Application of the Mesoscopic Theory to Dipolar Media

Authors

  • C. Papenfuss
  • V. Ciancio
  • P. Rogolino

Abstract

Mesoscopic continuum theory is a way to deal with complex materials, i.e. materials with an internal structure, which can change under the action of external elds, within continuum theory. In the mesoscopic theory eld quantities are introduced, which depend not only on position and time, but also on an additional, so called mesoscopic variable. In our case this additional variable is the orientation of a dipole. The orientation distribution function (ODF) gives the fraction of dipoles of a particular orientation. The magnetization is proportional to the rst moment of the ODF. Balance equations for the mesoscopic elds, and an equation of motion for the distribution function have been derived in the general case. With some additional assumptions these equations are used here to derive a relaxation equation for the magnetization. The linear limit case of this relaxation equation is the well known DEBYE equation.

Downloads

Published

2019-08-31

How to Cite

Papenfuss, C., Ciancio, V. and Rogolino, P. (2019) “Application of the Mesoscopic Theory to Dipolar Media”, Technische Mechanik - European Journal of Engineering Mechanics, 22(2), pp. 132–140. Available at: https://journals.ub.ovgu.de/index.php/techmech/article/view/1019 (Accessed: 22 November 2024).

Issue

Section

Article