive hedging algorithm


In this paper, we present the problem of assigning consistent time windows for the collection of multiple fresh products from local farmers and delivering them to distribution centers for consolidation and further distribution in a short agri-food supply chain with stochastic demand. We formulate the problem as a two-stage stochastic program. In the first stage, the time windows are assigned from a set of discrete time windows to farmers and in the second stage, after the demand is realized, the collection routes are planned by solving yet a newly introduced multi-depot multi-commodity team orienteering problem with soft time windows. The objective is to minimize the overall travel time and the time window violations. To solve our problem, we design a (heuristic) progressive hedging algorithm to decompose the deterministic equivalent problem into subproblems for a sampled set of demand scenarios and guide the scenarios toward consensus time windows. Through numerical experiments, we show the value of considering demand uncertainty over solving the deterministic expected value problem and the superiority of our approach over benchmarks when it comes to reducing the routing cost as well as the inconvenience for farmers.